
Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 381

 

1. Introduction 

We could classify systems into two categories 
according to their behavior. First, 
transformational systems (e.g. compilers, data 
acquisition systems and etc.) that take input 
values, compute output values, and then are 
stopped. All inputs in transformational systems 
are ready when invoked and the outputs are 
produced after a certain computation period. 
These systems are generally passive, in the 
sense that user explicitly invokes them. 
Applications send requests for operations to be 
performed by the system and wait for the 
system to confirm and return any possible 
answers. Second, active systems whose action 
is based on occurrence of events, interacts with 
their environment continuously. Figures 1a and 
1b show a transformational system and an 
active system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Typical examples appear when the environment 
is a physical process (e.g., process control in 
industry, power plants; embedded systems in 
trains, aircrafts, traffic-light controller, etc). 
Almost most systems have some active 
components, because a system is not usually 
isolated from its environment. In addition, 
systems typically collaborate or interact with 
their environment. Therefore, a reactive 
behavior carries out such collaboration. 

In contrast with transformational systems that 
are passive, active systems act based on 
occurrence of events. Accordingly, they are 
event driven and for verifying them one must 
monitor their reaction to the environment 
whenever an event occurs. The importance of 
active applications has increased in the recent 
years with the emergence of e-commerce 
applications such as stock market, business 
opportunities, and sale alerts, as well as system 
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a. A transformational system (all inputs ready) 

 

b. An Active System continuously interacts with its environment 

Figure 1. Transformational and active systems 
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management applications, such as command and 
control applications. There are two types of active 
system, interactive and reactive. Interactive 
systems are those that permanently communicate 
with their environment, but at their own speed 
(e.g. operating systems, web server). 

Reactive systems are those which react to their 
environment, but at speed of environment. The 
term reactive system was introduced by David 
Harel and Amir Pnueli [1] and is now 
commonly accepted to designate systems that 
permanently interact with their environment, 
and to distinguish them from transformational 
systems. In contrast with most interactive 
systems, reactive systems are generally 
deterministic: from an abstract point of view, 
the execution of a reactive system can be 
viewed as an infinite sequence of input/output 
vectors, where, at each step, the output values 
are completely determined by the past and 
present inputs. 

The idea of active system is close to the active 
databases that were coined in [2] as meaning "a 
paradigm that combines aspects of both 
database and artificial intelligence 
technologies". In [2] a mechanism for 
constraint maintenance was presented as a 
declarative representation for a set of related 
production rules in form of Condition-Action. 
In HiPAC [3, 4] a thorough specification was 
made of what different mechanisms are 
desirable in an Active Database Management 
System (ADBMS). Active rules are defined as 
Event-Condition-Action rules, where the Event 
specifies when a rule should be triggered, the 
Condition is a query that is evaluated when the 
Event occurs, and the Action is executed when 
the Event occurs and the Condition is satisfied. 
Events can be seen as signals that inform that a 
change to data in the database has occurred, 
e.g. an update of a table. There are three rules: 
(1) immediate meaning the rule conditions are 
evaluated and the actions are executed immediately 
when the event occurred. A distinction was also 
made between whether the rule process takes 
place before or after some change in the 
database. (2) Deferred rule meaning the rule 
process is delayed until committing the 
transaction. (3) Casually Dependent Decoupled 
rule meaning any triggered action is executed 
in a separate sub-transaction that waits until the 
main transaction is committed. Decoupled rule 
process means that the sub-transaction is 
completely decoupled from the main 

transaction and commits regardless of the 
outcome of the main transaction. 

Active systems are event driven ones where 
operations such as changes to data generate 
events that can be analyzed by active rules. An 
active system can be invoked, not only by 
synchronous events that have been generated 
by users or application programs, but also by 
external asynchronous events such as changes 
of sensor values or time. For example, push 
technology, i.e., the ability of sending relevant 
information to clients in reaction to new events, 
is a fundamental aspect of modern information 
systems [5, 6]. One important aspect of 
Internet-based information systems is the 
ability of pushing information to clients, by 
matching new event occurrences with 
predefined user's interests. Such ability is 
embedded within many WEB development 
products and applications, which support one-
to-one information delivery in response to 
users' current and past interactions. Active rules 
are an important ingredient for supporting this 
reactive technology. 

The remainder of the paper is organized as 
follows. Section 2 explains active rule and their 
roles in an active system. Section 3 explains 
necessity of runtime analysis. Because a 
controlled program should be well aware of 
events, Section 4 deals with program awareness 
by program modification and aspectation 
facility. Section 5 explains how the control and 
controlled programs interrelate. Section 6 states 
some known analysis approaches. Section 7 
proposes: (1) a bipartite model for analysis of 
environment, i.e. the program that should be 
analyzed and (2) transformation of passive 
environment to active one. Section 8 proposes 
case study “stack” as an abstract data type and 
verify its required properties and applies the 
steps of the proposed approach. Finally, Section 
9 concludes major advantages of our approach. 

2. Active Rules 

Historically, production rules were the first 
mechanism used to provide automatic reaction 
functionality. Production rules are Condition-
Action rules that do not break out the triggering 
event explicitly. Instead, they implement a 
polling style evaluation of all rule conditions. 
When monitoring events in a passive system, a 
polling technique or operation filtering can be 
used to determine changes to data. With the 
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polling method, the application program 
periodically polls the system by placing a query 
about the monitored data. The problem of this 
approach is that the polling should be fine-
tuned so as not to flood the system with too 
frequent queries that mostly return the same 
answers, or in the case of too infrequent 
polling, the application might miss important 
changes of data. Operation filtering is based on 
the fact that all change operations sent to the 
system are filtered by an application layer that 
performs the situation analysis before sending 
the operations to the system. The problem with 
this approach is that it greatly limits the way 
rule condition evaluation can be optimized. It is 
desirable that we be able to specify the 
conditions to be analyzed. By checking the 
conditions outside the system, the complete 
queries representing the conditions will have to 
be sent to the system.  

Event-Condition-Action rules have been used to 
provide reactive functionality in many settings, 
including active databases [7, 3], workflow 
management, network management, 
personalization and publish/subscribe 
technology [8] and specifying and implementing 
business processes [9]. Triggering and activation 
relations between rules have been used to 
determine whether a set of event-condition-
action rules is terminating. A rule ri may trigger 
a rule rj if the action of ri may generate an event 
which triggers rj. The triggering graph [10] 
represents each rule as a vertex, and there is a 
directed arc from a vertex ri to a vertex rj if ri 
may trigger rj. A cyclicity of the triggering 
graph implies definite termination of rule 
execution. An activation graph [11] also 
represents rules as vertices. In this case an arc 
between two distinct vertices ri and rj indicates 
that rj's condition may be changed from False to 
True after the execution of ri's action, while an 
arc from a vertex ri to itself indicates that ri's 
condition may be True after the execution of ri's 
action. Acyclicity of this graph also implies 
definite termination of rule execution. In [12], 
trigger and activation graphs were combined by 
rule reduction method giving more precise 
results than either of the previous methods. By 
this method, any vertex not consisting of both an 
incoming triggering and activation arc can be 
removed from the graph, along with its outgoing 
arcs. This removal of vertices is repeated until 
there are no such vertices. If the procedure 
results in all the vertices should be removed, 
then the rule set is definitely terminating. 

In rule-based systems, the active rules can be 
used for purposes of analysis, control, and 
reasoning. In active database systems, the rules 
are primarily used for monitoring changes to 
the data stored in the database. In reactive 
systems the rules are used for reacting to 
changes of some external environment and 
performing actions on (controlling) the 
environment in response to the changes. In 
knowledge-based systems, the rules are usually 
used for reasoning using stored facts and by 
deducing new facts by using the rules. Active 
rules can serve as a complement to traditional 
coding techniques where all the functionality of 
the system is specified in algorithms written in 
modules and functions. Active rules provide a 
more dynamic way of handling new situations 
and are often better alternatives to modifying 
old functions to cope with new situations. A 
common technique that is used is to use rules 
for specifying parts of the system during the 
design phases and to use these rules as 
guideline for the actual coding phases or to 
compile the rules into corresponding functions 
to simplify the coding. This last technique is 
sometimes found directly supported in some 
programming languages such as Eiffel [13] 
where pre-conditions and post-conditions on 
data can be specified. If the conditions are 
violated an error is generated. The rules can 
signal to the user or some application that a 
condition has been violated. Rules can also 
specify actions to be taken, such as removing 
inconsistencies by changing illegal values of 
data. In most programming languages fault 
handlers can be defined that catches error 
signals. Rules in an active system can be seen 
as having similar behavior, but catches events. 

An active system supports event analysis and 
storing events in an event history as «event 
type>, <time» where the <event type> 
represents any primitive event and the <time> 
is the time when the event occurred. In 
addition, an active system has clearly defined 
rule semantics such as event consumption 
policy (i.e. when events are discarded, when 
events are detected and signaled to the rule 
manager). Some possible event consumption 
policies are: recent, chronicle, and cumulative. 
In the recent policy, the latest instance of a 
primitive event that is part of a complex event 
is consumed if the complex event occurs. In the 
chronicle policy, the events are consumed in 
time order. In the cumulative policy, all 
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instances of a primitive event are consumed if 
the complex event occurs. 

The expressiveness of the event part can be 
divided into comparing the types of events that 
the rules can reference and how the events can 
be modeled and combined into complex events. 
Different types of events include events such as 
sensor value changes, specified state changes in 
the applications, or time. Modeling events can 
include an event specification language that can 
combine events using logical composition, 
event ordering, sequential and temporal 
ordering, and event periodicity. The 
expressiveness of the condition part can be 
divided into whether the events can be 
referenced as changed data and whether old 
values can be referenced or not. The 
expressiveness of the action part can include 
rule activation/deactivation. Execution 
semantics of rules includes rule processing 
coupling modes. Cascading rule execution, i.e., 
(1) if one rule can trigger another and (2) if 
simultaneously triggered rules are subjected to 
some conflict resolution method are also part of 
the classification of rule semantics. 

2.1 Event management 

Event management includes dispatching events 
received on an event bus to the rule processor. 
Event manager also supports storing events in 
event histories represented as time series that 
can be accessed through event functions. The 
event functions can be accessed by the rule 
processor. For example, the AMOS rule 
processor handles rule creation/deletion, 
activation/deactivation, monitoring, and 
execution. The rule processing is divided into 
four phases: (1), Event Detection (2), Change 
monitoring (3), Conflict resolution and (4) 
Action execution. Event detection consists of 
detecting events that can affect any activated 
rules. Events are accumulated in event histories 
represented by event junctions. Change 
monitoring includes using the event data from 
the event functions to determine whether any 
condition of any activated rules have changed, 
i.e. have become true. During action execution 
further events might be generated causing all 
the phases to be repeated until no more events 
are detected. The agenda is a time management 
module that can schedule activities to be 
performed at specific times. 

The rule execution model in AMOS is based on 
the Event Condition Action execution cycle. All 

events are sent on an event bus that queues the 
events until they are processed. The execution 
cycle is always initiated by non-rule-initiated 
events such as time events. All events are 
dispatched through table-driven execution. 
Events are accumulated chronologically in 
stored temporal event functions represented by 
time series.  

3. Active Program Analysis 

Analysis techniques are generally partitioned 
into verification and validation techniques. 
Formal languages like algebraic specifications or 
CSP apply verification techniques such as model 
checking and theorem proving. Hamani et al for 
example, used a formal specification and 
verification method to production systems [14]. 
Despite of the relative maturity of formal 
verification within software engineering 
research, practical applications are limited to 
safety-critical and embedded systems, i.e., 
systems with a high penalty of failures. Reasons 
for this include the complexity of formal 
specification techniques and the lack of training 
of software engineers in applying them. 
Furthermore, there are also well-known 
limitations of formal verification such as the 
state-explosion problem within model checking.  

In contrast to formal analysis, where a property 
may be assured with mathematical rigor, 
validation techniques may detect errors or 
improve our confidence in the implementation, 
but they cannot prove any property in a definite 
way. The classic technique for validation of 
properties in software engineering is testing. 
Validation techniques such as testing is usually 
applied to the actual system, checks whether an 
implementation conforms to some design (i.e., 
informally, has the same behaviors). Furthermore, 
the whole system may be very large while we are 
interested only in specific aspects of it. We want 
to check that the implementation of a particular 
feature meets certain correctness properties. 
Testing relies on the construction of test strategies 
for a property including subsequent execution of 
parts or all of the system according to these 
strategies. As the testing takes place on a lower 
level of abstraction, the range of properties that 
can be validated is much greater than using 
formal analysis. 

Runtime analyses have been proposed as 
lightweight formal analysis methods with the 
explicit goal of checking systems against their 
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formal requirements while they execute. This 
technique (1) bridges the gap between above-
mentioned techniques, i.e., formal specifications 
and testing of the implementation, resulting in 
validity requirements properties, and steering of 
program in runtime, (2) decides about current 
execution of program not about all the 
executions. As the figure shows, analyzing of 
runtime decides about properties those (1) were 
left undecided in verification specifications, (2) 
not detected in testing of implementation and (3) 
are closely related to physical environment in that 
thoroughly conditions in not known in advance. 

3.1 Active rules and program analysis 

Functions that can use data monitoring 
includes, for example, verifying constraint and 
controlling authorization. In verification of 
constraint, rules can analyze and detect 
inconsistencies and abort any queries that 
violate the constraints. In controlling 
authorization, rules can be used to check that 
the user or application has permission to do 
specific actions in the system. Applications that 
depend on data analysis activities such as, 
Telecommunications Network Management 
and Financial Decision Support Systems can 
greatly benefit from active system concept. 

 

 

4. Modification 

For analysis of a program, the program should 
be equipped with some analyzer code to 
capture events that the application program 
emits. In fact, it is used to obtain information 
about the program behavior. The equipment 
process is carried out by modifying the 
program invasively or non-invasively [15]. In 
an invasive approach, logic of emitting events 
and reaction to the emitted events are 
embedded in application program. This logic 
can be embedded in source, byte, or executive 
code of application. Figure 2a shows pure 
invasive approach for modifying an application 
program. Invasive approach can be impure, too. 
In this approach shown in Figure 2b, reaction 
code is separated from the application program 
and managed by a separate entity. In non-
invasive, not added any code to application 
program and both emitting and reaction code is 
separated from it. Figure 2c shows non-
invasive approach.  

Modification mechanism for invasive approach 
can be done in several ways. The most common 
ones, despite its limitations, is manually insert 
modification code into the program to be analyzed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Application program modification as invasive or non-invasive [15] 
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A user reads a source code of the program, and 
then inserts probe codes into program. This is 
time consuming and may be incomplete. For 
assurance, modification should be complete in 
the sense that it should capture all interesting 
information. Missing information could lead to 
false or missed detection of faults. Another 
mechanism is Runtime modification that refers 
to the modification of the analyzed program 
code immediately prior to or during execution. 
The probe code is inserted at the executable 
code (e.g., byte code in Java) level. Compared 
to the source-code level modification, the 
executable-code level modification is 
complicated since the source-level modification 
useful for understanding the program. In 
addition, modifying a system at executable-
code level requires modification not directly 
related to analysis, but necessary to keep the 
format of executable code consistent.  

The modification mechanism for non-invasive 
approach is interpreter modification that inserts 
analysis code in the language interpreter itself. 
Such modification can provide information 
about the behavior of any program executed by 
the interpreter; compiler modification also 
includes preprocessors and code generators that 
add modification to the code they generate. 
Such code usually is much larger than the non- 
modified code. To modify an interpreter or a 
compiler we should have their source code or it 
should have already been modified. Interpreter 
or compiler modification is a difficult problem 
because modifier needs to be involved in 
understanding source code of the interpreter or 
compiler. On the other hand, the modified 
interpreter or compiler may be not to match our 
probe needs adequately.  

5. Analysis 

There are three models to connect the analyzer 
and the target program: (1) the one-process 
model (for pure invasive approach) and (2) the 
two-process model, and the thread model (for 
impure and non- invasive approaches). In the 
one-process model, an execution analyzer is a 
library of procedures linked to the target 
program or it is integrated into the run-time 
system. The one-process model has good 
performance and access characteristics, but it 
does not prevent the target program and analysis 
code from affecting each other in critical ways. 
In addition, the control flow logic within the 
analyzer is somewhat inverted, since the 

analyzer is activated through callbacks. In the 
two-process model, the analyzer is a separate 
process from the program being analyzed, 
reducing the problem of intrusion at the expense 
of complicating access and reducing 
performance (impure invasive or non-invasive 
approach). In the thread model, the analyzer is a 
separate thread in a shared address space 
occupied by the program and possibly other 
analyzers, providing a reasonable compromise 
between the characteristics of the one-process 
and two process models for many analysis 
applications. Interaction facilities vary both in 
terms of the kind of execution controls provided 
to the user, and the techniques used in presenting 
the user with execution information. Execution 
controls range from controls that can only start 
and stop execution to entire languages that can 
be used to query for execution information or 
modify program variables.  

6. Related Work 

Meyer proposed Design by Contract approach 
for the object-oriented language Eiffel [13] that 
is a lightweight formal technique and allows for 
dynamic runtime checks of specification 
violation. The specification of the contract is 
directly written into the program in the form of 
assertions. Ideally, the syntax of assertions is 
close to the programming language itself and 
thus easy to use for all programmers and those 
are checked during program execution. Design 
by Contract extensions have been proposed for 
a number of languages besides Eiffle, such as 
Ada and C++. While trace assertions in the 
Design by Contract are the counterpart of 
behavioral-oriented specification like process 
algebras or temporal logic, they are used to 
analysis of the dynamic behavior of an object, 
the ordering of method invocation and calls in 
time [16]. There are automated trace analyzers, 
is connected to an event-oriented tracer. The 
traced program is executed alongside a trace 
analysis session in which the user enters high-
level queries about the traced execution. The 
trace is then automatically processed according 
to the query. 

Auguston and Trakhtenbrot automatically 
created monitoring UML Statecharts by the 
formulas that specify the system's behavioral 
properties in a proposed assertion language 
[17]. Such monitors are then translated into 
code together with the system model, and 
executed concurrently with the system code. 
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This approach leads to a more realistic analysis 
of reactive systems, as monitoring is supported 
in the system's actual operating environment. 
For models that include design level attributes 
(division into tasks, etc.), this is crucial for 
performance-related checks, and helps to 
overcome restrictions inherent in simulation 
and model checking.  

The Monitoring, Checking and Steering (MaC) 
framework [18] is another technique which has 
been designed to ensure that the execution of a 
real-time system is consistent with its 
requirements at run-time. It provides a 
language, called MEDL, to specify safety 
properties based on linear temporal logic. The 
safety properties include both computational 
and timing requirements. These properties are 
defined in terms of events, conditions, auxiliary 
variables, and auxiliary functions. Finally, 
some other focused on detecting likely program 
invariants [19], rather than verifying properties 
directly, which can then be used to reason 
about programs or in error detection. 

An alternative paradigm, declarative event-
oriented programming [20] provides algebra of 
event combinators with a simple semantic 
model and embedded in a functional host 
language. Its ideas have been implemented in 
Fran (“Functional reactive animation”), a 
library for use with the functional programming 
language Haskell. It main idea is the explicit 
focus on declarative event-oriented 
programming. It attempts to convey this new 
paradigm for programming interaction 
applications, illustrate its use by means of a 
running example, and contrast it with the 
dominant but ill-structured approach, which is 
based on imperative callback procedures. 

Considering time constraints and with 
assembling tasks, M'halla et al exploited 
combination of chronicle and fault tree 
approaches to analyze a milk manufacturing 
workshop [21]. By proposing their method, 
they aim to help workshop operators for 
identifying failures in order to stay away from 
some damage of an accident with humans.  

7. Program Analysis Using    
Active Systems 

An active system transforms a passive process 
into an active environment by using alerts and 
triggers. In this section, we use a bipartite 
model, inspired by [18], for runtime 

verification of environment, i.e. the program 
that must be analyzed. The model has two 
parts, mechanisms, and verifier. Figure 3 shows 
the bipartition, which makes data handling on 
active system easier. The mechanisms part has 
two tasks, profiling those events that occur in 
environment and doing those decisions made 
by the verifier part. The verifier part is 
responsible for making policies and valid 
decisions. In the runtime, needed action is 
made after data profiling and monitoring. 
Taking action by actuators, state of 
environment can be changed that may drive 
another event.  

 

Figure 3. Bipartite model for data handling on 
active system 

A course of events, environments conditions, 
and actions, embedding in event-condition-
action rules, can form triggering graph, as 
discussed in Section 2. The triggering graph 
represents each rule as a vertex, and there is a 
directed arc from a vertex ri to a vertex rj if ri 
may trigger rj. An action of rule ri may 
generate an event which triggers rule rj. 
Activation of a rule may change an 
environment condition. An activation graph 
representing rules as vertices, has an arc 
between vertices ri and rj indicates that rj's 
condition may be changed from False to True 
after the execution of ri's action, while an arc 
from a vertex ri to itself indicates that ri's 
condition may be True after the execution of 
ri's action. 

7.1 Program activation 

Our approach is different from past-related 
work. Our main idea is to provide an active 
environment to support runtime analysis and 
verification. To this end, first we equip the 
program with an analyzer code (see Section 4). 
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We call the equipment process program 
activation because the program is made well 
aware of occurrence of events. Awareness can 
be done by invasive or non-invasive approach, 
discussed in Section 4. Our approach use 
invasive modification (Figure 2b). Therefore, 
we automatically modify source-code program 
by aspects. This type of program modification 
has no disadvantage of mentioned manually 
source-code level modification and has no 
difficulties of executable-code level. Modifying 
source-code can be achieved automatically by 
using aspect-oriented approach. By aspect, we 
define each property that is to be verified. 
Therefore, by aspect definition, related probe 
codes (i.e., crosscutting points of property) are 
inserted into units of the program. 

Aspectation holds promise for the creation of 
aspects, which are modules that centralize 
distributed functionality. Figure 4 shows that 
how one uses aspects for automatic 
modification of source-code. The modified 
program emits a signal when a related event 
occurs. Afterwards, profiler in the mechanisms 
part, profile the event and sends it to decision 
support part.  

 

Second, we build verifier as a rule based 
system. The verifier gets events that are emitted 
by modified program and analyzes them. 
Events are objects, which represent execution 
points of program, such as method call and 

return events. Therefore, in an active system, 
we continuously respond those events that 
determine the system's behavior, as well as its 
flow of control. One common way for 
expressing control flows is via Event-
Condition-Action rules. The verifier, a set of 
the rules, has active behavior as well as an 
activated program. This behavior is defined by 
the rules and is capable of reaction to events. 
Therefore, we call such behavior active 
behavior and in fact it is a functionality 
executed whenever certain environment 
requirements are met. These rules specify 
triggering event and guarding condition for 
each action (process). The action is executed on 
triggering event, if and only if the guard 
condition is fulfilled at that time. As discussed 
in Sections 1, 2, in an event-condition-action 
rule, Event is a primitive (basic) or composite 
event, Condition is a Boolean expression and 
Action is an action that should be executed. 
Complex events can be formed from simple 
events. For example composed event (E1|E2) 
means that one of the two events E1 or E2 must 
occur, and composed event (E1:E2) means that 
the two events must occur in the given order.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, activated system consists of two 
activated components: (1) The target program 
to be analyzed and (2) The control program 
(verifier) that analyzes the target program. 

 

Figure 4. Automatic instrumentation of source code by aspects 
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The target program is activated automatically 
by modifying source-code level using aspects. 
The control program is activated using a set of 
event-condition-action rules. Therefore, the 
activated system consists of the event-aware 
functional units that emits events at certain 
points in their executions and consists of 
verifier functional ones that define how and 
under which conditions to analyze and verify 
behavior of the event-aware functional units at 
these points. 

8. Case Study 

In this case study, we apply our approach to 
abstract data type, ADT, that have emerged as 
an effective mechanism for organizing large 
modern software systems. An ADT allows us 
build programs that use high-level abstractions. 
By ADT we can separate the conceptual 
transformations that our programs perform on 
our data from any particular data structure 
representation and algorithm implementation. 
Therefore, an abstract data type is a data type (a 
set of values and a collection of operations on 
those values) that is accessed only through an 
interface. The ADT interface defines a contract 
between users and implementers that provides a 
precise means of communicating what each can 
expect of the other. This contract is specified 
by means of safety and liveness properties.  

 

We refer to program that uses an ADT as a 
client, and a program that specifies the data 
type as an implementation. We consider a 
special case of ADT, so-called pushdown stack. 
A pushdown stack is an ADT that comprises 
operations of insert (push) a new item, delete 
(pop) the item that was most recently inserted, 
and visit (peek) the item. Insertions and 
deletions are made at one end called the top. 
The main request (i.e. concern) of client is 
access to stack through the interface; therefore, 
we consider two classes, one for stack object 
and other for the request object to get access to 
stack. Figure 5 shows request and stack classes.  

8.1 Requirement properties 

The stack access concern, contract between 
user and implementer, has two safety and two 
liveness properties. The safety properties 
(something bad never happens) are: (1) Stack 
overflow never happens; therefore, request 
must not be able to push the item onto the full 
stack and (2) Stack underflow never happens; 
therefore, request should not be able to pop up 
from empty stack.  

The liveness properties (something good will 
eventually happen) are: (1) The request to push 
some item to the full stack should not be accepted 
and (2) The request to pop up some item from the 
empty stack should not be accepted.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Request and stack classes 
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8.2 Aspectation  

The access concern has three aspects: (1) 
Modifying the stack (the aspect is crosscut in 
push and pop units), (2) Visiting the stack (the 
aspect is crosscut in peek unit) and (3) Creating 
and removing the stack (the existence aspect in 
the “create” and “destroy” units).  

As stated above “access to stack” is the 
concerned requirement and absence of stack 
overflow and underflow are safety properties. 
For the concerned requirement and the safety 
properties, we consider ModifyAspect in which 
points of interest to be analyzed are push and 
pop units. 

The following code shows the aspect in the 
AspectJ language. 

 

 

8.3. Tracker 

First, we use UML diagrams for visualizing 
properties, and then generate event-condition- 
action rules. Figure 6 shows Activity diagram 
for safety property 1 (i.e. overflow prevention) 
of modify aspect and related rule, Figure 7 
shows UML Statechart diagram for changing 
states of request and stack objects.  

 

Figure 7. UML Statechart diagram for push join 
point of modify aspect 

Control program (verifier) for push unit of 
modify aspect formed by the generated even-
condition-action rules in Figures 6 and 7. When 
a request (an event) is occurred that is related to 
modify aspect such as push event, (1) the safe 
guard rule (Figure 6) of verifier rejects the 
request if it causes overflow, (2) the rule 2 of 
verifier (Figure 7) changes state of request and 
stack objects. Similarly, one visualize safety 
property 2 of modify aspect for pop unit and 
generate the related rule. In addition, we can 
visualize liveness properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Activity diagram for the overflow prevention safety property of modify aspect and its rule 

Public aspect ModifyAspect    // the Aspect 

{         

   Pointcut UpdateStack ( ): 

   call (public void stack.push(string s);   // join point 1 

      before( ): UpdateStack ( ) { 

         if stack.state = = full request.change(reject); 

             //overflow is prevented and state of request 

             // object is set to rejected 

        } 

      call(public string stack.pop(void);   // join point 2 

       before() : UpdateStack( )  

                { 

               if stack.state = = empty              

                 //underflow is prevented and state of 
request 

                 //  object is set to rejected  

                request.change(reject); 

        } 

}      
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9. Conclusion 

This paper presented a rule-based bipartite 
model to runtime verification of programs. The 
main feature of the presented approach is 
equipping a software system (including verifier 
and verified programs) with an analyzer. The 
equipment process called activation exploited 
Aspect-oriented method. 

First, we equipped the verified program with an 
analyzer making the program well aware of 
events. To this end, we automatically modified 
the program by exploiting Aspect-oriented 
method that is one of the main contributions to 
automated support of runtime analysis. Second, 
by exploiting event-condition-action rules, we 
showed how one can develop an activated 
verifier program. This contributes to automatic 
runtime analysis of a verified program. 
Creation of analysis rules was not automated. 
One can automate this by specifying the 
properties of design abstracts in a proposed 
Event-Condition-Action rule and bridge the gap 
between abstract specification of requirements 
and low-level implementation. Another 
advantage is analyzing diverse behavior of a 
program in terms of satisfaction of different 
parts of the rule(s). The analysis of some 
typical behaviors was shown via one case 
study. Some future work can apply the 
approach to distributed systems as well as real-
time ones. 
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