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1. Introduction 

The basic purpose of control systems is to keep 
system behaviour at desired values. A 
controller located in a closed loop control 
system generates the control signal required to 
keep the output of the system at the desired 
value. In classical control methods, the 
selection of the controller to be used in the 
control of systems and for the detection of The 
parameters that are determined in this way 
cannot always provide the desired system 
stability due to various factors, such as 
modelling mistakes, changes in the parameters 
of the controlled system, and disruptive effects. 
Due to all of these problems in classical control 
methods, practitioners began to use artificial 
neural networks (ANNs) in the control field 
because they have the ability to learn and 
generalize, and the derivation of a 
mathematical equation is not required [1,2]. 
Today, most of the systems used in industry 
exhibit non-linear, time-delay behaviour. These 
systems have excessive overshoot and high 
settling times, and they are not stable. It is very 
difficult and demanding to design a controller 
for such systems using classical methods. 
Controllers can be designed by using various 
methods if mathematical models or transfer 
functions are available that represent the 
behaviour of the system very well. However, it 
is rather difficult to develop mathematical 
models of such systems in practice [3]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Classical Proportional Integral and Derivative 
(PID) controllers are immensely preferred in 
many areas of industrial control, especially in 
the chemical industry due to their simple 
structure and high durability. Although PID 
controllers are used for controlling many 
systems, it is difficult to find optimum 
parameters which are proportional, integral and 
derivative (KP, KI, KD) for the control of time-
delay and non-linear systems [3]. 

Fuzzy logic has been used to improve the 
performance of PID-controlled, non-linear 
systems. The fuzzy logic controller modified 
the parameters of the PID controller to get 
better system response [4]. Complex devices, 
such as hyper-redundant robots, can be 
controlled with a PID control algorithm. The 
determination of the combinations of 
proportional, integral, and derivative 
parameters, as well as the optimum values of 
these parameters, is a time-consuming 
operation [5]. 

PID-Neural Network (PIDNN) controllers 
perform adaptive control. Uncertainties in 
systemic and environmental factors ensure that 
the controller exhibits acceptable behavior by 
means of adaptive control. However, in 
practice, there are many problems that must be 
solved, and this is considered to be one of the 
main disadvantages of such controllers. The 
main problems are the slow learning rate, the 
slow approximation to the reference value, and 
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the uncertainties in the parameters of the 
controller [3]. 

A PIDNN controller includes the advantages of 
the PID algorithm and the neural network. Such 
a controller is not a hybrid structure that 
consists of artificial neural networks and a PID 
controller [6]. The PID algorithm exists in the 
neurons located in the neural structure as an 
activation function. 

There are P-proportional, I-Integral, D- 
derivative neurons in the PIDNN structure, and 
the connection weights that arise among these 
neurons are updated by using a back-
propagation training algorithm according to the 
error value propagated through the system [3]. 

2. Structure of the PIDNN Controller 

2.1. General Structure of PIDNN 

The development of a PIDNN control algorithm 
is illustrated in the flow chart in Figure 1. The 
structure of the controller consists of four 
different modules. In the initial values module, 
various values are entered to the program, 
including the numbers of inputs and outputs of 
the system to be controlled, initial values of the 
connection weights to be used, learning rate, 
and the number of trainings. The most 
important task at this stage is to determine the 
initial values of the connection weights.  

These weights can be determined according to 
classical PID rules. Initial connection weights 
can be chosen as values for which the system is 
stable, there are no oscillations around the 
reference value, and the sum of square errors is 
above the value determined as the tolerance 
value. Thus, the controller algorithm will 
operate more stably, conduct the optimization 
process more rapidly, and stay far away from 
insoluble areas compared to randomly selected 
initial weights. 

The forward-direction calculation module is the 
stage in which the reference value and system 
output conduct PID functions in the hidden 
layer. The functions are assigned values as 
network input and when the control signal 
given to the system as input is calculated. In the 
middle layer, P, I, and D neurons are located. In 
the output layer, the located neurons give 
control signals. The outputs of these neurons 
are limited based on the status of the system. 

 

Figure 1. Flow chart of a PIDNN controller [8] 

In the backward propagation module, attempts 
are made to minimize the cost function 
determined as the average of square errors. The 
algorithm used for this purpose is the error 
back-propagation method, which is the most 
commonly used in artificial neural networks 
and gradient descent algorithm. Connection 
weights of the PIDNN controller are updated 
according to the gradient descent algorithm 
during on-line training [7]. The process of 
updating with this method continues until the 
value specified as the cost function falls below 
the quantity permitted by the user. In the back-
propagation module, the number of changes or 
updates that will be applied on the parameters 
of the controller is calculated. 

If a system module is controlled, the difference 
equation of the system to be used during 
simulation studies is the module in which 
models obtained for single-input-single-output, 
multi-variable, linear or non-linear systems are 
used. Training and updating process are 
conducted as if the data had been received from 
a real system [8]. 

The PIDNN controller is a new type of 
controller in which artificial neural networks 
are used with a PID algorithm. It is generally 
known that, in classical PID controllers, a 
control signed is determined by multiplying the 
error value that occurs in the system by 
coefficients, such as KP, KI, and KD. However, 
in the controller that we analyzed, the PID 
structure was determined based on the neurons 
of the network. 

The controller consists of three layers, i.e., the 
input layer, the middle or hidden layer, and the 
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output layer. In the input layer, there are 
neurons that give the reference value and 
system output values as input into the system.  
In the middle or hidden layer, there are neurons 
that perform the PID functions. The P neuron 
performs the proportional function, the I neuron 
performs the integral function, and the D 
neuron performs the derivative function. In the 
output layer, there is a neuron in which the 
control signal that the controller gives to the 
system is calculated. The controller consists of 
two parts, i.e., the forward direction calculation 
and the training stage.  In the former, the 
control signal is calculated, and in the latter, the 
connection weights are adjusted by using the 
error value propagated through the system and 
back propagation algorithm. The PIDNN 
structure for single-input-single-output systems 
is shown in Figure 2. 

 

Figure 2. Structure of PIDNN controller [3] 

2.2. Feed Forward Calculation 

2.2.1. Input Layer 

There are two neurons in the input layer, and 
the input-output functions of these neurons are 
demonstrated in Equation (1). 
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where 1,2i  and  k = number of samples 

2.2.2. Hidden Layer 

This layer contains the neurons that perform the 
basic functions of the controller. The values 
calculated by multiplying the output values of 
the neurons in the input layer and the 
connection weights between the input and 
hidden layers come to the neurons in this layer, 
and they are processed in the neurons that 
conduct the PID algorithm. Inputs formed in 
the neurons of the hidden layer are calculated 
as shown in Equation (2). 
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where 3,2,1j  wij is the connection weights 
formed between the input and the output layer. 

After the values formed in the inputs of the 
hidden layer neurons are calculated, the 
functions of neurons in the forward direction 
calculation stage can be demonstrated, as 
shown in Equations (3-5): 
P-Neuron;  

Expression of the output value of P Neuron 
located in the hidden layer is demonstrated in 
Equation (3).  
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I-Neuron;  

Expression of the output value of I neuron 
located in the hidden layer is demonstrated in 
Equation (4). 
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Accordingly, the neuron output is found by 
adding the value coming to the input of the 
neuron and the previous value of output.  

D-Neuron;  

Expression of the output value of D neuron 
located in the hidden layer is demonstrated in 
Equation (5). 
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Accordingly, the neuron output is found by 
adding the value coming to the input of the 
neuron and the previous value of output. 

2.2.3. Output Layer 

Values obtained at the outputs of hidden layer 
neurons come to the input of the neuron in the 
output layer by being multiplied by the 
connection weights between the hidden and the 
output layers. 
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The net total calculated with Equation (6) 
passes through the output layer and forms the 
control signal. The input-output function of the 
output layer is demonstrated in Equation (7). 
Accordingly, the output neuron is equally 
propagated to the output, on the condition that 
the value at its input is between 1 and -1.  
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When we look at the network structure of a 
PIDNN controller, we can see that the multi-
layer ANN acts as a classical PID controller by 
using appropriate connection weights. If we 
choose the connection weights between the 
input layer and the hidden layer in the PIDNN 
structure as in Equation (8), 

 
,11 jW  ,12 jW  3,2,1j  (8) 

the connection weights between the output 
layer and the hidden layer are the coefficients 
found in the classical PID structure. These 
network parameters are demonstrated in 
Equation (9). 

DIP KWKWKW  302010 ,,  (9) 

According to these values, values coming to the 
inputs of neurons in the hidden layer are like 
the values given in Equation (10).  
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According to the formulation in Equation (10), 
the error value that is the difference between 
system reference and system output is applied 
to the inputs of the neurons located in the 
hidden layer due to the values of connection 
weights. That is to say, error values come to the 
inputs of the neurons located in the hidden 
layer. The value found after the neurons pass 
through the activation functions, which are P, I, 
and D neurons, are given in Equation (11). 

,

,

,

'
3'

3

0 0

'
2

'
2

'
1

'
1

dt

de

dt

dU
X

edtdtUX

eUX
t t







   (11) 

Accordingly, network output is found by 
multiplying error values by the connection 
weights between the hidden layer and the 
output layer. This expression is given by 
Equation (12). 
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In conclusion, choosing the connection weights 
between the input layer and the hidden layer 
according to the values demonstrated in 
Equation (8) causes the PIDNN network 
structure to become a classical PID structure. 
When the activation functions of the neurons 
located in the latent layer are considered 
according to Equation (11), the output of the 
controller network is as shown in Equation (13). 
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As a result, the designed network structure exhibits 
the behaviour of a classical PID, depending on the 
values of the connection weights. 

This feature of a PIDNN controller makes it 
easy to use in practice. ANNs are not used for 
system control in practice due to the 
uncertainties in the initial weights and the 
failure to ensure stable operation of the system. 
We can find appropriate initial weights by 
operating the PIDNN like a classical PID 
control when it is first operated. After these 
weights are chosen, system response and 
control performance can be improved by 
operating the back-propagation training 
algorithm [9]. 

3. General Structure of the 
Controlled System 

The asynchronous motor system to be 
controlled is composed of three main parts, as 
shown Figure 3a. The mechanical part of the 
system is designed to act as fixed brake by 
charging the AC motor operating at fixed speed 
with a fixed load. In this part, there is a 200 W 
DC motor, four spot lamps with 12 V, 50 W 
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power, and the relay card. On the left side, 
there is a 3-phase, 250 W AC motor, a 
Micromaster-420 driver, and a tacho generator 
that generates a voltage according to the speed 
of the AC motor. A National Instruments PCI-
6024E data acquisition card was used as the 
control unit. 

 

Figure 3a. Experimental setup of the asynchronous 
motor system 

  As shown in Figure 3b, the controller 
algorithm that works on MATLAB Simulink in 
a PC environment communicates with the 
system through the PCI-6024E data collection 
card. The spot lamps connected to the DC 
motor, which charges the asynchronous motor, 
are loaded or unloaded analogously. The tacho 
generator that conveys instantaneous 
information on revolution frequency in the 
block diagram is connected directly to the data 
collection card, and the control signal generated 
by software written in MATLAB is sent to the 
driver through the input-output card. 

 

Figure 3b. Block diagram of the system 

4. Speed Control Studies of         
AC Motor 

4.1. System Model 

Generally, system modelling means measuring 
the inputs and outputs and finding the physical 
system variables with a model approach. The 
input-output dataset that forms a system model 
contains values sampled in sufficient numbers 

[10]. Formation of the input-output dataset 
forming was completed in two stages. In the 
first stage, the control signal was varied 
between 0-10 V in step function form. In the 
second stage, the control signal was varied 
randomly between 0-10 V, and the speed of the 
AC motor was recorded for 500 seconds in 
both stages. The sampling time used was 0.1 
second. The input-output dataset was formed 
by using these data. This dataset was used       
in MATLAB. 

The System Identification Toolbox was used to 
get the speed model of the AC motor. The Auto 
Regressive eXpgenous (ARX) model was 
chosen and is shown in Equation (14). 

A(q) y(t) = B(q) u(t) + e(t) (14) 

where y(t) is the output, u(t) is the input, A(q) 
corresponds to poles that are common to the 
dynamic model and the noise model, and B(q) 
represents the contributions of inputs to 
predicting all output values [11].  

The order of the ARX model was chosen as 
two. After applying the dataset to the program,  

A(q) = 1-1.283q-1 + 0.3969q-2 

B(q) = 0.01103q-1 + 0.03599q-2 

A and B polynomials were determined. The 
difference equation of the model is shown in 
Equation (15). 
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The speed model of the AC motor is shown 
as a transfer function in discrete time in 
Equation (16). 
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In Figure 4, the output of the ARX model and 
the speed of the AC motor, taken from the 
tacho generator, were compared. Clearly the 
model is good. It catches relevant features of 
motor during the rising time and the settling 
time. In Figure 5, the outputs of the real-time 
system and the model are compared at various 
speeds. Some minor differences can be 
accepted in transitions of steps. Figure 6 gives 
the error between the outputs of the model and 
the real system.  
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Figure 4. Open loop comparison of system and 
model outputs at 1300 RPM  
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Figure 5. Various speed results of system and 
model outputs 
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Figure 6. Errors between system and model outputs 

The open loop response of the system to a step 
input in discrete time is shown in Figure 7. The 
settling time of the system for the step input 
was approximately 1.7 seconds, and the rise 
time was approximately 1 s. After the 
difference equation for the asynchronous motor 
in discrete time was obtained, the process of 
improving the response of the system using this 
model was performed at the training stage of 
the controller. The importance of ANNs at this 
point was the use of the back propagation 
algorithm for the purpose of decreasing the 
mean square of errors. 
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Figure 7. Open loop response of the asynchronous 
motor in discrete time 

The structure of the controller is not complex, 
and classical PID functions were conducted in 
the network.  Some parameters must be 
determined before starting the training process, 
i.e., learning rate, number of trainings, and the 
initial value of the weights. Optimization of the 
process is closely related to choosing the initial 
values of such parameters that are appropriate 
for the system. 

A 10 V control signal was applied to the model 
to get the nominal speed of the AC motor, 
which was 1350 RPM. The rise time of the 
system was around 1s, and the settling time of 
the system was approximately 2 s as shown in 
Figure 8. 
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Figure 8. 10 V step response of the difference 
equation 

Controller training was started in 
consideration of various criteria, such as the 
learning rate, number of trainings, and initial 
weights. The system response for the related 
reference or training set is shown in Figure 9. 

Rise time of the system response obtained as a 
result of training is short, which means the 
system output has rapidly approached the 
related reference value. Overshoot amount is 
low, and steady state error is close to zero. 
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Trained system response and open loop system 
response are compared in Figure 10.  
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Figure 9. System response after controller training 
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Figure 10. System responses according to open loop 
and optimized parameters 

The settling time was 2 s in the open loop 
system, which decreased to around 1 s using 
the controller. 

 

0  2 4 6 8 10

0,5

1  

1.5

2  

2.5

3  

3.5

time(s)

C
on

tr
ol

le
r 

ou
tp

ut
(V

)

 

 

 

Figure 11. Optimized controller network output 

Figure 11 shows the values of the controller 
signal obtained from the output of the 
controller In the real-time study, the neurons at 
the PIDNN output and the controller network 
output were limited between 0 and 1 or -1 and 
1 as was mentioned in the output layer section. 
For the output layer, however, no restrictive 
criteria are put at the network output since the 

controller is operated on the system model. The 
output of the controller network without any 
restrictions is shown in Figure 11. The output 
of the controller network in the real-time study 
should be limited to 0-10 V; otherwise the 
related system could be given a control signal 
above 10 V.   

The most important part of PIDNN controller 
algorithm is the minimization of the cost 
function. As shown in Figure 12, cost function 
specified as the average of square errors 
decreased after each iteration of training. The 
error value was high in the first training step, 
but the parameters applied after each update 
caused the error in the system response to 
decrease compared to the previous error. 
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Figure 12. Cost Function 

Whether the training is quick or slow does not 
mean that the appropriate parameters will be 
found more accurately. Learning rate is a factor 
that determines the training rate. As was stated 
earlier, there is no predefined rule for the initial 
value of the learning rate; it can change 
depending on the implementation. If the 
training is continued after the 200th iteration, 
the system value becomes unstable and 
oscillates. Therefore, the maximum number of 
trainings can change depending on the 
implementation. Termination of the training is 
decided based on when the criterion determined 
as the cost function falls below a value 
determined by the user, or, at the end of each 
iteration, the user can examine the system 
response and decide to stop the training. 
Connection weights obtained at the end of the 
training were used in the real-time operation of 
the system. 

4.2. System Response to Step Inputs  

Connection weights obtained at this stage of the 
study were used in the real-time operation of 
the system. One of the real-system responses 
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and one of the model responses were chosen, as 
shown in Figure 13.  The real-system output 
and the model output are shown for reference 
values of 750 RPM in Figure 13a. For this 
reference value, the control signal is shown in 
Figure 13b. As is shown at control signal 
output, when the system response approaches 
the related value in the reference speed graphic, 
the control signal ceased the maximum drive 
and continued to generate the signal required 
for the related reference. There is overshoot 
between the model and the output of the 
system. These differences arise from  
modelling errors. 
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Figure 13a. Real system and model outputs for 750 
RPM 
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Figure13b. Control signal 

The response to the stepped reference input of 
the system is shown in Figure 14a. If there is a 
large difference in the reference transition, 
some overshoot will occur. For example, in the 
40th second, the reference dropped 
approximately 1000 RPM. The error is high for 
a short time. In this transition, the control 
signal was 0 V. The control signal was begun 
again producing after the error was reduced. 
The control signal values are shown in     
Figure 14b.  

4.3. System Response under Load  

A DC motor was connected in order to apply 
load to the shaft of the asynchronous motor. 
The DC motor provided electricity for four 50 
W lamps, each of which acted like a generator. 
The lamps were switched on one by one and, 
the control signals and the speed of the AC 
motor were observed. Two resulting load 
conditions are shown in Figure 15a. A rapid 
decrease of 20 RPM was observed on the shaft 
of the AC motor operating at 1300 RPM when 
two 50 W lamps were turned on. 
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Figure 14a. The system response to a stepped 
reference input 
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Figure 14b. Control signal   

This RPM decrease was recovered quickly by 
simultaneously increasing the control signal 
and holding the speed of the motor at the 
reference speed. When the motor was 
unloaded, an increase of the speed at the same 
rate was observed, but the controller turned 
back to its reference speed value.  

In Figure 15a, four 50 W lamps were turned on 
simultaneously, and a 200 W load was 
generated in 8th seconds. When the motor was 
loaded, the revolution rate decreased by 
approximately 30 RPM, and the controller 
offset the load by increasing the control signal. 
When the motor was unloaded in 14th seconds, 
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the revolution rate increased at the same rate, 
and the controller decreased the control signal 
in order to get the related reference RPM at the 
output of the system (Figure 15b). 
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Figure 15a. System response under 100 W and       
200 W loads 
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Figure 15b. Control signal under 100 W and        
200 W load 

5. Results and Discussion 

The cost function was decreased by the 
parameters that were found until it was less 
than the error tolerance value, thereby 
completing the optimisation process. With 
these coefficients, the rise time of the system in 
closed loop operation was decreased from 2 s 
to around 1 s. Data obtained from one of the 
real-time studies at the reference speed of 750 
RPM and the data obtained from the simulation 
studies conducted on the model similar results 
according to the control criteria, such as rise 
time, settling time, and overshoot amounts. The 
response of the AC motor to staircase driving 
was quick and efficient. When load was applied 
to the system, the controller increased its drive 
effect in response to the load. 

Conventional PID controller results and 
PIDNN controller results are shown in Figure 
16. The overshoot amount for the PID 

controller was approximately 1.7% greater than 
the overshoot amount for the PIDNN 
controller. The response of the PID controller 
under load was approximately the same as the 
response of the PIDNN controller.   
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Figure 16. PID and PIDNN responses to the system 
under 100 W load 

6. Conclusion 

In this study, initial values of controller 
parameters, such as the number of trainings, 
learning rate, and initial weights in the PIDNN 
structure used were given, and the controller 
parameters to be used in a real-time application 
were determined quickly as a result of the 
operation. In this way, controller parameters of 
systems with very different structures can be 
determined using a PIDNN training algorithm, 
and real-time control processes can be 
conducted efficiently.  
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