
Studies in Informatics and Control, Vol. 20, No. 3, September 2011 http://www.sic.ici.ro 199

1. Introduction

The basic purpose of control systems is to keep
system behaviour at desired values. A
controller located in a closed loop control
system generates the control signal required to
keep the output of the system at the desired
value. In classical control methods, the
selection of the controller to be used in the
control of systems and for the detection of The
parameters that are determined in this way
cannot always provide the desired system
stability due to various factors, such as
modelling mistakes, changes in the parameters
of the controlled system, and disruptive effects.
Due to all of these problems in classical control
methods, practitioners began to use artificial
neural networks (ANNs) in the control field
because they have the ability to learn and
generalize, and the derivation of a
mathematical equation is not required [1,2].
Today, most of the systems used in industry
exhibit non-linear, time-delay behaviour. These
systems have excessive overshoot and high
settling times, and they are not stable. It is very
difficult and demanding to design a controller
for such systems using classical methods.
Controllers can be designed by using various
methods if mathematical models or transfer
functions are available that represent the
behaviour of the system very well. However, it
is rather difficult to develop mathematical
models of such systems in practice [3].

Classical Proportional Integral and Derivative
(PID) controllers are immensely preferred in
many areas of industrial control, especially in
the chemical industry due to their simple
structure and high durability. Although PID
controllers are used for controlling many
systems, it is difficult to find optimum
parameters which are proportional, integral and
derivative (KP, KI, KD) for the control of time-
delay and non-linear systems [3].

Fuzzy logic has been used to improve the
performance of PID-controlled, non-linear
systems. The fuzzy logic controller modified
the parameters of the PID controller to get
better system response [4]. Complex devices,
such as hyper-redundant robots, can be
controlled with a PID control algorithm. The
determination of the combinations of
proportional, integral, and derivative
parameters, as well as the optimum values of
these parameters, is a time-consuming
operation [5].

PID-Neural Network (PIDNN) controllers
perform adaptive control. Uncertainties in
systemic and environmental factors ensure that
the controller exhibits acceptable behavior by
means of adaptive control. However, in
practice, there are many problems that must be
solved, and this is considered to be one of the
main disadvantages of such controllers. The
main problems are the slow learning rate, the
slow approximation to the reference value, and

Speed Control of an Asynchronous Motor
Using PID Neural Network

V. Ayhan Maraba1, A. Emin Kuzucuoglu2
1 Department of Information Technology,

Haydarpasa Vocational High School,
Istanbul, Turkey.
ayhan_maraba@hotmail.com

2 Department of Electronics and Computer Education,
Faculty of Technical Education, Marmara University,
Istanbul, Turkey.
kuzucuoglu@marmara.edu.tr (Corresponding author)

Abstract: This paper deals with the structure and characteristics of PID Neural Network controller for single input and
single output systems. PID Neural Network is a new kind of controller that includes the advantages of artificial neural
networks and classic PID controller. Functioning of this controller is based on the update of controller parameters
according to the value extracted from system output pursuant to the rules of back propagation algorithm used in artificial
neural networks. Parameters obtained from the application of PID Neural Network training algorithm on the speed model
of the asynchronous motor exhibiting second order linear behavior was used in the real time speed control of the motor.
The real time control results show that reference speed successfully maintained under various load conditions.

Keywords: PID, neural network, PIDNN, control.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 3, September 2011 200

the uncertainties in the parameters of the
controller [3].

A PIDNN controller includes the advantages of
the PID algorithm and the neural network. Such
a controller is not a hybrid structure that
consists of artificial neural networks and a PID
controller [6]. The PID algorithm exists in the
neurons located in the neural structure as an
activation function.

There are P-proportional, I-Integral, D-
derivative neurons in the PIDNN structure, and
the connection weights that arise among these
neurons are updated by using a back-
propagation training algorithm according to the
error value propagated through the system [3].

2. Structure of the PIDNN Controller

2.1. General Structure of PIDNN

The development of a PIDNN control algorithm
is illustrated in the flow chart in Figure 1. The
structure of the controller consists of four
different modules. In the initial values module,
various values are entered to the program,
including the numbers of inputs and outputs of
the system to be controlled, initial values of the
connection weights to be used, learning rate,
and the number of trainings. The most
important task at this stage is to determine the
initial values of the connection weights.

These weights can be determined according to
classical PID rules. Initial connection weights
can be chosen as values for which the system is
stable, there are no oscillations around the
reference value, and the sum of square errors is
above the value determined as the tolerance
value. Thus, the controller algorithm will
operate more stably, conduct the optimization
process more rapidly, and stay far away from
insoluble areas compared to randomly selected
initial weights.

The forward-direction calculation module is the
stage in which the reference value and system
output conduct PID functions in the hidden
layer. The functions are assigned values as
network input and when the control signal
given to the system as input is calculated. In the
middle layer, P, I, and D neurons are located. In
the output layer, the located neurons give
control signals. The outputs of these neurons
are limited based on the status of the system.

Figure 1. Flow chart of a PIDNN controller [8]

In the backward propagation module, attempts
are made to minimize the cost function
determined as the average of square errors. The
algorithm used for this purpose is the error
back-propagation method, which is the most
commonly used in artificial neural networks
and gradient descent algorithm. Connection
weights of the PIDNN controller are updated
according to the gradient descent algorithm
during on-line training [7]. The process of
updating with this method continues until the
value specified as the cost function falls below
the quantity permitted by the user. In the back-
propagation module, the number of changes or
updates that will be applied on the parameters
of the controller is calculated.

If a system module is controlled, the difference
equation of the system to be used during
simulation studies is the module in which
models obtained for single-input-single-output,
multi-variable, linear or non-linear systems are
used. Training and updating process are
conducted as if the data had been received from
a real system [8].

The PIDNN controller is a new type of
controller in which artificial neural networks
are used with a PID algorithm. It is generally
known that, in classical PID controllers, a
control signed is determined by multiplying the
error value that occurs in the system by
coefficients, such as KP, KI, and KD. However,
in the controller that we analyzed, the PID
structure was determined based on the neurons
of the network.

The controller consists of three layers, i.e., the
input layer, the middle or hidden layer, and the

Studies in Informatics and Control, Vol. 20, No. 3, September 2011 http://www.sic.ici.ro 201

output layer. In the input layer, there are
neurons that give the reference value and
system output values as input into the system.
In the middle or hidden layer, there are neurons
that perform the PID functions. The P neuron
performs the proportional function, the I neuron
performs the integral function, and the D
neuron performs the derivative function. In the
output layer, there is a neuron in which the
control signal that the controller gives to the
system is calculated. The controller consists of
two parts, i.e., the forward direction calculation
and the training stage. In the former, the
control signal is calculated, and in the latter, the
connection weights are adjusted by using the
error value propagated through the system and
back propagation algorithm. The PIDNN
structure for single-input-single-output systems
is shown in Figure 2.

Figure 2. Structure of PIDNN controller [3]

2.2. Feed Forward Calculation

2.2.1. Input Layer

There are two neurons in the input layer, and
the input-output functions of these neurons are
demonstrated in Equation (1).















1)(1

1)(1)(

1)(1

)(

ku

kuku

ku

kx

i

ii

i

i

(1)

where 1,2i and k = number of samples

2.2.2. Hidden Layer

This layer contains the neurons that perform the
basic functions of the controller. The values
calculated by multiplying the output values of
the neurons in the input layer and the
connection weights between the input and
hidden layers come to the neurons in this layer,
and they are processed in the neurons that
conduct the PID algorithm. Inputs formed in
the neurons of the hidden layer are calculated
as shown in Equation (2).





2

1

')(.)(
i

iijj kxwku (2)

where 3,2,1j wij is the connection weights
formed between the input and the output layer.

After the values formed in the inputs of the
hidden layer neurons are calculated, the
functions of neurons in the forward direction
calculation stage can be demonstrated, as
shown in Equations (3-5):
P-Neuron;

Expression of the output value of P Neuron
located in the hidden layer is demonstrated in
Equation (3).


















1)(1

1)(1)(

1)(1

)(

1
'

1
'

1
'

1
'

1
'

ku

kuku

ku

kx (3)

I-Neuron;

Expression of the output value of I neuron
located in the hidden layer is demonstrated in
Equation (4).


















1)(1

1)(1)()1(

1)(1

)(

2
'

2
'

2
'

2
'

2
'

2
'

kx

kxkukx

kx

kx (4)

Accordingly, the neuron output is found by
adding the value coming to the input of the
neuron and the previous value of output.

D-Neuron;

Expression of the output value of D neuron
located in the hidden layer is demonstrated in
Equation (5).


















1)(1

1)(1)1()(

1)(1

)(

3
'

3
'

3
'

3
'

3
'

3
'

kx

kxkuku

kx

kx (5)

Accordingly, the neuron output is found by
adding the value coming to the input of the
neuron and the previous value of output.

2.2.3. Output Layer

Values obtained at the outputs of hidden layer
neurons come to the input of the neuron in the
output layer by being multiplied by the
connection weights between the hidden and the
output layers.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 3, September 2011 202





3

1

'
00

'')(.)(
j

jj kxwku (6)

The net total calculated with Equation (6)
passes through the output layer and forms the
control signal. The input-output function of the
output layer is demonstrated in Equation (7).
Accordingly, the output neuron is equally
propagated to the output, on the condition that
the value at its input is between 1 and -1.


















1)(1

1)(1)(

1)(1

)(

0
''

0
''

0
''

0
''

0
''

ku

kuku

ku

kx (7)

When we look at the network structure of a
PIDNN controller, we can see that the multi-
layer ANN acts as a classical PID controller by
using appropriate connection weights. If we
choose the connection weights between the
input layer and the hidden layer in the PIDNN
structure as in Equation (8),

,11 jW ,12 jW 3,2,1j (8)

the connection weights between the output
layer and the hidden layer are the coefficients
found in the classical PID structure. These
network parameters are demonstrated in
Equation (9).

DIP KWKWKW  302010 ,, (9)

According to these values, values coming to the
inputs of neurons in the hidden layer are like
the values given in Equation (10).

,

,

,2

223113
'
3

222112
'
2

21111
'
1

eyrXWXWU

eyrXWXWU

eyrXWXWU







 (10)

According to the formulation in Equation (10),
the error value that is the difference between
system reference and system output is applied
to the inputs of the neurons located in the
hidden layer due to the values of connection
weights. That is to say, error values come to the
inputs of the neurons located in the hidden
layer. The value found after the neurons pass
through the activation functions, which are P, I,
and D neurons, are given in Equation (11).

,

,

,

'
3'

3

0 0

'
2

'
2

'
1

'
1

dt

de

dt

dU
X

edtdtUX

eUX
t t







  (11)

Accordingly, network output is found by
multiplying error values by the connection
weights between the hidden layer and the
output layer. This expression is given by
Equation (12).

'
3

3

1
30

'
220

'
110

'
0

''
0

''
0 XWXWXWXWUX

j
jj



 (12)

In conclusion, choosing the connection weights
between the input layer and the hidden layer
according to the values demonstrated in
Equation (8) causes the PIDNN network
structure to become a classical PID structure.
When the activation functions of the neurons
located in the latent layer are considered
according to Equation (11), the output of the
controller network is as shown in Equation (13).

 
t

DIP dt

de
KedtKeKX

0

''
0 (13)

As a result, the designed network structure exhibits
the behaviour of a classical PID, depending on the
values of the connection weights.

This feature of a PIDNN controller makes it
easy to use in practice. ANNs are not used for
system control in practice due to the
uncertainties in the initial weights and the
failure to ensure stable operation of the system.
We can find appropriate initial weights by
operating the PIDNN like a classical PID
control when it is first operated. After these
weights are chosen, system response and
control performance can be improved by
operating the back-propagation training
algorithm [9].

3. General Structure of the
Controlled System

The asynchronous motor system to be
controlled is composed of three main parts, as
shown Figure 3a. The mechanical part of the
system is designed to act as fixed brake by
charging the AC motor operating at fixed speed
with a fixed load. In this part, there is a 200 W
DC motor, four spot lamps with 12 V, 50 W

Studies in Informatics and Control, Vol. 20, No. 3, September 2011 http://www.sic.ici.ro 203

power, and the relay card. On the left side,
there is a 3-phase, 250 W AC motor, a
Micromaster-420 driver, and a tacho generator
that generates a voltage according to the speed
of the AC motor. A National Instruments PCI-
6024E data acquisition card was used as the
control unit.

Figure 3a. Experimental setup of the asynchronous
motor system

 As shown in Figure 3b, the controller
algorithm that works on MATLAB Simulink in
a PC environment communicates with the
system through the PCI-6024E data collection
card. The spot lamps connected to the DC
motor, which charges the asynchronous motor,
are loaded or unloaded analogously. The tacho
generator that conveys instantaneous
information on revolution frequency in the
block diagram is connected directly to the data
collection card, and the control signal generated
by software written in MATLAB is sent to the
driver through the input-output card.

Figure 3b. Block diagram of the system

4. Speed Control Studies of
AC Motor

4.1. System Model

Generally, system modelling means measuring
the inputs and outputs and finding the physical
system variables with a model approach. The
input-output dataset that forms a system model
contains values sampled in sufficient numbers

[10]. Formation of the input-output dataset
forming was completed in two stages. In the
first stage, the control signal was varied
between 0-10 V in step function form. In the
second stage, the control signal was varied
randomly between 0-10 V, and the speed of the
AC motor was recorded for 500 seconds in
both stages. The sampling time used was 0.1
second. The input-output dataset was formed
by using these data. This dataset was used
in MATLAB.

The System Identification Toolbox was used to
get the speed model of the AC motor. The Auto
Regressive eXpgenous (ARX) model was
chosen and is shown in Equation (14).

A(q) y(t) = B(q) u(t) + e(t) (14)

where y(t) is the output, u(t) is the input, A(q)
corresponds to poles that are common to the
dynamic model and the noise model, and B(q)
represents the contributions of inputs to
predicting all output values [11].

The order of the ARX model was chosen as
two. After applying the dataset to the program,

A(q) = 1-1.283q-1 + 0.3969q-2

B(q) = 0.01103q-1 + 0.03599q-2

A and B polynomials were determined. The
difference equation of the model is shown in
Equation (15).

)1(*3969.0)(*283.1
)1(*03599.0)(*01103.0)1(




kyky
kukuky

 (15)

The speed model of the AC motor is shown
as a transfer function in discrete time in
Equation (16).

3969.0283.1

03599.001103.0

)(

)(
2 




zz

z

zu

zy
 (16)

In Figure 4, the output of the ARX model and
the speed of the AC motor, taken from the
tacho generator, were compared. Clearly the
model is good. It catches relevant features of
motor during the rising time and the settling
time. In Figure 5, the outputs of the real-time
system and the model are compared at various
speeds. Some minor differences can be
accepted in transitions of steps. Figure 6 gives
the error between the outputs of the model and
the real system.

PC &
DAQ Card

(NI PCI-6024E)

DRIVER
(Siemens
MM-420)

AC MOTOR

TACHO

GENERATOR

DC MOTOR

LOADS

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 3, September 2011 204

0 2 4 6 8 10

200

400

600

800

1000

1200

1400

time(s)

Sp
ee

d(
R

PM
)

System Output
Model Output

Figure 4. Open loop comparison of system and
model outputs at 1300 RPM

0 20 40 60 80 100 120 140 160 180 200

500

1000

1500

time(s)

S
pe

ed
(R

PM
)

Model Output
System Output

Figure 5. Various speed results of system and
model outputs

0 20 40 60 80 100 120 140 160 180 200
-150

-100

-50

0

50

100

150

time(s)

Sp
ee

d(
R

PM
)

Figure 6. Errors between system and model outputs

The open loop response of the system to a step
input in discrete time is shown in Figure 7. The
settling time of the system for the step input
was approximately 1.7 seconds, and the rise
time was approximately 1 s. After the
difference equation for the asynchronous motor
in discrete time was obtained, the process of
improving the response of the system using this
model was performed at the training stage of
the controller. The importance of ANNs at this
point was the use of the back propagation
algorithm for the purpose of decreasing the
mean square of errors.

0 1 2 3 4

0.1

0.2

0.3

0.4

0.5

time(sec)

St
ep

 R
es

po
ns

e

Figure 7. Open loop response of the asynchronous
motor in discrete time

The structure of the controller is not complex,
and classical PID functions were conducted in
the network. Some parameters must be
determined before starting the training process,
i.e., learning rate, number of trainings, and the
initial value of the weights. Optimization of the
process is closely related to choosing the initial
values of such parameters that are appropriate
for the system.

A 10 V control signal was applied to the model
to get the nominal speed of the AC motor,
which was 1350 RPM. The rise time of the
system was around 1s, and the settling time of
the system was approximately 2 s as shown in
Figure 8.

0 2 4 6 8 10

200

400

600

800

1000

1200

1350

time(s)

R
P

M

Figure 8. 10 V step response of the difference
equation

Controller training was started in
consideration of various criteria, such as the
learning rate, number of trainings, and initial
weights. The system response for the related
reference or training set is shown in Figure 9.

Rise time of the system response obtained as a
result of training is short, which means the
system output has rapidly approached the
related reference value. Overshoot amount is
low, and steady state error is close to zero.

Studies in Informatics and Control, Vol. 20, No. 3, September 2011 http://www.sic.ici.ro 205

Trained system response and open loop system
response are compared in Figure 10.

0 2 4 6 8 10

200

400

600

800

1000

1200

1300

time(s)

R
P

M

System output
Reference

Figure 9. System response after controller training

0 2 4 6 8 10

200

400

600

800

1000

1200

1300

1400

time(s)

R
P

M

Open loop system output
Trained system output

Figure 10. System responses according to open loop
and optimized parameters

The settling time was 2 s in the open loop
system, which decreased to around 1 s using
the controller.

0 2 4 6 8 10

0,5

1

1.5

2

2.5

3

3.5

time(s)

C
on

tr
ol

le
r

ou
tp

ut
(V

)

Figure 11. Optimized controller network output

Figure 11 shows the values of the controller
signal obtained from the output of the
controller In the real-time study, the neurons at
the PIDNN output and the controller network
output were limited between 0 and 1 or -1 and
1 as was mentioned in the output layer section.
For the output layer, however, no restrictive
criteria are put at the network output since the

controller is operated on the system model. The
output of the controller network without any
restrictions is shown in Figure 11. The output
of the controller network in the real-time study
should be limited to 0-10 V; otherwise the
related system could be given a control signal
above 10 V.

The most important part of PIDNN controller
algorithm is the minimization of the cost
function. As shown in Figure 12, cost function
specified as the average of square errors
decreased after each iteration of training. The
error value was high in the first training step,
but the parameters applied after each update
caused the error in the system response to
decrease compared to the previous error.

0 20 40 60 80 100 120 140 160 180 200

0.002

0.004

0.006

0.008

0.01

0.012

Number of trainings

M
ea

n
sq

ua
re

 e
rr

or

Figure 12. Cost Function

Whether the training is quick or slow does not
mean that the appropriate parameters will be
found more accurately. Learning rate is a factor
that determines the training rate. As was stated
earlier, there is no predefined rule for the initial
value of the learning rate; it can change
depending on the implementation. If the
training is continued after the 200th iteration,
the system value becomes unstable and
oscillates. Therefore, the maximum number of
trainings can change depending on the
implementation. Termination of the training is
decided based on when the criterion determined
as the cost function falls below a value
determined by the user, or, at the end of each
iteration, the user can examine the system
response and decide to stop the training.
Connection weights obtained at the end of the
training were used in the real-time operation of
the system.

4.2. System Response to Step Inputs

Connection weights obtained at this stage of the
study were used in the real-time operation of
the system. One of the real-system responses

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 3, September 2011 206

and one of the model responses were chosen, as
shown in Figure 13. The real-system output
and the model output are shown for reference
values of 750 RPM in Figure 13a. For this
reference value, the control signal is shown in
Figure 13b. As is shown at control signal
output, when the system response approaches
the related value in the reference speed graphic,
the control signal ceased the maximum drive
and continued to generate the signal required
for the related reference. There is overshoot
between the model and the output of the
system. These differences arise from
modelling errors.

0 2 4 6 8 10

200

400

600

800

time(s)

Sp
ee

d
(R

PM
)

Reference
System Output
Model Output

Figure 13a. Real system and model outputs for 750
RPM

0 2 4 6 8 10
4

6

8

10

time(s)

C
on

tr
ol

 S
ig

na
l(

V
)

Figure13b. Control signal

The response to the stepped reference input of
the system is shown in Figure 14a. If there is a
large difference in the reference transition,
some overshoot will occur. For example, in the
40th second, the reference dropped
approximately 1000 RPM. The error is high for
a short time. In this transition, the control
signal was 0 V. The control signal was begun
again producing after the error was reduced.
The control signal values are shown in
Figure 14b.

4.3. System Response under Load

A DC motor was connected in order to apply
load to the shaft of the asynchronous motor.
The DC motor provided electricity for four 50
W lamps, each of which acted like a generator.
The lamps were switched on one by one and,
the control signals and the speed of the AC
motor were observed. Two resulting load
conditions are shown in Figure 15a. A rapid
decrease of 20 RPM was observed on the shaft
of the AC motor operating at 1300 RPM when
two 50 W lamps were turned on.

0 10 20 30 40 50 60 70 80

200

400

600

800

1000

1200

1400

time (sec.)

S
pe

ed
 (

R
P

M
)

Reference
Motor Speed

Figure 14a. The system response to a stepped
reference input

0 10 20 30 40 50 60 70 80

1

2

3

4

5

6

7

8

9

10

time(s)

C
on

tr
ol

 s
ig

na
l(

V
)

Figure 14b. Control signal

This RPM decrease was recovered quickly by
simultaneously increasing the control signal
and holding the speed of the motor at the
reference speed. When the motor was
unloaded, an increase of the speed at the same
rate was observed, but the controller turned
back to its reference speed value.

In Figure 15a, four 50 W lamps were turned on
simultaneously, and a 200 W load was
generated in 8th seconds. When the motor was
loaded, the revolution rate decreased by
approximately 30 RPM, and the controller
offset the load by increasing the control signal.
When the motor was unloaded in 14th seconds,

Studies in Informatics and Control, Vol. 20, No. 3, September 2011 http://www.sic.ici.ro 207

the revolution rate increased at the same rate,
and the controller decreased the control signal
in order to get the related reference RPM at the
output of the system (Figure 15b).

0 2 4 6 8 10 12 14 16 18 20
1200

1220

1240

1260

1280

1300

1320

1340

1360

1380

1400

time(s)

S
pe

ed
(R

P
M

)

100W load
200W load

Figure 15a. System response under 100 W and
200 W loads

0 2 4 6 8 10 12 14 16 18 20
9

9.2

9.4

9.6

9.8

10

time(s)

C
on

tr
ol

 s
ig

na
l(

V
)

100W load
200W load

Figure 15b. Control signal under 100 W and
200 W load

5. Results and Discussion

The cost function was decreased by the
parameters that were found until it was less
than the error tolerance value, thereby
completing the optimisation process. With
these coefficients, the rise time of the system in
closed loop operation was decreased from 2 s
to around 1 s. Data obtained from one of the
real-time studies at the reference speed of 750
RPM and the data obtained from the simulation
studies conducted on the model similar results
according to the control criteria, such as rise
time, settling time, and overshoot amounts. The
response of the AC motor to staircase driving
was quick and efficient. When load was applied
to the system, the controller increased its drive
effect in response to the load.

Conventional PID controller results and
PIDNN controller results are shown in Figure
16. The overshoot amount for the PID

controller was approximately 1.7% greater than
the overshoot amount for the PIDNN
controller. The response of the PID controller
under load was approximately the same as the
response of the PIDNN controller.

0 2 4 6 8 10 12 14 16 18 20

200

400

600

800

1.000

1.200

1.400

time (s)

Sp
ee

d(
R

PM
)

PIDNN
PID

Figure 16. PID and PIDNN responses to the system
under 100 W load

6. Conclusion

In this study, initial values of controller
parameters, such as the number of trainings,
learning rate, and initial weights in the PIDNN
structure used were given, and the controller
parameters to be used in a real-time application
were determined quickly as a result of the
operation. In this way, controller parameters of
systems with very different structures can be
determined using a PIDNN training algorithm,
and real-time control processes can be
conducted efficiently.

REFERENCES

1. DANDIL B., Plant Control By Aid Of
Artificial Neural Networks, Master
Thesis, Firat University Institute of Applied
Sciences, 1997, (in Turkish).

2. PATIC, P. C., R. ZEMOURI, L. DUTA,
Recurrent Neural Networks in Linear
Systems Controlling, Studies in
Informatics and Control, vol. 19, no. 2,
2010, pp. 153-158.

3. SHU, H., Y. PI, PID Neural Networks for
Time-delay Systems, Computers and
Chemical Engineering, Volume 24, Issues
2-7, 15 July 2000, pp. 859-862.

4. ABDEL-HADY, F., S. ABUELENIN,
Design and Simulation of a Fuzzy-
Supervised PID Controller for a
Magnetic Levitation System, Studies in
Informatics and Control, vol. 17, no. 3,
2008, pp. 315-328.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 3, September 2011 208

5. IVĂNESCU, M., M. C. FLORESCU, N.
POPESCU, D. POPESCU, The Control of
The Hyper-redundant Manipulators by
Frequency Criteria, Studies in
Informatics and Control, vol. 18, no. 3,
2009, pp. 279-288.

6. SHU, H., X. GUO, H. SHU, PID Neural
Networks in Multivariable Control
Systems, International Symposium
on Intelligent Control, Vancouver,
Canada, 2002.

7. SHU, H.,X. GUO, Decoupling Control of
Multivariable Time-Varying Systems
Based on PID Neural Network, 5th
Asian Control Conference, 2004,
Melbourne, Australia.

8. SHU, H., H. SHU, Simulation of PID
Neural Network Control System with
Virtual Instrument, 7th International
Conference on System Simulation
and Scientific Computing, Beijing,
China, 2008.

9. SHU, H., Y. PI, Decoupled Temperature
Control System Based on PID Neural
Network, ACSE Conference, Cairo, Egypt,
2005.

10. RONCO E., P. J. GAWTHROP, Neural
Networks for Modelling and Control,
Centre for System and Control
Department of Mechanical Engineering
University of Glasgow, Technical Report
csc97008, 1997.

11. LENNART L., System Identification:
Theory for the user, 2nd edition, Prentice
Hall PTR, 1999.

