
Studies in Informatics and Control, Vol. 20, No. 3, September 2011 http://www.sic.ici.ro 221

1. Introduction

The process of DNA sequencing has nowadays
become of great importance in basic biology
research, as well as in various fields such as
medicine, biotechnology or forensic biology.
Several techniques have been developed to
achieve the DNA sequencing, but the main
problem with the current technology is that it
cannot read an entire genome at once, not even
more than 1000 bases.

The DNA fragment assembly (FA) is a
technique that attempts to reconstruct the
original DNA sequence from a large number of
fragments, each several hundred base-pairs
long [1]. It is an NP-hard combinatorial
optimization problem [2] which is growing in
importance and complexity as more research
centers become involved on sequencing new
genomes [3]. Various heuristics, including
computational intelligence algorithms, have
been designed for solving the fragment
assembly problem, but since this problem is a
crucial part of any sequencing project, better
assemblers are needed [3].

In this paper we aim at proposing a distributed
reinforcement learning based model for solving
the DNA Fragment Assemby problem.
Reinforcement Learning (RL) [4] is an
approach to machine intelligence in which an
agent [5] can learn to behave in a certain way
by receiving punishments or rewards on its
chosen actions.

The model proposed in this paper extends toward

a distributed approach the reinforcement
learning based model that we have previously
introduced in [6] for solving the FA problem.
To our knowledge, except for the ant [7] based
approaches, the DNA Fragment Assembly
problem has not been addressed in the literature
using distributed reinforcement learning, so far.

The rest of the paper is organized as follows.
Section 2 presents the DNA fragment assembly
problem and Section 3 briefly describes
existing approaches in solving the considered
problem. The fundamentals of distributed
reinforcement learning are given in Section 4.
Section 5 introduces the distributed
reinforcement learning model that we propose
for solving the fragment assembly problem. An
experimental evaluation of the proposed
approach is given in Section 6, and Section 7
provides an analysis of the introduced
distributed model, emphasizing its advantages
and drawbacks. Section 8 contains some
conclusions of the paper and future
development of our work.

2. The Fragment Assembly Problem

The Fragment Assembly (FA) problem deals with
sequencing of DNA [3]. In order to sequence
larger strands of DNA, they are first broken into
smaller pieces. The FA problem is then to
reconstruct the original molecules sequence from
the smaller fragment sequences [3].

The genome of all living organisms, encoded in
the DNA, represents the totality of their
hereditary information. DNA, or the

A Distributed Q-Learning Approach
to Fragment Assembly

Maria-Iuliana Bocicor, Gabriela Czibula, István Gergely Czibula

Babeş-Bolyai University,
1, M. Kogălniceanu Street, Cluj-Napoca, 400084, Romania,
iuliana, gabis, istvanc@cs.ubbcluj.ro

Abstract: The process of DNA sequencing has nowadays become of great importance in basic biology research, as well
as in various fields such as medicine, biotechnology or forensic biology. The fragment assembly problem is a very
complex optimization problem that deals with sequencing of DNA, and many computational techniques including
computational intelligence algorithms were designed for finding good solutions for this problem. Since DNA fragment
assembly is a crucial part of any sequencing project, researchers are still focusing on developing better assemblers. We are
introducing in this paper a distributed reinforcement learning based approach for solving the fragment assembly problem,
an NP-complete optimization problem that attempts to reconstruct the original DNA sequence from a large number of
fragments, each several hundred base-pairs long. Our model is based on a distributed Q-learning approach. The
experimental evaluation of the proposed system has provided encouraging results, indicating the potential of our proposal.
The advantages and drawbacks of the proposed approach are also emphasized.

Keywords: Bioinformatics, distributed reinforcement learning, DNA fragment assembly.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 3, September 2011 222

deoxyribonucleic acid is composed of complex
organic molecules and is the information-
bearing molecule in the cell – it stores
information that contains the instructions
needed to construct other components of the
cell such as proteins and RNA, and eventually,
entire organisms.

Determining the order of nucleotide bases, or
the process of DNA sequencing, has nowadays
become of great importance in basic biology
research, as well as in various fields such as
medicine, biotechnology or forensic biology.
Several techniques have been developed to
achieve the DNA sequencing, but the main
problem with the current technology is that it
cannot read an entire genome at once, not even
more than 1000 bases. As even the simplest
organisms (such as viruses or bacteria) have
much longer genomes, the need to develop
methods that would overcome this limitation
arose. One of these, called shotgun sequencing
was introduced in 1982, by Fred Sanger [8] and
it consists of the next steps: first, several copies
of the DNA molecule are created; then each of
the copies is cut at random sites in order to
obtain molecules short enough to be sequenced
directly - fragments; the last and most difficult
step involves assembling these molecules back
into the original DNA molecule, based on
common subsequences of fragments.

The DNA Fragment Assembly Problem
specifically refers to this last step. Usually,
there are three phases that must be followed in
order to obtain a solution for this problem [1]:

- Overlap Phase - consists of finding the
longest match between the prefix of a
fragment and the suffix of another. All
possible pairs of fragments are compared,
in order to determine their similarity.

- Layout Phase - refers to finding the order
of fragments. This is the most difficult step,
because of various challenges:

1. Unknown orientation: the fragments’
orientation is lost, so if for a specific
fragment there are no overlapping
fragments, there might be some that are
similar with the fragment’s reverse.

2. Base call errors: these are errors that might
appear during the experimental phase. There
are three types of such errors: substitutions
(a certain nucleotide base is subtituted by
another), insertions (a new nucleotide base
is inserted to a fragment it does not belong

to) and deletions (certain nucleotide bases
are deleted from fragments. These errors
affect the overlaps between the fragments).

3. Incomplete coverage: The given set of
fragments cannot form the orginial DNA.

4. Repeated regions: some subsequences
may be repeated several times in the
original DNA. These repeats can cause
serious problems in the assembly process.

5. Chimeras: these occur when two fragments
that are not adjacent in the original molecule
join together in one fragment.

- Consensus Phase - consists of determining
the original DNA molecule from the layout
obtained in the previous phase.

Next, we will illustrate the assembly process, by
using a simple example, taken from [9]. Let us
assume that, for the DNA sequence TTACCGTGC
we are given the set of fragments:

F1 = ACCGT
F2 = CGTGC
F3 = TTAC
F4 = TACCGT

First we need to determine the overlap of each
fragment with the other three fragments. This is
usually done using an alignment algorithm and
a similarity measure. Then, we need to find the
order of these fragments, based on the
computed similarities. The order is: F3F4F1F2.

F3  T T A C     

F4   T A C C G T  

F1    A C C G T  

F2      C G T G C

 T T A C C G T G C

3. Literature Review

Many algorithms have already been developed
in the literature to solve the DNA fragment
assembly problem.

The FA problem is known to be NP-complete
[10], therefore exact solutions for this problem
are very difficult to obtain. For this reason,
various heuristic methods have been applied:
genetic algorithms, clustering algorithms, ant
colony optimization algorithms.

Studies in Informatics and Control, Vol. 20, No. 3, September 2011 http://www.sic.ici.ro 223

In this section we briefly present several
approaches existing in the literature for solving
the fragment assembly problem.

3.1 Fragment assembly

Kikuchi and Chakraborty approach the
Fragment Assembly Problem using an
improved genetic algorithm [11]. A
chromosome is represented as a permutation of
the DNA fragments’ labels (numbers from 1 to
N, where N is the total number of fragments),
while the fitness function is represented as the
sum of similarity measures of all adjacent
fragments. The authors add two new methods
to their genetic algorithm, in order to improve
its efficiency: The Chromosome Reduction
Step - used to make the search more efficient
(the fragments which are contained within
contigs formed in the best chromosome are
deleted from all the other chromosomes, thus
decreasing their lengths); The Chromosome
Refinement Step - greedy heuristic to locally
improve the fitness of chromosomes (if the
beginning of fragment i overlaps with the end
of fragment i+1 in the chromosome, then these
fragments are swapped).

A four-phase approach is proposed in [12] in
order to reconstruct a DNA sequence from
fragments. The authors firstly construct an
overlap graph, whose vertices contain the
fragments and whose edges contain the
approximate overlaps between every pair of
fragments. Secondly, they try to find an
oriented subgraph, by assigning an orientation
to each fragment, in order to eliminate some
overlaps and retain the possibility of using
others. As this phase is NP-complete, the
authors proposed a new greedy approximation
algorithm that computes an optimal orientation.
The third phase consists of selecting a set of
edges from an oriented subgraph determined in
the previous phase to induce a consistent layout
of the oriented fragments. The final step is to
determine the original DNA sequence by
merging the selected overlaps into a multiple
sequence alignment and voting on a consensus.

Parsons, Forrest and Burks [13] argue that the
FA problem is quite similar to the Travelling
Salesman Problem (TSP) and that genetic
algorithms could provide an efficient approach.
A solution is represented as a permutation of
integer numbers, which represent fragments,
and where each two successive fragments
overlap. The authors use two fitness functions,

one that simply sums the overlap scores over
all adjacent fragments - which has to be
maximized and another one, that considers the
overlap strength among all possible pairs,
penalizing layouts in which fragments with
strong overlap are far apart – which has to be
minimized. New genetic operators that try to
preserve or extend existing contigs are defined:
order crossover, edge recombination, inversion
and transposition.

Angeleri et al. [14] presents a supervised
learning approach to the fragment assembly
problem. The idea is to train a recurrent neural
network to track a sequence of bases
constituting a given fragment and to assign to
the same cluster all sequences which are well
tracked by this network.

3.2 Distributed fragment assembly

The literature offers few approaches that make
use of multi-agent systems to the purpose of
proposing solutions to this problem. We will
briefly present some of these approaches.

Luque, Alba and Khuri approach the DNA
Fragment Assembly problem using a sequential
and also a distributed genetic algorithm [15].
The distributed method is implemented using a
parallel genetic algorithm, which has multiple
component genetic algorithms, each of these
having a single population and being able to
communicate results to the other component
algorithms. The authors used a descentralized
distributed search, by developing a parallel
implementation, where separate subpopulations
evolve independently and exchange individuals
among them, with a certain frequency and
following certain rules. Compared to the
sequential approach, the distributed one
obtained high accuracy solutions for large
DNA sequences, in lower waiting times.

In Artificial Intelligence, an agent is an
autonomous entity that receives perceptions
and performs actions upon an environment in
order to achieve a certain goal. Therefore, an
Ant Colony Optimization (ACO) method can
be regarded as a multi-agent system, where ants
are simple agents which indirectly
communicate through interaction with the
environment, by depositing pheromone on the
paths they follow. An ant colony system
algorithm was used by Meksangsouy and
Chaiyaratana [16] in order to solve the FA
problem. The solution is cooperatively
generated by all ants in the colony and the

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 3, September 2011 224

performance measur is determined as the sum
of the overlap scores calculated for each
successive pair of adjacent fragments in the
final layout. The authors investigated two types
of assembly problems: single-contig and
multiple-contig problems, obtaining very good
results, especially for the latter.

Another approach that uses an ant colony
system combined with a nearest neighbor
search heuristic is proposed in [17]. The
assembly process is composed of two phases:
fragment assembly and contig assembly.
During the first stage, the ant colony
optimization algorithm is used to determine
alignments between fragments and
subsequently contiguous sequences (contigs),
using possible orders of fragments. The second
phase consists of assembling together the
contigs obtained in the previous stage, using
the nearest neighbor rule.

4. Distributed Reinforcement
Learning

Reinforcement learning is a synonym of
learning by interaction [18]. During learning,
the adaptive system tries some actions (i.e.,
output values) on its environment, then, it is
reinforced by receiving a scalar evaluation (the
reward) of its actions. The reinforcement
learning algorithms selectively retain the
outputs that maximize the received reward over
time. Reinforcement learning tasks are
generally treated in discrete time steps. In RL,
the computer is simply given a goal to achieve.
The computer then learns how to achieve that
goal by trial-and-error interactions with
its environment.

Recently there has been great interest in
distributed reinforcement learning multi-agent
systems (MASs) consisting of agents that work
together in order to optimize a joint
performance measure.

Distributed reinforcement learning problems
may be modeled in different ways, one of the
most frequently used being the Multi-Agent
Markov Decision Process (MAMDP), which is
an extension of the single-agent Markov
Decision Process [19]. In an MAMDP each
agent has a finite state space and a finite action
space and thus the joint state space will be the
Cartesian product of all state spaces of all the
agents, while the joint action space will be,
similarly, the Cartesian product of all action

spaces, corresponding to all the agents.
Therefore, an MAMDP can be modeled as a 5-
tuple (RASN ,,,, ), where N is the set of
agents, S is the joint state space, A is the joint
action space,  is the transition probability and
R is the reward. These last two functions - 
and R are similar to those in the standard MDP,
except that they are defined over the joint state
and joint action spaces, being independent of
the time step. Consequently, the Markov
property still holds within this model.

One of the most frequently used single agent
RL algorithms is Q-Learning [19], which finds
a mapping from state/action pairs to values
(called Q-values). An optimal Q-value is the
sum of reinforcements received when
performing the associated action and following
the optimal policy thereafter. Q-values were
proven to converge to their optimal values
within the Q-Learning algorithm if all the
state/action pairs are visited an infinite number
of times. Still, in MASs, the convergence of Q-
values cannot be guaranteed, as each agent is
simultaneously learning its own actions and the
environment becomes non-stationary.

In the literature, there are several approaches to
the problem of applying Q-Learning in MASs.
Claus and Boutilier present in [20] two ways in
which Q-Learning could be used in MASs: the
Independent Learners (IL) Algorithm - agents
ignore other agents’ actions and each one learns
its Q-values independently; the Joint Action
Learners (JAL) - agents that learn Q-values for
the joint state/action space, rather than the
individual state/action space. Each JAL
maintains information about the strategies of the
other agents and chooses its actions according to
the expected value based on this information.

In [21] the author studies cooperative agents
and independent agents for the purpose of
concluding whether the former outperform the
latter. The author states that several
independent RL agents will surely outperform
one single RL agent, due to the fact that they
have more resources and better chances of
receiving rewards and then he proposes to
study the results obtained by several agents that
cooperate. Three ways of cooperation are
identified: agents can communicate
instantaneous information such as perceptions,
actions or rewards; they can communicate
experienced episodes (sequences of
perceptions, actions and rewards); or they can
communicate learnt decision policies. The

Studies in Informatics and Control, Vol. 20, No. 3, September 2011 http://www.sic.ici.ro 225

conclusion of the paper is that cooperative RL
agents that share episodes or policies learn
faster and converge sooner than independent
agents, but coordination also has
somedrawbacks, as sharing knowledge comes
with a communication cost and cooperative
behavior for joint tasks automatically implies a
larger state space.

In [22], Lauer and Riedmiller propose an
algorithm which finds optimal policies for
distributed Q-learning in deterministic
environments. As it is considered impossible
for each agent to distinguish between different
joint action vectors that contain the same
individual action for an agent, the individual
agents are not capable of computing Q-
functions defined on the current state of the
whole environment and the joint vector of
actions. Therefore, the authors propose
projecting the large Q-table in smaller Q-tables
that compress the information of the large one,
specific for each agent. A projection based on
the optimistic assumption is introduced: each
agent assumes that the other agents will behave
optimally, i.e. the joint action vector composed
of all the individual actions of the agents
represents an optimal action for the system. In
this case, the Q-values of each agent are chosen
as the optimal values of the large Q-table. Still,
the optimal assumption can be violated in the
case of several optimal joint actions in a single
state, when the optimal behavior of each agent
is not guaranteed. For this reason, an additional
mechanism for coordination between the agents
is introduced: the learning algorithm of each
agent updates the current policy only if there
was an improvement in its own Q-value.

Marino and Morales describe in [23] a new
distributed Q-Learning algorithm - DQL: the
agents find a common policy in a distributed
environment by transmitting information about
how optimal each action is, using traces (of all
the other agents) generated from transition
between states. The final policy is based on the
most frequently selected actions.

5. A Distributed Reinforcement
Learning Model for Solving the
DNA Fragment Assembly
Problem

5.1 Background

In this section we present the reinforcement
learning model that we have previously
introduced in [6] for solving the DNA
Fragment Assembly problem.

Let us consider, in the following, that Seq is a
DNA sequence and nFFF ,...,, 21 (1n) is a set
of fragments. As indicated in Section 2, the FA
problem consists of determining the order in
which these fragments have to be assembled
back into the original DNA molecule, based on
common subsequences of fragments.
Consequently, the FA problem can be viewed
as the problem of generating a permutation 
of },...,2,1{ n that optimizes the performance of

the alignment),...,,(
21 n

FFFF   . The

performance measure PM we consider in this
paper is one of the fitness functions defined in
[13], which sums the overlap scores over all
adjacent fragments and which has to
be maximized.

According to [13], the performance measure
PM for the sequence of fragments

),...,,(
21 n

FFFF   is defined as in

Equation (1):








1

1

),()(
1

n

i
ii

FFwFPM  (1)

where w(a, b) denotes the similarity measure
between sequences a and b.

We define the RL task associated to the FA
problem as follows:

- The state space S (the agent’s environment)

will consist of
1

11




n

nn

 states, i.e.

},...,,{
1

121 1




n

nnsssS . The initial state of

the agent in the environment is 1s . A state

)
1

1
,1(

1















n

n
iSs

n

kik
 reached by the

agent at a given moment after it has visited
states

niii ssss ,...,,,
211 and has selected

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 3, September 2011 226

actions
niii aaa ,...,,

21
 is a terminal (final or

goal) state if the number of states visited by
the agent in the current sequence is n + 1
and all the actions are distinct, i.e

kjnkjaa
kj ii  ,,1, .

- The action space A consists of n actions
available to the problem solving agent and
corresponding to the n possible values

n,...,2,1 used to represent a solution
(permutation of },...,2,1{ n), i.e.

},...,,{ 21 naaaA  , where ,iai 

ni 1 .

- The transition function)(: SPS 
between the states is defined as in
Formula (2).

,
1

1
1,),()(

1


n

k

n

kjj n

n
jjass

 


 (2)

where],1[),(1 nksas knjnkj   .

This means that, at a given moment, from a
state Ss the agent can move in n
successor states, by executing one of the n
possible actions. We say that a state Ss'
that is accessible from state s, i.e.


Aa

ass


),(' , is the neighbor (successor)

state of s. The transitions between the states
are equiprobable, the transition probability

),('ssP between a state s and each
neighbor state 's of s is equal to 0.25.

- The reward function will be defined below
(Formula (3)).

Let us consider a path  in the above defined
environment from the initial to a final state,

),...,,(210 n  , where 10 s and

10  nk the state 1k is a neighbor of

state k . The sequence of actions obtained
following the transitions between the
successive states from path  will be denoted
by),...,,(

1210 


n
aaaaa  , where

10),,(1  nka
kkk  . The

sequence a will be referred as the action

configuration associated to the path  . A path
 is called valid if all the actions within its
action configuration are distinct, i.e

kjnkjaa
kj

 ,,1, . The action

configuration a associated to a valid path 

can be viewed as a possible order for the
fragments assembly process, i.e a permutation
that gives the assembly order (the fragments are
assembled in the order

1210
,...,,

n
aaaa ).

Consequently we can associate to a valid path
 a value denoted by)(

aFPM representing

the performance measure (see Equation (1)) of
the alignment),...,,(

1210 


n
aaaaa FFFFF


.

The FA problem formulated as a RL problem
will consist in training the agent to find a path
 from the initial to a final state having the
maximum associated performance measure

)(
aFPM . It is known that the estimated utility

of a state [19] in a reinforcement learning
process is the estimated reward-to-go of the
state (the sum of rewards received from the
given state to a final state). So, after a
reinforcement learning process, the agent learns
to execute those transitions that maximize the
sum of rewards received on a path from the
initial to a final state.

As we aim at obtaining a valid path  having
the maximum associated performance measure,
we define the reinforcement function as follows
(Formula (3)):

- the reward received after a transition to a
non terminal state is  , where  is a small
positive constant (e.q 0.1);

- the reward received after a transition to a
final state n after states

12110 ,...,,,  ns  were visited is the
performance measure PM of the alignment

),...,(
110 


n

aaaa FFFF


(see Equation (1)).



 

 otherwise

nkFPM
sr a

kk 
 

,)(
),....,,,|(1211 (3)

where by),....,,,|(1211 kk sr  we denote

the reward received by the agent in state k ,
after its history in the environment is

12110 ,...,,,  ks  .

Considering the reward defined in Formula (3), as
the learning goal is to maximize the total amount
of rewards received on a path from the initial to a
final state, it can be easily shown that the agent is
trained to find a path  that maximizes the
performance of the associated alignment.

Studies in Informatics and Control, Vol. 20, No. 3, September 2011 http://www.sic.ici.ro 227

During the training step of the learning process,
the agent will determine its optimal policy in
the environment, i.e the policy that maximizes
the sum of the received rewards.

For training the FA (Fragment Assembly)
agent, we propose a Q-learning approach [4].
The idea of the training process is
the following:

- The Q-values are initialized with 0.

- During some training episodes, the agent
will experiment (using the  -Greedy
action selection mechanism) some
(possible optimal) valid paths from the
initial to a final state, updating the Q-values
estimations according to the Q-learning
algorithm [24].

- During the training process, the Q-values
estimations converge to their exact values,
thus, at the end of the training rocess, the
estimations will be in the vicinity of the
exact values.

After the training step of the agent has been
completed, the solution learned by the agent is
constructed by starting from the nitial state and
following the Greedy mechanism until a
solution is reached. From a given state i, using
the Greedy policy, he agent transitions to a
neighbor j of i having the maximum Q-value.
Consequently, the solution of the FA problem
reported y the RL agent is a path

),...,,(211 ns   from the initial to a final
state, obtained following the policy described
above. We mention that there may be more
than one optimal policy in the environment
determined following the Greedy mechanism
described above. In this case, the agent may
report a single optimal policy or all optimal
policies, according to the way it was designed.

It is proven in [25] that the learned Q-values
converge to their optimal values as long as all
state-action pairs are visited an infinite number
of times. Consequently, the action
configuration a corresponding to the path 

learned by the FA agent converges, in the limit,
to the optimal order in which the fragments
have to be assembled, indicating the alignment

110
,...,

n
aaa FFF


 having the maximum

associated performance measure.

5.2 Our distributed approach proposal

As we have shown in [6], a very large number
of training episodes is required in order to
obtain an accurate solution using the Q-
learning approach presented in Subsection 5.1.
That is why, in order to speed up the training
process, we extend the proposed approach
towards a distributed one, in which multiple
cooperative agents learn to coordinate in order
to find the optimal policy in their environment.
The approach proposed in the section is a kind
of concurrent Q-learning [24].

We have two types of agents in our distributed
architecture:

- FAA (Fragment Assembly Agents). Each
FAA agent runs in a separate process or
thread and is trained using the Q-learning
algorithm [26]. Each local agent performs
local Q-values estimations updates from its
own point of view.

- a FAS (Fragment Assembly Supervisor)
agent wich supervises the learning process
and synchronizes the computations of the
individual FAA agents. It keeps a
blackboard [27] which stores the global Q-
values estimations. The local FAA agents
use the global Q-values estimations stored
in the blackboard and comunicate to the
FAS agent their intention to update a Q-
value estimation. If a local agent tries to
update a certain Q-value, the FAS agent
will update the global Q-value estimation
only if the new estimation received from
the local agent is greater than the Q-value
estimation existing in the blackboard. This
updating strategy is based on our previous
result from [26] in which we have proven
that in a non-distributed RL scenario the Q-
values estimates for each state-action pair
increase during the training process and are
upper bounded by the exact values.

We have two possible architectures for the
proposed multiagent system:

1. The FAA agents are running in the same
process with the supervisor agent FAS. In
this case each FAA agent has an instance of
the supervisor FAS agent, and this will
reduce the cost of communication
(messages exchanges) between the agents.
The blackboard stored by FAS allows a
kind of indirect data communication
between the local agents and the global
supervising agent.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 3, September 2011 228

2. The FAA agents are distributed across multiple
processes/machines. In this case network
communication is involved when the FAA
agents ask the supervisor for Q-values or
request a Q-value update. In order to reduce
the number of messages exchanged between
FAA agents and the supervisor FAS, the
frequency for updating the Q-values in the
blackboard can be decreased if the FAA agents
will synchronize their Q-values with the
supervisor only after several training epochs.

The training process consists of three phases
and will be briefly described in the following.

Phase 1. Initial phase

The FAS supervisor agent initializes with 0 the
Q-values from the blackboard.

Phase 2. Training phase of each
FAA agent

During some training episodes, the individual
FAA agents will experiment (using the  -
Greedy action selection mechanism) some
(possible optimal) valid paths from the initial to
a final state, updating the Q-values estimations
according to the Q-learning algorithm [24].

Figure 1. The distributed Q-learning algorithm

The general form of the distributed Q-learning
algorithm is given in Figure 1. We denote in
the following by Q(s, a) the Q-value estimate
associated to the state s and action a, as stored
by the blackboard of the FAS agent.

Phase 3. Final phase

After the training of the multiagent system has
been completed, the solution learned by the
FAS supervisor agent is constructed by starting
from the initial state and following the Greedy
mechanism until a solution is reached.

The architecture that we propose for the
distributed Q-learning system for solving the
fragment assembly problem is presented in
Figure 2. The message exchanges between the
agents, as highlighted in Figure 1, are
illustrated in Figure 2 by the labeled arrows.

6. Computational Experiment

In this section we aim at providing the reader
with an easy to follow example illustrating how
our approach works. The example is taken from
[9] and was described in Section 2.

6.1 Example

In the following, we will present all possible
permutations of fragments from the example
given in the Section 2, and their associated
performance measures, in order to show that our
distributed approach obtains the optimal results.

Figure 2. The distributed Q-learning architecture

Table 1 and Table 2 illustrate, respectively, the
overlap (similarity) scores and the sub-
sequence alignments for all possible pairs of
fragments that can be obtained. These
similarity measures and local alignments

Repeat (for each episode)

 Select the initial state s.

 Choose action a from s using policy

 derived from Q ( -Greedy, SoftMax [4])

 Repeat (for each step of the episode)

 Take action a, observe the reward r(s, a)

 and the next state s’.

 FAA agent asks FAS agent for Q(s, a).

 FAS agent retrieves Q(s, a) from the

 blackboard.

 FAS sends the retrieved Q(s ,a) to FAA

 FAA agent updates the table entry Q(s, a)

 as follows

'

)','(max),(),(
a

asQasrasQ  

 FAA sends the new Q(s, a) to FAS.

 FAS updates Q(s, a) in the blackboard

 if needed

 'ss 

 until s is terminal

Until the maximum number of episodes is

 reached or the Q-values do not change

Studies in Informatics and Control, Vol. 20, No. 3, September 2011 http://www.sic.ici.ro 229

between two fragments are obtained using the
Smith-Waterman algorithm that detects a local
alignment by dynamic programming (as
parameters for the scoring matrix of the Smith-
Waterman algorithm [28], we used: match=1,
mismatch=-0.33 and gap=1.33).

Table 1. The similarity scores for the fragments,
obtained by the Smith-Waterman algorithm [28].

1F 2F 3F 4F

1F  3.00 2.00 5.00

2F 3.00  1.67 3.00

3F 2.00 1.67  3.00

4F 5.00 3.00 3.00 

Table 2. The alignments for the fragments, obtained
by the Smith-Waterman algorithm [28].

1F 2F 3F 4F

1F  CGT AC ACCGT

2F CGT  TGC-TAC CGT

3F

AC TGC-TAC  TAC

4F ACCGT CGT TAC 

Table 3 presents all the possible permutations
of the 4 given fragments and the performance
measure PM (Equation (1)) for each
permutation. It can be seen that the maximum
values for the performance measure PM are
obtained in two cases: for the alignments
F2F1F4F3 and F3F4F1F2. The original DNA is
the one indicated by the alignment F2F1F4F3.

6.2 Distributed RL model and results

Let us consider the example mentioned in the
previous subsection, the DNA sequence Seq =
TTACCGTGC and four fragments F1 =
ACCGT; F2 = CGTGC; F3 = TTAC; F4 =
TACCGT, i.e. n = 4. We aim at identifying the
most appropriate order in which the fragments
have to be assembled back into the original
sequence Seq. As we have presented in Section
5, the states space will consist of 341 states, i.e

},...,,{ 34121 sssS  .

We have applied the distributed RL approach
introduced in Subsection 5.1 with the following
settings:

- two local FAA agents were used;

- the number of training episodes for each
local FAA agent is 106;

- both local FAA agents have the same
behaviour in the Q-learning scenario: they
use the  -Greeedy action selection
mechanism, and a discount factor for the
future rewards 9.0 .

Using the above defined settings and under the
assumptions that the state action pairs are
equally visited during the training and that each
local FAA agent explores its search space (the
 parameter is set to 1). After the training of
the FAA agents was completed, two solutions
are reported by the FAS agent. The solutions
are determined starting from state 1s , following
the Greedy policy. Both of them are optimal,
having the the maximum associated
performance of 11 (see Table 3).

The learned optimal solutions are:

1. The path)(164411031 sssss having the
associated action configuration

)2143(a .

2. The path)(263661741 sssss having the
associated action configuration

)3412(a .

7. Discussion

Regarding the Q-learning approach presented
in Subsection 5.1 and previously introduced in
[6] for solving the DNA fragment assembly
problem, we remark the following:

- The training process during an episode has
a time complexity of)(n , where n is the
number of fragments considered in the
assembly process. Consequently, assuming
that the number of training episodes is k,
the overall complexity of the algorithm for
training the FA agent is)(nk  .

- If the number n of the fragments
considered in the assembly problem is large
and consequently the state space becomes
very large, in order to store the Q-values
estimates, a neural network should be used.

The main drawback of the non-distributed
learning approach is that a very large number
of training episodes has to be considered in
order to obtain accurate results and this leads to
a slow convergence.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 3, September 2011 230

It is obvious that the distributed RL approach
presented in this paper, by using multiple
agents during the training step reduces the
overall computational time. The problem that
has to be further investigated is how to
preserve the accuracy of the results in the
distributed approach.

8. Conclusions and Further Work

We have proposed in this paper a distributed
reinforcement learning based model for solving
the DNA fragment assembly problem. To our
knowledge, except for the ant based
approaches, the fragment assembly problem
has not been addressed in the literature using
distributed reinforcement learning, so far. We
have emphasized the potential of our proposal
by evaluating it on a simple case study,
highlighting its advantages and drawbacks.

We plan to extend the evaluation of the
proposed distributed RL model for some larger
instances, to further test its performance.

We will also investigate possible improvements
of the distributed RL model by improving the
behavior of the local FAA agents, by using
different reinforcement functions and by adding
different local search mechanisms in order to
increase the agents’ performance.

Acknowledgements

This work was partially supported by CNCSIS
- UEFISCDI, project number PNII - IDEI
2286/2008. The work was also possible with
the partial financial support of the Sectorial
Operational Programme for Human Resources
Development 2007-2013, co-financed by the
European Social Fund, under the project
number POSDRU/107/1.5/S/ 76841 with the
title “Modern Doctoral Studies:
Internationalization and Interdisciplinarity”.

REFERENCES

1. LI, L., S. KHURI, A Comparison of DNA
Fragment Assembly Algorithms, in Proc.
of the Intl. Conf. on Mathematics and
Engineering Techniques in Medicine and
Biological Sciences. CSREA Press, 2004,
pp. 329-335.

2. TALMACIU, M., E. NECHITA, Some
Combinatorial Optimization Problems
for Weak-bisplit Graphs, Studies in
Informatics and Control, vol. 19, no. 4,
2010, pp. 427-434.

3. HASSANIEN, A. E., M. G. MILANOVA,
T. G. SMOLINSKI, A. ABRAHAM,
Computational Intelligence in Solving
Bioinformatics Problems: Reviews,

Table 3. All the possible permutations, with their associated performance measure PM

Studies in Informatics and Control, Vol. 20, No. 3, September 2011 http://www.sic.ici.ro 231

Perspectives, and Challenges, in
Computational Intelligence in Biomedicine
and Bioinformatics, 2008, pp. 3-47.

4. SUTTON, R. S., A. G. BARTO,
Reinforcement Learning: An
Introduction, MIT Press, 1998.

5. SUSNEA, I., G. VASILIU, A.
FILIPESCU, A. RADASCHIN, Virtual
Pheromones for Real-time Control of
Autonomous Mobile Robots, Studies in
Informatics and Control, vol. 18, no. 3,
2009, pp. 233-240.

6. BOCICOR, M., G. CZIBULA, I. G.
CZIBULA, A Reinforcement Learning
Approach for Solving the Fragment
Assembly Problem, SYNASC 2011 - 13th
International Symposium on Symbolic and
Numeric Algorithms for Scientific
Computing. IEEE Computer Society,
2011, submitted.

7. DORIGO, M., T. STŰTZLE, Ant Colony
Optimization, Scituate, MA, USA:
Bradford Company, 2004.

8. SANGER, F., A. COULSON, G. HONG,
D. F. HILL, G. PETERSEN, Nucleotide
Sequence of Bacteriophage Lambda
DNA, J. Molecular Biology, vol. 162, no.
4, 1982, pp. 729-773.

9. KOSTERS, W., Bioinformatics:
Fragment Assembly, IPA–Algorithms and
Complexity - course, 2007. [Online].
Available:
http://www.liacs.nl/kosters/bio/bio.pdf.

10. PEVZNER, P. A., Computational
Molecular Biology: An Algorithmic
Approach, MIT Press, 2000.

11. KIKUCHI, S., G. CHAKRABORTY,
Heuristically Tuned GA to Solve
Genome Fragment Assembly Problem,
IEEE CEC, 2006, pp. 1491-1498.

12. KECECIOGLU, J. D., E. W. MYERS,
Combinatiorial Algorithms for DNA
Sequence Assembly, Algorithmica, vol.
13, no. 1/2, 1995, pp. 7–51.

13. PARSONS, R. J., S. FORREST, C.
BURKS, Genetic Algorithms, Operators,
and DNA Fragment Assembly, in
Machine Learning. Kluwer Academic
Publishers, 1995, pp. 11-33.

14. ANGELERI, E., B. APOLLONI, D. DE
FALCO, L. GRANDI, DNA Fragment
Assembly using Neural Prediction
Techniques, Intl. Journal Neural Systems,
vol. 9, no. 6, 1999, pp. 523-544.

15. LUQUE, G., E. ALBA TORRES, S.
KHURI, Assembling DNA Fragments
with a Distributed Genetic Algorithm,
Parallel Computing for Bioinformatics and
Computational Biology, 2006, pp. 285-302.

16. MEKSANGSOUY, P., N.
CHAIYARATANA, DNA Fragment
Assembly using an Ant Colony System
Algorithm, in Proceedings of CEC’03 -
vol.3. IEEE Press, 2003, pp. 1756-1763.

17. WETCHARAPORN, W., N.
CHAIYARATANA, S. TONGSIMA, DNA
Fragment Assembly by Ant Colony and
Nearest Neighbour Heuristics, Artificial
Intelligence and Soft Computing ICAISC
2006, pp. 1008-1017.

18. PEREZ-URIBE, A., Introduction to
Reinforcement Learning, 1998,
http://lslwww.epfl.ch/~anperez/RL/RL.html.

19. RUSSELL, S., P. NORVIG, Artificial
Intelligence - A Modern Approach, ser.
Prentice Hall International Series in
Artificial Intelligence. Prentice Hall, 2003.

20. CLAUS, C., C. BOUTILIER, The
Dynamics of Reinforcement Learning in
Cooperative Multiagent Systems, In
Proceedings of the Fifteenth National
Conference on Artificial Intelligence, 1998,
pp. 746-752.

21. TAN, M., Multi-agent Reinforcement
Learning: Independent vs. Cooperative
Agents, 1997, pp. 487-494.

22. LAUER, M., M. RIEDMILLER, An
Algorithm for Distributed
Reinforcement Learning in Cooperative
Multi-agent Systems, Proceedings of
International Conference on Machine
Learning (ICML), 2000, pp. 535-542.

23. MARIANO, C. E., E. MORALES, A New
Distributed Reinforcement Learning
Algorithm for Multiple Objective
Optimization Problems, Lecture Notes In
Artificial Intelligence, November 2000, pp.
290-299.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 3, September 2011 232

24. DAYAN, P., T. SEJNOWSKI,
TD(Lambda) Converges with
Probability 1, Machine Learning., vol. 14,
1994, pp. 295-301.

25. WATKINS, C. J. C. H., P. DAYAN, Q-
learning, Machine Learning, vol. 8, no. 3-
4, 1992, pp. 279-292.

26. CZIBULA, G., M. BOCICOR, I.
CZIBULA, A Reinforcement Learning
Model for Solving the Folding Problem,
International Journal of Computer
Technology and Applications, vol. 2, 2011,
pp. 171-182.

27. GONZAGA, T., C. BENTES, R. FARIAS,
M. C. CASTRO, A. C. GARCIA, Using
Distributed-shared Memory
Mechanisms for Agents Communication
in a Distributed System, in Proc. of the
7th Intl. Conf. on Intelligent Systems
Design and Applications. USA, IEEE
Comp. Society, 2007, pp. 39-46.

28. SMITH, T., M. WATERMAN,
Identification of Common Molecular
Subsequences, Journal of Molecular
Biology, vol. 147, no. 1, 1981,
pp. 195-197.

