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1. Introduction  

Streaming media is undergoing a dramatic 
growth fuelled by a variety of applications such 
as internet protocol television (IPTV) and 
Telco video. Naturally, video-on-demand 
(VOD) service has to face a challenge of the 
tremendous concurrent users increase. In order 
to satisfy the increasingly demanding traffic 
and the growing consumer population, most 
VOD systems are deployed in a form of 
massive server clusters for providing low cost, 
high performance, availability and scalability. 
However, the servers today consume ten times 
more power than they did ten years ago [1], 
which implies that the large scale server 
clusters may result in a high power 
consumption. In this paper, we consider the 
problem of energy conservation in large scale 
VOD server clusters. 

In recent years, the problem of energy 
conservation for server clusters has received an 
increasing attention from both academia and 
industry. Bianchini et al. [2] gave an overview 
of different power and energy management 
techniques of server systems. Gandhi et al. [3] 
considered the problem of allocating an 
available power budget among servers to 
minimize mean response time. Chen et al. [4] 
presented a solution to the problem of reducing 
server energy cost at hosting center running 
multiple applications towards the goal of 
meeting performance based on Service Level 
Agreements (SLA). Qureshi et al. [5] 
characterized the variation due to fluctuating 
electricity prices and stated that existing 
distributed systems should be able to exploit 
this variation for significant economic gains. 

 

 

 

 

 

 

 

 

 

 

 

Chase et al. [6] studied dynamic provisioning 
for web cluster to improve the energy 
efficiency. Chen et al. [7] proposed power 
saving techniques for connection-intensive 
services, and evaluated the techniques by using 
data traces from Windows Live Messenger. 
Other works [8-11] also studied dynamic 
provisioning and load dispatching algorithms 
for web clusters or data centers to improve the 
energy efficiency. 

It should be noted that the most prior works 
focus on generic requests of web services, 
rather than multimedia jobs. To the best of our 
knowledge, energy saving in large scale VOD 
systems has not been covered yet. Our works 
for power-efficient large scale VOD server 
clusters are motivated by two observations. 
First, the number of users varies largely during 
a day [13], which is based on a large VOD 
system deployed by China Telecom. Second, as 
shown in [3, 7], an idle server may consume 
around 60% of the peak power, because the 
power required to run the OS and hardware is 
not ignorable. These observations imply that 
we can achieve substantial energy saving by 
adjusting the active server according to the 
time-varying workload, especially shutting 
down idle servers during off-peak hours. 

In this paper, we design a recursive least 
squares (RLS) based predictor to estimate the 
forthcoming number of users corresponding to 
each video, which assists our strategy to 
determine the server provisioning for the near 
instantaneous workload without any prior 
statistical knowledge. In order to conceive a 
QoS provisioning energy conservation strategy 
for large scale VOD systems, we define the 
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QoS requirement in terms of the overload 
probability. Then, we apply large deviation 
theory [14] to estimate the overload probability 
that the bandwidth provided by the current 
active servers cannot satisfy the required 
bandwidth for the predicted workload. Finally, 
we use the overload probability to derive an 
adaptive strategy to find the minimum cluster 
scale satisfying the QoS requirement. 
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Figure 1.  The clustered VOD systems 

2. System Model 

Consider a clustered VOD system as shown in 
Figure 1, which consists of a request scheduler, 
a collection of media servers and a storage 
subsystem. The request scheduler catches the 
request and distributes it to the chosen 
streaming media server. The streaming media 
server delivers the video stream to the 
requested client through the network. The 
storage subsystem provides a large storage 
capacity for storing video objects and high data 
throughput for supporting multiple concurrent 
retrievals of video objects. Suppose that all the 
videos are variable bit-rate (VBR).  

Consider at time t , there are N  users and k  
active servers in a VOD system. Suppose all 
the servers have the same bandwidth c  Mbps.  
Then, the aggregated bandwidth capacity is 
denoted as kcC    (Mbps). Let J denote the 
number of videos. The bandwidth required by 
the user i  watching a video at time t  is 
denoted by )(tX i . Hence, we define the 
overload probability as 
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Then, the energy conservation problem for 
large VOD server clusters with QoS 
provisioning can be formulated as 
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where  is a desired QoS requirement in terms 
of the overload probability. Obviously, 
estimating the overload probability is a key step 
to solve the problem (2). In this paper, a 
practical estimation method will be proposed to 
predict the overload probability in (2) by using 
two steps: the first step is to design a RLS 
based predictor for the user number N , 
followed by the second step that applies the 
large deviation principle to estimate the 
overload probability. 

3. Dynamic Server Provisioning for 
Large Scale VOD Clusters  

In this section, we will derive a prediction 
based dynamic server provisioning strategy for 
large scale VOD clusters. Firstly, a RLS 
predictor is designed for predicting the 
forthcoming user number for each video. Then, 
based on the user number estimate, we apply 
the large deviation principle to calculate the 
overload probability. Finally, a dynamic server 
provision strategy is presented to solving the 
problem (2) by using the above two steps. 

3.1 RLS based predictor for user number 

The VOD server cluster may waste a 
substantial amount of energy due to the low 
percentage of the peak load time. Therefore, if 
we can use the workload variation to 
dynamically adjust the scale of the server 
cluster, significant energy conservation may be 
achieved. However, there is no prior 
knowledge available about the user number 
variation. Additionally, the characteristics of 
VOD service are significantly different from 
connection-intensive service like MSN, 
because the video traffics are heterogeneous 
and their popularity will change upon time. To 
overcome the above difficulties, we will 
propose a measurement based online predictor 
for the user number of each video, which 
assists the proposed strategy to activate early 
adjustment of the active server scale to 
compensate the initialization delay of starting a 
physical server. 

Since Recursive Least Squares (RLS) 
estimation method [16] has fast convergence 
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and tracking capability in non-stationary 
environment, we adopt RLS technique to 
design a measurement-based online predictor 
for the user number of each video. Let 

),,2,1)(( Jjln j   denote the user number 

corresponding to the j th video at time l . Then, 

define T
jjjj pwww )]1(,),1(),0([  w   as the 

predictor's weight vector corresponding to the 
thj -  video. We apply a 1-step p th-order 

predictor to estimate the user number as 







1

0

)()()1(ˆ
p

t
jjj tlntwln  (3) 

Then, the prediction error is given as 
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In order to find the weight vector, we consider 
the following sum of exponentially weighted 
error squares 
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where the forgetting factor  is between 0 and 
1. Choosing 1  is especially useful for 
tracking nonstationary changes. Applying the 
RLS technique to minimize the criterion (5), 
we can derive the weight vector updating rule 
as follows: 
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where  T
jjjj plnlnlnl )]1(,),1(),([)(  n  and 

)(ljw  is the estimate of jw  at time l . The 

simplest way to choose the initial value is to 
set IP )0(j . 

At time l , we can predict the user number of 
video j  at time 1l   as 

)()()1(ˆ llln j
T
j nw  (7) 

In order to provide QoS, our strategy aims to 
provide enough bandwidth capacity for the 
maximum number of users at time 1l . 
However, the user number )1( ln j predicted by 

(7) may not be the maximum user number of 
the video j   due to the prediction error. 
Therefore, we extend the predictor (7) as 
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where the scale factor   satisfies 1   and 
0 . The second item in the right side of (8) is 

to compensate the prediction error of (7) by 
scaling the maximum value of the recent   
prediction errors, in order to prevent the QoS 
degradation due to underestimating the user 
number. The scale factor  should be carefully 
chosen, because excessive   may result in 
overestimation which leads to over-provisioning 
of servers and power wasting, while small   
may result in underestimation, which leads to 
under-provisioning and QoS degradation.  

3.2 Overload probability estimation 

The prediction technique in the above section 
assists us to estimate the forthcoming user 
number of each video. However, the user 
number is not sufficient to characterize the 
workload in VOD service due to the 
heterogeneous traffic of each video. Hence, we 
will further apply large deviation theory [14, 15] 
to develop an overload probability model by 
using the predicted user number. 

Let jn  denote the predicted number of the 

forthcoming user corresponding to the video 
j ),,2,1( Jj  . We further define the 

bandwidth demand of the i th user watching 
video j  as jiX . Then, the aggregated 

bandwidth S  required by the forthcoming users 
is formulated as 
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Then, the overload probability can be rewritten as 

)( CSPPoverload   (10) 

where kcC   is the total bandwidth provided 
by k  active servers. 

Since jiX ),,2,1( jni    are corresponding to 

the same video j , the random variables jiX  

are i.i.d, and they have the same  logarithmic 
moment generating functions 

][log)( jiX
j eEM

   (11) 

By applying the Chernoff bound in the context 
of the large deviations approximation [14, 15] 
to )( CSP  , we obtain 
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Hence, the overload probability can be 
estimated as follows: 
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With the above estimation equation, we can 
determine whether the current bandwidth 

kcC   provided by k  active servers satisfies 
the QoS requirement,  , for the forthcoming 
workload by using the criterion 
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As shown in the next section, we will rely on 
this criterion to solve the problem (2) to find 
the minimum active server number. 

Below we will further give the remarks on the 
computation of the overload probability. To 
calculate the overload probability, the explicit 
form for )(jM  is required, which means that 

we have to estimate the bandwidth distribution 
of video j . We define the possible bandwidth 
value set for the video j  at different time 
instants as },,,{ 21 jmjjj bbbB  where m  is the 

number of possible bandwidth values. Then, we 
may sample the demanded bandwidth with the 
period sT , say a GOP time duration. Let jD  and 

jkd  respectively denote the total sample number 

and the number that the sampled bandwidth is 
jkb ),2,1( mk  . Hence, the distribution 

)()( jkjij bXPk   can be estimated according 

to jjkj Ddk /)(  .  Then, the explicit form of 

)(jM  in (11) can be rewritten as 

})(log{)( jkb
jj ekM
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Then, based on the (13) we can estimate the 
overload probability via computers. 

3.3 Prediction-based dynamic server 
provisioning strategy 

In this section, we will apply our proposed 
prediction technique and overload probability 
model to find the solution of the problem (2). 

Suppose at every beginning of the scheduling 

interval, say time l , there are 
)(ln j  users 

watching the j th video ),,2,1( Jj  in a VOD 

system. Let )(lK  denote the active servers at 

interval l . Our aim is to predict the active 

server number at interval 1l  (i.e., )1( lK ), 
which provides the QoS assurance for the 
forthcoming workload. To achieve this, we first 
use the predictor (8) to estimate the user 

number 
)1(  ln j  ),,2,1( Jj  during next 

scheduling interval. 

Then the number of active servers is 
determined as follows. The proposed strategy 
applies the criterion (14) to check whether the 

actual number, )(lK , of active servers at current 

time could satisfy the QoS parameter.  Let k  
denote the temporary variable for active server 

number. Its initial value is )(lK . Two scenarios 
may appear according to the criterion (14), and 
the corresponding strategy is described as: 

1) If the criterion (14) is not satisfied, this 
implies that the aggregated bandwidth provided 

by k  active servers cannot satisfy the desired 
QoS for the forthcoming workload. Then, the 
process that we increase the active server 

number by 1 kk is repeated until the 
criterion (14) is satisfied. Then, the number of 
active servers provisioning for the forthcoming 

workload should be klK  )1( . 

2) Otherwise, the current k  active servers can 
provide bandwidth capacity for accommodating 
the forthcoming workload with QoS assurance. 

But it unnecessarily implies that k  is the 
minimum number of active servers that provide 
the desired QoS for the forthcoming workload. 

Therefore, we repeat 1 kk  until the criterion 
(14) is not satisfied. The minimum number of 

active servers for problem (2) is 1)1(  klK .  

Once we determine the active server number 

for the workload at time 1l , i.e., )1( lK , we 
can turn on or off servers accordingly. The 
strategy is summarized in Algorithm 1. 

Algorithm 1 Server Provisioning Algorithm 

Beginning of the l th scheduling interval 
Input: ),,1)(1(),(),( JjllnlK jj w  
Output: )1( lK  
for 1j  to J do 

Calculate )(ljw  according to (6); 
Calculate  )1(  ln j  according to (8); 
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end for 
)(lKk   and kcC  ; 

Calculate overloadP  according to (13); 
if overloadP then 

while )( overloadP  and )1( k  do  
)1(  kk ; 

Update overloadP according to (13); 
end while 

1)1(  klK ; 
else 

while )( overloadP  do 
)1(  kk ; 

Update overloadP according to (21); 
end while 

klK  )1( ; 
end if 

4. Load Migration  

In order to provide a more complete framework 
for energy conservation in large VOD server 
cluster systems, we further discuss load 
migration in the context of power saving, 
which may affect our proposed dynamic server 
provisioning strategy. 

When tailoring the excessive active servers to 
the target optimum active server number 
determined by Algorithm 1, it is ideal that 
enough idle servers are available to turn off 
instantly for energy conservation. However, 
there may be insufficient idle servers due to 
long-live video sessions and their loose 
distribution among the active servers, which 
implies that the proposed strategy has to wait 
and turn off the server which is becoming idle. 
Unlike most web services the video sessions 
may last long time, typically more than an hour. 
Hence, a non-idle server may wait a long time 
before it becomes idle even if no requests are 
distributed to it any more. As a result, it may 
take a long time to tailor current cluster scale to 
the optimum one, which may affect the energy 
conservation efficiency of our proposed 
strategy. In order to reduce the detrimental 
effect on energy conservation, we rely on load 
migration technique to obtain more idle servers 
by migrating the sessions to other servers with 
available capacity. The simplest way to 
implement the load migration for VOD service 
is to apply client reconnections. Specifically, 
the candidate server for load migration sends a 
message to notify its clients that it will be 
turned off. Any client that receives this 
message will send a request to an alternative 

server for the rest video data. Since large 
concurrent reconnection may increase 
migration delay, we always select the servers 
with a small number of video sessions as the 
candidates for load migration. In order to 
achieve this, we define a threshold tN  to select 
the candidate servers. When the proposed 
strategy requires more idle servers, a server 
with its session number less than tN  will be 
chosen to migrate its workload, and it will be 
shut down as it becomes idle. The effect of tN  
on our proposed strategy is investigated in 
Section V. 

5. Experimental Results 

In this section, the performance of our 
proposed dynamic server provisioning strategy 
is investigated based on a synthetic workload 
and a real workload. 

5.1 Experiment settings 

In the simulation, we considered a clustered 
VOD system with 20 servers. The streaming 
capacity of each server was set to 600Mbps, 
which is the streaming bandwidth of a single 
Kasenna SpeedBase Media Server [20]. The 
delay of starting a streaming server is assumed 
to be uniformly distributed in ]4,2[  minutes. 
Four video sequences, namely, “Silence of the 
Lambs”, “Star Wars IV”, “NBC 12 News”, 
“Tokyo Olympics” [17] were used in the 
simulation. Each has a duration of 30min and 
was compressed with a frame rate 30F  
frames/s and a GOP size of 16 frames. Further 
detail of the videos could be found in [17]. 

Video request arrivals, synthesized based on a 
user arrival distribution model and extracted 
from real workload trace, were respectively 
used to investigate the performance of the 
proposed strategy. User arrival model can assist 
us to perform experiments with various request 
patterns which may characterize different VOD 
applications. In the simulation, we 
implemented the modified Poisson distribution 
model proposed in [13] based on the seven 
months' VOD logs provided by China Telecom. 
We further investigated the performance of our 
proposed strategy in a specific practical 
application by using YouTube trace [12]. In 
order to simulate the user behaviour in VOD 
systems, we used two typical video popularity 
distributions according to [18, 19]. The 
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Figure 2. Simulation results for NPS and MＢ in the scenario of synthetic workload. 

distributions are given in Table 1. Type I 
corresponds to the circumstance where videos 
have similar popularity, while Type II 
corresponds to the scenario with different 
popularity. Time is discretized into time slots, 
and each slot has a GOP duration, i.e., 16/30 
second. Our proposed strategy was invoked 
once every 4 minutes. 

Table 1: Video Access Popularity 

Type  Video 1 Video 2  Video 3 Video 4  

I 0.357 0.257 0.2 0.186 

II 0.621 0.205 0.107 0.068 

For our proposed strategy, a 5th-order predictor 
was applied, i.e. 5p  in (3). The initial 
parameters for RLS were set as follows: 

]/1,,/1,/1[)0( pppj w , forgetting factor 

998.0 , IP 410)0( j  and 20  in (16). For 

the notational convenience, our proposed 
online measurement based strategy is referred 
to MB. For comparison, we also implemented 
none-prediction based scheme (NPS), which 
turns on or turns off a server when the number 
of current active servers is not enough or it is 
larger than the demanded capacity, respectively. 

In order to evaluate the performance of our 
proposed strategy, we define three performance 
metrics, i.e., Energy Saving Rate, Request 
Rejection Rate and Migration Rate. The 
number of independent runs for average 
simulation results was set to 50. 

Simulation Results 

We set 1.0  in (8) and -610  for our 
proposed strategies. For the synthetic user 
arrivals, we applied the modified poisson 

model with 17 and by varying maximum 
user arrivals N in [13] in order to generate the 
typical daily access pattern of the commercial 
television industry: dropping gradually during 
the early morning (12AM-7AM) and the 
afternoon (2PM-5PM), while climbing up to a 
peak in noon break (Noon-2PM) or after work 
(6PM-9PM). Since two video popularities, i.e., 
Type I and Type II in Table 1 were applied, we 
could produce two corresponding video access 
workload. With these workloads, we performed 
the simulations respectively for different 
migration thresholds, i.e.  ,50,30,10,0tN . 

0tN  means that no load migration scheme 

was applied in the VOD cluster, while tN  
implies that the workload migration would be 
always invoked. The simulation results in terms 
of Energy Saving Rate, Request Rejection Rate 
and Migration Rate were plotted in Figure 2. 
Similarly, we also utilized the user arrivals 
extracted from YouTube trace and the video 
access popularity Type I and II to generate 
workloads for simulations. The corresponding 
simulation results were given in Figure 3. 

From Figure 2(a) and Figure 3(a), we can 
observe that for any given tN ,  applying the 
proposed MB strategy and NPS both largely 
reduce the energy cost of the VOD system, and  
Energy Saving Rate corresponding to NPS is 
about 3.5% higher than that of our proposed 
strategy, which means NPS  achieves 
somewhat better energy saving performance. 
However, the simulation results in Figure 2(b) 
and Figure 3(b) show that  Request Rejection 
Rate of MB strategy is lower than 10 
percentage of NPS's, which implies that 
compared to NPS our proposed MB strategy 
substantially improves QoE at a cost of 
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increasing a minor energy consumption.  
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Figure 4. Demanded bandwidth versus Available 

Bandwidth Provided by active servers 

In Figure 4, we presented the process of 
dynamic server provisioning based on MB for 
real workload. It is shown that our prediction-
based MB strategy adaptively reserves a small 
extra capacity for compensating the future 
increased workload. Naturally, it may result in 
more energy cost, but can substantially reduce 
Request Rejection Rate. While NPS just use the 
current workload information to provide the 
active servers, which cannot guarantee enough 
capacity for the future workload requirement 
due to lacking prediction capability. Hence, our 
proposed MB strategy provides better trade-off 
between the energy cost and QoE. 

Figure ２(a) and Figure ３(a) also show that 
increasing the migration threshold tN  can 
reduce the energy consumption, which 
confirms the statement that load migration can 
assist us to further reduce the energy cost. 
However, Figure 2(c) and Figure 3(c) show 
that Migration Rate may increase as tN  
increases, which may impose more system cost 
to migrate the video sessions. Moreover, 
Figure 2(b) and Figure 3(b) demonstrate that 
the load migration for different tN  has little 
effect on Request Rejection Rate. In fact, the 

load migration is applied to redistribute the 
workload on the active servers so that the 
strategy can find enough idle servers to power 
off, whose effect on Request Rejection Rate 
should be tiny. Therefore, we can select 
appropriate tN  to make a good trade-off 
between the energy saving and the migration-
induced cost without considering its effect on 
Request Rejection Rate. 

6. Conclusions 

In this paper, the energy conservation problem 
in large scale VOD systems was studied. We 
proposed an explicit model for dynamic server 
provisioning, which minimizes the number of 
active servers subject to the constraint of QoS 
requirement in terms of overload probability.  
A RLS based user number predictor and a large 
deviation principle based overload probability 
estimation model were proposed in order to 
predict the future system overload probability. 
The proposed strategy utilizes the overload 
probability estimate to seek the minimum 
active server number for QoS provisioning. The 
experiments were performed with synthetic and 
real workload respectively to investigate the 
achievable performance of the proposed 
strategy.  
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Figure 3. Simulation results for NPS and MＢ in the scenario of real workload.  
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