
Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 381

1. Introduction

We could classify systems into two categories
according to their behavior. First,
transformational systems (e.g. compilers, data
acquisition systems and etc.) that take input
values, compute output values, and then are
stopped. All inputs in transformational systems
are ready when invoked and the outputs are
produced after a certain computation period.
These systems are generally passive, in the
sense that user explicitly invokes them.
Applications send requests for operations to be
performed by the system and wait for the
system to confirm and return any possible
answers. Second, active systems whose action
is based on occurrence of events, interacts with
their environment continuously. Figures 1a and
1b show a transformational system and an
active system.

Typical examples appear when the environment
is a physical process (e.g., process control in
industry, power plants; embedded systems in
trains, aircrafts, traffic-light controller, etc).
Almost most systems have some active
components, because a system is not usually
isolated from its environment. In addition,
systems typically collaborate or interact with
their environment. Therefore, a reactive
behavior carries out such collaboration.

In contrast with transformational systems that
are passive, active systems act based on
occurrence of events. Accordingly, they are
event driven and for verifying them one must
monitor their reaction to the environment
whenever an event occurs. The importance of
active applications has increased in the recent
years with the emergence of e-commerce
applications such as stock market, business
opportunities, and sale alerts, as well as system

Active Program Analysis Using Rule-Based
Modification and Aspectation

Seyed Morteza Babamir

Department of Computer Engineering, University of Kashan,
Kashan, Iran,
babamir@kashanu.ac.ir

Abstract Active programs behave based on occurrence of events and therefore they facilitate capturing events and states.
The active system is a rule-based system and we use event-condition-action rules to show active rules. Thus, defining
active behavior is facilitated by event-condition-action rules. An active system, forming a runtime environment, sets a trap
to catch runtime events and then check them by the rules. The rules appear in form of event-condition-action. Exploiting
active programs as event based environments and using event-condition-action rules are main contributions of our
approach. In this paper, we propose a new approach based on a bipartite framework exploiting capabilities of active
systems. We apply our approach to a classical Abstract Data Type (ADT), stack, and express how one can use an active
environment for observance tracking the stack.

Keywords: Active system, event-condition-action rule, program modification, aspect-oriented

a. A transformational system (all inputs ready)

b. An Active System continuously interacts with its environment

Figure 1. Transformational and active systems

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 4, December 2011 382

management applications, such as command and
control applications. There are two types of active
system, interactive and reactive. Interactive
systems are those that permanently communicate
with their environment, but at their own speed
(e.g. operating systems, web server).

Reactive systems are those which react to their
environment, but at speed of environment. The
term reactive system was introduced by David
Harel and Amir Pnueli [1] and is now
commonly accepted to designate systems that
permanently interact with their environment,
and to distinguish them from transformational
systems. In contrast with most interactive
systems, reactive systems are generally
deterministic: from an abstract point of view,
the execution of a reactive system can be
viewed as an infinite sequence of input/output
vectors, where, at each step, the output values
are completely determined by the past and
present inputs.

The idea of active system is close to the active
databases that were coined in [2] as meaning "a
paradigm that combines aspects of both
database and artificial intelligence
technologies". In [2] a mechanism for
constraint maintenance was presented as a
declarative representation for a set of related
production rules in form of Condition-Action.
In HiPAC [3, 4] a thorough specification was
made of what different mechanisms are
desirable in an Active Database Management
System (ADBMS). Active rules are defined as
Event-Condition-Action rules, where the Event
specifies when a rule should be triggered, the
Condition is a query that is evaluated when the
Event occurs, and the Action is executed when
the Event occurs and the Condition is satisfied.
Events can be seen as signals that inform that a
change to data in the database has occurred,
e.g. an update of a table. There are three rules:
(1) immediate meaning the rule conditions are
evaluated and the actions are executed immediately
when the event occurred. A distinction was also
made between whether the rule process takes
place before or after some change in the
database. (2) Deferred rule meaning the rule
process is delayed until committing the
transaction. (3) Casually Dependent Decoupled
rule meaning any triggered action is executed
in a separate sub-transaction that waits until the
main transaction is committed. Decoupled rule
process means that the sub-transaction is
completely decoupled from the main

transaction and commits regardless of the
outcome of the main transaction.

Active systems are event driven ones where
operations such as changes to data generate
events that can be analyzed by active rules. An
active system can be invoked, not only by
synchronous events that have been generated
by users or application programs, but also by
external asynchronous events such as changes
of sensor values or time. For example, push
technology, i.e., the ability of sending relevant
information to clients in reaction to new events,
is a fundamental aspect of modern information
systems [5, 6]. One important aspect of
Internet-based information systems is the
ability of pushing information to clients, by
matching new event occurrences with
predefined user's interests. Such ability is
embedded within many WEB development
products and applications, which support one-
to-one information delivery in response to
users' current and past interactions. Active rules
are an important ingredient for supporting this
reactive technology.

The remainder of the paper is organized as
follows. Section 2 explains active rule and their
roles in an active system. Section 3 explains
necessity of runtime analysis. Because a
controlled program should be well aware of
events, Section 4 deals with program awareness
by program modification and aspectation
facility. Section 5 explains how the control and
controlled programs interrelate. Section 6 states
some known analysis approaches. Section 7
proposes: (1) a bipartite model for analysis of
environment, i.e. the program that should be
analyzed and (2) transformation of passive
environment to active one. Section 8 proposes
case study “stack” as an abstract data type and
verify its required properties and applies the
steps of the proposed approach. Finally, Section
9 concludes major advantages of our approach.

2. Active Rules

Historically, production rules were the first
mechanism used to provide automatic reaction
functionality. Production rules are Condition-
Action rules that do not break out the triggering
event explicitly. Instead, they implement a
polling style evaluation of all rule conditions.
When monitoring events in a passive system, a
polling technique or operation filtering can be
used to determine changes to data. With the

Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 383

polling method, the application program
periodically polls the system by placing a query
about the monitored data. The problem of this
approach is that the polling should be fine-
tuned so as not to flood the system with too
frequent queries that mostly return the same
answers, or in the case of too infrequent
polling, the application might miss important
changes of data. Operation filtering is based on
the fact that all change operations sent to the
system are filtered by an application layer that
performs the situation analysis before sending
the operations to the system. The problem with
this approach is that it greatly limits the way
rule condition evaluation can be optimized. It is
desirable that we be able to specify the
conditions to be analyzed. By checking the
conditions outside the system, the complete
queries representing the conditions will have to
be sent to the system.

Event-Condition-Action rules have been used to
provide reactive functionality in many settings,
including active databases [7, 3], workflow
management, network management,
personalization and publish/subscribe
technology [8] and specifying and implementing
business processes [9]. Triggering and activation
relations between rules have been used to
determine whether a set of event-condition-
action rules is terminating. A rule ri may trigger
a rule rj if the action of ri may generate an event
which triggers rj. The triggering graph [10]
represents each rule as a vertex, and there is a
directed arc from a vertex ri to a vertex rj if ri
may trigger rj. A cyclicity of the triggering
graph implies definite termination of rule
execution. An activation graph [11] also
represents rules as vertices. In this case an arc
between two distinct vertices ri and rj indicates
that rj's condition may be changed from False to
True after the execution of ri's action, while an
arc from a vertex ri to itself indicates that ri's
condition may be True after the execution of ri's
action. Acyclicity of this graph also implies
definite termination of rule execution. In [12],
trigger and activation graphs were combined by
rule reduction method giving more precise
results than either of the previous methods. By
this method, any vertex not consisting of both an
incoming triggering and activation arc can be
removed from the graph, along with its outgoing
arcs. This removal of vertices is repeated until
there are no such vertices. If the procedure
results in all the vertices should be removed,
then the rule set is definitely terminating.

In rule-based systems, the active rules can be
used for purposes of analysis, control, and
reasoning. In active database systems, the rules
are primarily used for monitoring changes to
the data stored in the database. In reactive
systems the rules are used for reacting to
changes of some external environment and
performing actions on (controlling) the
environment in response to the changes. In
knowledge-based systems, the rules are usually
used for reasoning using stored facts and by
deducing new facts by using the rules. Active
rules can serve as a complement to traditional
coding techniques where all the functionality of
the system is specified in algorithms written in
modules and functions. Active rules provide a
more dynamic way of handling new situations
and are often better alternatives to modifying
old functions to cope with new situations. A
common technique that is used is to use rules
for specifying parts of the system during the
design phases and to use these rules as
guideline for the actual coding phases or to
compile the rules into corresponding functions
to simplify the coding. This last technique is
sometimes found directly supported in some
programming languages such as Eiffel [13]
where pre-conditions and post-conditions on
data can be specified. If the conditions are
violated an error is generated. The rules can
signal to the user or some application that a
condition has been violated. Rules can also
specify actions to be taken, such as removing
inconsistencies by changing illegal values of
data. In most programming languages fault
handlers can be defined that catches error
signals. Rules in an active system can be seen
as having similar behavior, but catches events.

An active system supports event analysis and
storing events in an event history as «event
type>, <time» where the <event type>
represents any primitive event and the <time>
is the time when the event occurred. In
addition, an active system has clearly defined
rule semantics such as event consumption
policy (i.e. when events are discarded, when
events are detected and signaled to the rule
manager). Some possible event consumption
policies are: recent, chronicle, and cumulative.
In the recent policy, the latest instance of a
primitive event that is part of a complex event
is consumed if the complex event occurs. In the
chronicle policy, the events are consumed in
time order. In the cumulative policy, all

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 4, December 2011 384

instances of a primitive event are consumed if
the complex event occurs.

The expressiveness of the event part can be
divided into comparing the types of events that
the rules can reference and how the events can
be modeled and combined into complex events.
Different types of events include events such as
sensor value changes, specified state changes in
the applications, or time. Modeling events can
include an event specification language that can
combine events using logical composition,
event ordering, sequential and temporal
ordering, and event periodicity. The
expressiveness of the condition part can be
divided into whether the events can be
referenced as changed data and whether old
values can be referenced or not. The
expressiveness of the action part can include
rule activation/deactivation. Execution
semantics of rules includes rule processing
coupling modes. Cascading rule execution, i.e.,
(1) if one rule can trigger another and (2) if
simultaneously triggered rules are subjected to
some conflict resolution method are also part of
the classification of rule semantics.

2.1 Event management

Event management includes dispatching events
received on an event bus to the rule processor.
Event manager also supports storing events in
event histories represented as time series that
can be accessed through event functions. The
event functions can be accessed by the rule
processor. For example, the AMOS rule
processor handles rule creation/deletion,
activation/deactivation, monitoring, and
execution. The rule processing is divided into
four phases: (1), Event Detection (2), Change
monitoring (3), Conflict resolution and (4)
Action execution. Event detection consists of
detecting events that can affect any activated
rules. Events are accumulated in event histories
represented by event junctions. Change
monitoring includes using the event data from
the event functions to determine whether any
condition of any activated rules have changed,
i.e. have become true. During action execution
further events might be generated causing all
the phases to be repeated until no more events
are detected. The agenda is a time management
module that can schedule activities to be
performed at specific times.

The rule execution model in AMOS is based on
the Event Condition Action execution cycle. All

events are sent on an event bus that queues the
events until they are processed. The execution
cycle is always initiated by non-rule-initiated
events such as time events. All events are
dispatched through table-driven execution.
Events are accumulated chronologically in
stored temporal event functions represented by
time series.

3. Active Program Analysis

Analysis techniques are generally partitioned
into verification and validation techniques.
Formal languages like algebraic specifications or
CSP apply verification techniques such as model
checking and theorem proving. Hamani et al for
example, used a formal specification and
verification method to production systems [14].
Despite of the relative maturity of formal
verification within software engineering
research, practical applications are limited to
safety-critical and embedded systems, i.e.,
systems with a high penalty of failures. Reasons
for this include the complexity of formal
specification techniques and the lack of training
of software engineers in applying them.
Furthermore, there are also well-known
limitations of formal verification such as the
state-explosion problem within model checking.

In contrast to formal analysis, where a property
may be assured with mathematical rigor,
validation techniques may detect errors or
improve our confidence in the implementation,
but they cannot prove any property in a definite
way. The classic technique for validation of
properties in software engineering is testing.
Validation techniques such as testing is usually
applied to the actual system, checks whether an
implementation conforms to some design (i.e.,
informally, has the same behaviors). Furthermore,
the whole system may be very large while we are
interested only in specific aspects of it. We want
to check that the implementation of a particular
feature meets certain correctness properties.
Testing relies on the construction of test strategies
for a property including subsequent execution of
parts or all of the system according to these
strategies. As the testing takes place on a lower
level of abstraction, the range of properties that
can be validated is much greater than using
formal analysis.

Runtime analyses have been proposed as
lightweight formal analysis methods with the
explicit goal of checking systems against their

Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 385

formal requirements while they execute. This
technique (1) bridges the gap between above-
mentioned techniques, i.e., formal specifications
and testing of the implementation, resulting in
validity requirements properties, and steering of
program in runtime, (2) decides about current
execution of program not about all the
executions. As the figure shows, analyzing of
runtime decides about properties those (1) were
left undecided in verification specifications, (2)
not detected in testing of implementation and (3)
are closely related to physical environment in that
thoroughly conditions in not known in advance.

3.1 Active rules and program analysis

Functions that can use data monitoring
includes, for example, verifying constraint and
controlling authorization. In verification of
constraint, rules can analyze and detect
inconsistencies and abort any queries that
violate the constraints. In controlling
authorization, rules can be used to check that
the user or application has permission to do
specific actions in the system. Applications that
depend on data analysis activities such as,
Telecommunications Network Management
and Financial Decision Support Systems can
greatly benefit from active system concept.

4. Modification

For analysis of a program, the program should
be equipped with some analyzer code to
capture events that the application program
emits. In fact, it is used to obtain information
about the program behavior. The equipment
process is carried out by modifying the
program invasively or non-invasively [15]. In
an invasive approach, logic of emitting events
and reaction to the emitted events are
embedded in application program. This logic
can be embedded in source, byte, or executive
code of application. Figure 2a shows pure
invasive approach for modifying an application
program. Invasive approach can be impure, too.
In this approach shown in Figure 2b, reaction
code is separated from the application program
and managed by a separate entity. In non-
invasive, not added any code to application
program and both emitting and reaction code is
separated from it. Figure 2c shows non-
invasive approach.

Modification mechanism for invasive approach
can be done in several ways. The most common
ones, despite its limitations, is manually insert
modification code into the program to be analyzed.

Figure 2. Application program modification as invasive or non-invasive [15]

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 4, December 2011 386

A user reads a source code of the program, and
then inserts probe codes into program. This is
time consuming and may be incomplete. For
assurance, modification should be complete in
the sense that it should capture all interesting
information. Missing information could lead to
false or missed detection of faults. Another
mechanism is Runtime modification that refers
to the modification of the analyzed program
code immediately prior to or during execution.
The probe code is inserted at the executable
code (e.g., byte code in Java) level. Compared
to the source-code level modification, the
executable-code level modification is
complicated since the source-level modification
useful for understanding the program. In
addition, modifying a system at executable-
code level requires modification not directly
related to analysis, but necessary to keep the
format of executable code consistent.

The modification mechanism for non-invasive
approach is interpreter modification that inserts
analysis code in the language interpreter itself.
Such modification can provide information
about the behavior of any program executed by
the interpreter; compiler modification also
includes preprocessors and code generators that
add modification to the code they generate.
Such code usually is much larger than the non-
modified code. To modify an interpreter or a
compiler we should have their source code or it
should have already been modified. Interpreter
or compiler modification is a difficult problem
because modifier needs to be involved in
understanding source code of the interpreter or
compiler. On the other hand, the modified
interpreter or compiler may be not to match our
probe needs adequately.

5. Analysis

There are three models to connect the analyzer
and the target program: (1) the one-process
model (for pure invasive approach) and (2) the
two-process model, and the thread model (for
impure and non- invasive approaches). In the
one-process model, an execution analyzer is a
library of procedures linked to the target
program or it is integrated into the run-time
system. The one-process model has good
performance and access characteristics, but it
does not prevent the target program and analysis
code from affecting each other in critical ways.
In addition, the control flow logic within the
analyzer is somewhat inverted, since the

analyzer is activated through callbacks. In the
two-process model, the analyzer is a separate
process from the program being analyzed,
reducing the problem of intrusion at the expense
of complicating access and reducing
performance (impure invasive or non-invasive
approach). In the thread model, the analyzer is a
separate thread in a shared address space
occupied by the program and possibly other
analyzers, providing a reasonable compromise
between the characteristics of the one-process
and two process models for many analysis
applications. Interaction facilities vary both in
terms of the kind of execution controls provided
to the user, and the techniques used in presenting
the user with execution information. Execution
controls range from controls that can only start
and stop execution to entire languages that can
be used to query for execution information or
modify program variables.

6. Related Work

Meyer proposed Design by Contract approach
for the object-oriented language Eiffel [13] that
is a lightweight formal technique and allows for
dynamic runtime checks of specification
violation. The specification of the contract is
directly written into the program in the form of
assertions. Ideally, the syntax of assertions is
close to the programming language itself and
thus easy to use for all programmers and those
are checked during program execution. Design
by Contract extensions have been proposed for
a number of languages besides Eiffle, such as
Ada and C++. While trace assertions in the
Design by Contract are the counterpart of
behavioral-oriented specification like process
algebras or temporal logic, they are used to
analysis of the dynamic behavior of an object,
the ordering of method invocation and calls in
time [16]. There are automated trace analyzers,
is connected to an event-oriented tracer. The
traced program is executed alongside a trace
analysis session in which the user enters high-
level queries about the traced execution. The
trace is then automatically processed according
to the query.

Auguston and Trakhtenbrot automatically
created monitoring UML Statecharts by the
formulas that specify the system's behavioral
properties in a proposed assertion language
[17]. Such monitors are then translated into
code together with the system model, and
executed concurrently with the system code.

Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 387

This approach leads to a more realistic analysis
of reactive systems, as monitoring is supported
in the system's actual operating environment.
For models that include design level attributes
(division into tasks, etc.), this is crucial for
performance-related checks, and helps to
overcome restrictions inherent in simulation
and model checking.

The Monitoring, Checking and Steering (MaC)
framework [18] is another technique which has
been designed to ensure that the execution of a
real-time system is consistent with its
requirements at run-time. It provides a
language, called MEDL, to specify safety
properties based on linear temporal logic. The
safety properties include both computational
and timing requirements. These properties are
defined in terms of events, conditions, auxiliary
variables, and auxiliary functions. Finally,
some other focused on detecting likely program
invariants [19], rather than verifying properties
directly, which can then be used to reason
about programs or in error detection.

An alternative paradigm, declarative event-
oriented programming [20] provides algebra of
event combinators with a simple semantic
model and embedded in a functional host
language. Its ideas have been implemented in
Fran (“Functional reactive animation”), a
library for use with the functional programming
language Haskell. It main idea is the explicit
focus on declarative event-oriented
programming. It attempts to convey this new
paradigm for programming interaction
applications, illustrate its use by means of a
running example, and contrast it with the
dominant but ill-structured approach, which is
based on imperative callback procedures.

Considering time constraints and with
assembling tasks, M'halla et al exploited
combination of chronicle and fault tree
approaches to analyze a milk manufacturing
workshop [21]. By proposing their method,
they aim to help workshop operators for
identifying failures in order to stay away from
some damage of an accident with humans.

7. Program Analysis Using
Active Systems

An active system transforms a passive process
into an active environment by using alerts and
triggers. In this section, we use a bipartite
model, inspired by [18], for runtime

verification of environment, i.e. the program
that must be analyzed. The model has two
parts, mechanisms, and verifier. Figure 3 shows
the bipartition, which makes data handling on
active system easier. The mechanisms part has
two tasks, profiling those events that occur in
environment and doing those decisions made
by the verifier part. The verifier part is
responsible for making policies and valid
decisions. In the runtime, needed action is
made after data profiling and monitoring.
Taking action by actuators, state of
environment can be changed that may drive
another event.

Figure 3. Bipartite model for data handling on
active system

A course of events, environments conditions,
and actions, embedding in event-condition-
action rules, can form triggering graph, as
discussed in Section 2. The triggering graph
represents each rule as a vertex, and there is a
directed arc from a vertex ri to a vertex rj if ri
may trigger rj. An action of rule ri may
generate an event which triggers rule rj.
Activation of a rule may change an
environment condition. An activation graph
representing rules as vertices, has an arc
between vertices ri and rj indicates that rj's
condition may be changed from False to True
after the execution of ri's action, while an arc
from a vertex ri to itself indicates that ri's
condition may be True after the execution of
ri's action.

7.1 Program activation

Our approach is different from past-related
work. Our main idea is to provide an active
environment to support runtime analysis and
verification. To this end, first we equip the
program with an analyzer code (see Section 4).

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 4, December 2011 388

We call the equipment process program
activation because the program is made well
aware of occurrence of events. Awareness can
be done by invasive or non-invasive approach,
discussed in Section 4. Our approach use
invasive modification (Figure 2b). Therefore,
we automatically modify source-code program
by aspects. This type of program modification
has no disadvantage of mentioned manually
source-code level modification and has no
difficulties of executable-code level. Modifying
source-code can be achieved automatically by
using aspect-oriented approach. By aspect, we
define each property that is to be verified.
Therefore, by aspect definition, related probe
codes (i.e., crosscutting points of property) are
inserted into units of the program.

Aspectation holds promise for the creation of
aspects, which are modules that centralize
distributed functionality. Figure 4 shows that
how one uses aspects for automatic
modification of source-code. The modified
program emits a signal when a related event
occurs. Afterwards, profiler in the mechanisms
part, profile the event and sends it to decision
support part.

Second, we build verifier as a rule based
system. The verifier gets events that are emitted
by modified program and analyzes them.
Events are objects, which represent execution
points of program, such as method call and

return events. Therefore, in an active system,
we continuously respond those events that
determine the system's behavior, as well as its
flow of control. One common way for
expressing control flows is via Event-
Condition-Action rules. The verifier, a set of
the rules, has active behavior as well as an
activated program. This behavior is defined by
the rules and is capable of reaction to events.
Therefore, we call such behavior active
behavior and in fact it is a functionality
executed whenever certain environment
requirements are met. These rules specify
triggering event and guarding condition for
each action (process). The action is executed on
triggering event, if and only if the guard
condition is fulfilled at that time. As discussed
in Sections 1, 2, in an event-condition-action
rule, Event is a primitive (basic) or composite
event, Condition is a Boolean expression and
Action is an action that should be executed.
Complex events can be formed from simple
events. For example composed event (E1|E2)
means that one of the two events E1 or E2 must
occur, and composed event (E1:E2) means that
the two events must occur in the given order.

Therefore, activated system consists of two
activated components: (1) The target program
to be analyzed and (2) The control program
(verifier) that analyzes the target program.

Figure 4. Automatic instrumentation of source code by aspects

Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 389

The target program is activated automatically
by modifying source-code level using aspects.
The control program is activated using a set of
event-condition-action rules. Therefore, the
activated system consists of the event-aware
functional units that emits events at certain
points in their executions and consists of
verifier functional ones that define how and
under which conditions to analyze and verify
behavior of the event-aware functional units at
these points.

8. Case Study

In this case study, we apply our approach to
abstract data type, ADT, that have emerged as
an effective mechanism for organizing large
modern software systems. An ADT allows us
build programs that use high-level abstractions.
By ADT we can separate the conceptual
transformations that our programs perform on
our data from any particular data structure
representation and algorithm implementation.
Therefore, an abstract data type is a data type (a
set of values and a collection of operations on
those values) that is accessed only through an
interface. The ADT interface defines a contract
between users and implementers that provides a
precise means of communicating what each can
expect of the other. This contract is specified
by means of safety and liveness properties.

We refer to program that uses an ADT as a
client, and a program that specifies the data
type as an implementation. We consider a
special case of ADT, so-called pushdown stack.
A pushdown stack is an ADT that comprises
operations of insert (push) a new item, delete
(pop) the item that was most recently inserted,
and visit (peek) the item. Insertions and
deletions are made at one end called the top.
The main request (i.e. concern) of client is
access to stack through the interface; therefore,
we consider two classes, one for stack object
and other for the request object to get access to
stack. Figure 5 shows request and stack classes.

8.1 Requirement properties

The stack access concern, contract between
user and implementer, has two safety and two
liveness properties. The safety properties
(something bad never happens) are: (1) Stack
overflow never happens; therefore, request
must not be able to push the item onto the full
stack and (2) Stack underflow never happens;
therefore, request should not be able to pop up
from empty stack.

The liveness properties (something good will
eventually happen) are: (1) The request to push
some item to the full stack should not be accepted
and (2) The request to pop up some item from the
empty stack should not be accepted.

Figure 5. Request and stack classes

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 4, December 2011 390

8.2 Aspectation

The access concern has three aspects: (1)
Modifying the stack (the aspect is crosscut in
push and pop units), (2) Visiting the stack (the
aspect is crosscut in peek unit) and (3) Creating
and removing the stack (the existence aspect in
the “create” and “destroy” units).

As stated above “access to stack” is the
concerned requirement and absence of stack
overflow and underflow are safety properties.
For the concerned requirement and the safety
properties, we consider ModifyAspect in which
points of interest to be analyzed are push and
pop units.

The following code shows the aspect in the
AspectJ language.

8.3. Tracker

First, we use UML diagrams for visualizing
properties, and then generate event-condition-
action rules. Figure 6 shows Activity diagram
for safety property 1 (i.e. overflow prevention)
of modify aspect and related rule, Figure 7
shows UML Statechart diagram for changing
states of request and stack objects.

Figure 7. UML Statechart diagram for push join
point of modify aspect

Control program (verifier) for push unit of
modify aspect formed by the generated even-
condition-action rules in Figures 6 and 7. When
a request (an event) is occurred that is related to
modify aspect such as push event, (1) the safe
guard rule (Figure 6) of verifier rejects the
request if it causes overflow, (2) the rule 2 of
verifier (Figure 7) changes state of request and
stack objects. Similarly, one visualize safety
property 2 of modify aspect for pop unit and
generate the related rule. In addition, we can
visualize liveness properties.

Figure 6. Activity diagram for the overflow prevention safety property of modify aspect and its rule

Public aspect ModifyAspect // the Aspect

{

 Pointcut UpdateStack ():

 call (public void stack.push(string s); // join point 1

 before(): UpdateStack () {

 if stack.state = = full request.change(reject);

 //overflow is prevented and state of request

 // object is set to rejected

 }

 call(public string stack.pop(void); // join point 2

 before() : UpdateStack()

 {

 if stack.state = = empty

 //underflow is prevented and state of
request

 // object is set to rejected

 request.change(reject);

 }

}

Studies in Informatics and Control, Vol. 20, No. 4, December 2011 http://www.sic.ici.ro 391

9. Conclusion

This paper presented a rule-based bipartite
model to runtime verification of programs. The
main feature of the presented approach is
equipping a software system (including verifier
and verified programs) with an analyzer. The
equipment process called activation exploited
Aspect-oriented method.

First, we equipped the verified program with an
analyzer making the program well aware of
events. To this end, we automatically modified
the program by exploiting Aspect-oriented
method that is one of the main contributions to
automated support of runtime analysis. Second,
by exploiting event-condition-action rules, we
showed how one can develop an activated
verifier program. This contributes to automatic
runtime analysis of a verified program.
Creation of analysis rules was not automated.
One can automate this by specifying the
properties of design abstracts in a proposed
Event-Condition-Action rule and bridge the gap
between abstract specification of requirements
and low-level implementation. Another
advantage is analyzing diverse behavior of a
program in terms of satisfaction of different
parts of the rule(s). The analysis of some
typical behaviors was shown via one case
study. Some future work can apply the
approach to distributed systems as well as real-
time ones.

REFERENCES

1. HAREL, D., M. POLITI, Modeling
Reactive Systems with Statecharts,
McGraw-Hill, 1998.

2. MORGENSTERN, M., Active Databases
as a Paradigm Enhanced Computing
Environments, Proceedings of the 9th
VLDB Conference, Florence, Nov. 1983.

3. PATON, N. W., O. DÍAZ, Active
Database Systems, ACM Computing
Surveys, vol. 31(1), 1999, pp. 63-103.

4. WIDOM, J., S. CERI, Active Database
Systems-triggers and Rules for
Advanced Database Processing, Morgan
Kaufmann Publishers, Inc. , 1996, ISBN-1-
55860-304-2.

5. DENG, X., Application of Information
Push Technology in Residential Building
Performance Assessment System, in

Proceedings of 8th World Congress on
Intelligent Control and Automation
(WCICA), 2010, pp. 3965-3968.

6. SUN, J., H. FANG, G. WANG, Z. HE,
Information Push Technology and Its
Application in Network Control System,
in Proceedings of the International
Conference of Computer Science and
Software Engineering, 2008, pp. 198-201.

7. WIDOM J., S. CERI, Active Database
Systems, Morgan-Kaufmann, San Mateo,
California, 1995.

8. CHEUNG, A. K. Y., H. A. JACOBSEN,
Load Balancing Content-Based Publish /
Subscribe Systems, ACM Transactions on
Computer Systems (TOCS), vol. 28(4),
December 2010.

9. BRY, F., M. ECKERT, P. PATRANJAN,
I. ROMANENKO, Realizing Business
Processes with ECA Rules: Benefits,
Challenges, Limits, in Proceedings of
International Workshop on Principles and
Practice of Semantic Web Reasoning,
Lecture Notes in Computer Science, vol.
4187, 2006, pp. 48-62.

10. TERADA, T., M. TSUKAMOTO, S.
NISHIO, Dynamic Construction
Mechanism of a Trigger Graph on
Active Databases in Mobile Computing
Environments, in Proceedings of the 14th

International Workshop on Database and
Expert Systems Applications, IEEE
Computer Society Washington, DC, USA,
2003, pp. 936-941.

11. SHANKAR, C., R. CAMPBELL, A
Policy-based Management Framework
for Pervasive Systems using Axiomatized
Rule-actions, in Proceedings of the 4th of
IEEE International Symposium on Network
Computing and Applications, IEEE
Computer Society Washington, DC,
USA, 2005.

12. BARALIS, E., S. CERI, S.
PARABOSCHI, Improved Rule Analysis
by Means of Triggering and Activation
Graphs, Second International Workshop
on Rules in Database Systems (RIDS-95),
Athens, LNCS 985, Springer, 1995,
pp. 165-181.

13. Analysis, Design and Programming
Language, Information technology-Eiffel:
ISO/IEC 2543, 2006.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 4, December 2011 392

14. HAMANI, N., N. DANGOUMAU, E.
CRAYE, Specification and Verification
of the Model of Component and the
Model of Function, Studies in Informatics
and Control, vol. 17(1), 2008.

15. GOLDSBY, H. J., B. H. C. CHENG, J.
ZHANG, AMOEBA-RT: Run-time
Verification of Adaptive Software,
Software Engineering Models in
Software Engineering, in Proceedings of
Workshops and Symposia at MoDELS,
Lecture Notes in Computer Science, vol.
5002, 2008, pp. 212-224.

16. CILIA, M., M. HAUPT, M. MEZINI, A.
BUCHMANN, The Convergence of AOP
and Active Databases: Towards Reactive
Middleware, in Proceedings of the
International Conference on Generative
Programming and Component Engineering
(GPEC'03), Lecture Notes In Computer
Science, Springer, 2830, 2003,
pp. 169-188.

17. TONG, J. G., M. BOULE, Z. ZILIC,
Defining and Providing Coverage for
Assertion-based Dynamic Verification,
Journal of Electronic Testing: Theory
and Applications, Kluwer Academic
Publishers, vol. 26(2), 2010, pp. 211-225.

18. AUGUSTON, M., M. TRAKHTENBROT,
Run-time Monitoring of Reactive System
Models, The 2nd International Workshop
on Dynamic Analysis (WODA),
Edinburgh, 25 May 2004.

19. KIM, M., I. LEE, U. SAMMAPUN, J.
SHIN, O. SOKOLSKY, Monitoring,
Checking and Steering Real-time
Systems, in Proceedings of the 2nd
International Workshop on Run-time
Verification, July 2002.

20. SAHOO, S. K., L. MAN-LAP, P.
RAMACHANDRAN, S. V. ADVE, Z.
YUANYUAN, Using Likely Program
Invariants to Detect Hardware Errors, in
Proceedings of IEEE International
Conference on Dependable Systems and
Networks with FTCS and DCC, 2008,
pp. 70-79.

21. M'HALLA, A., S. C. DUTILLEUL, E.
CRAYE, M. BENREJEB, Monitoring of a
Milk Manufacturing Workshop Using
Chronicle and Fault Tree Approaches,
Studies in Informatics and Control, vol.
19(4), 2010.

