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1. Introduction 

The process of DNA sequencing has nowadays 
become of great importance in basic biology 
research, as well as in various fields such as 
medicine, biotechnology or forensic biology. 
Several techniques have been developed to 
achieve the DNA sequencing, but the main 
problem with the current technology is that it 
cannot read an entire genome at once, not even 
more than 1000 bases. 

The DNA fragment assembly (FA) is a 
technique that attempts to reconstruct the 
original DNA sequence from a large number of 
fragments, each several hundred base-pairs 
long [1]. It is an NP-hard combinatorial 
optimization problem [2] which is growing in 
importance and complexity as more research 
centers become involved on sequencing new 
genomes [3]. Various heuristics, including 
computational intelligence algorithms, have 
been designed for solving the fragment 
assembly problem, but since this problem is a 
crucial part of any sequencing project, better 
assemblers are needed [3]. 

In this paper we aim at proposing a distributed 
reinforcement learning based model for solving 
the DNA Fragment Assemby problem. 
Reinforcement Learning (RL) [4] is an 
approach to machine intelligence in which an 
agent [5] can learn to behave in a certain way 
by receiving punishments or rewards on its 
chosen actions. 

The model proposed in this paper extends toward 

 

 

 

 

 

 

 

 

 

 

 

 

 

a distributed approach the reinforcement 
learning based model that we have previously 
introduced in [6] for solving the FA problem. 
To our knowledge, except for the ant [7] based 
approaches, the DNA Fragment Assembly 
problem has not been addressed in the literature 
using distributed reinforcement learning, so far. 

The rest of the paper is organized as follows. 
Section 2 presents the DNA fragment assembly 
problem and Section 3 briefly describes 
existing approaches in solving the considered 
problem. The fundamentals of distributed 
reinforcement learning are given in Section 4. 
Section 5 introduces the distributed 
reinforcement learning model that we propose 
for solving the fragment assembly problem. An 
experimental evaluation of the proposed 
approach is given in Section 6, and Section 7 
provides an analysis of the introduced 
distributed model, emphasizing its advantages 
and drawbacks. Section 8 contains some 
conclusions of the paper and future 
development of our work. 

2. The Fragment Assembly Problem 

The Fragment Assembly (FA) problem deals with 
sequencing of DNA [3]. In order to sequence 
larger strands of DNA, they are first broken into 
smaller pieces. The FA problem is then to 
reconstruct the original molecules sequence from 
the smaller fragment sequences [3]. 

The genome of all living organisms, encoded in 
the DNA, represents the totality of their 
hereditary information. DNA, or the 

A Distributed Q-Learning Approach                  
to Fragment Assembly 

Maria-Iuliana Bocicor, Gabriela Czibula, István Gergely Czibula 

Babeş-Bolyai University,                                                                                                                                      
1, M. Kogălniceanu Street, Cluj-Napoca, 400084, Romania,                                                                        
iuliana, gabis, istvanc@cs.ubbcluj.ro 

Abstract: The process of DNA sequencing has nowadays become of great importance in basic biology research, as well 
as in various fields such as medicine, biotechnology or forensic biology. The fragment assembly problem is a very 
complex optimization problem that deals with sequencing of DNA, and many computational techniques including 
computational intelligence algorithms were designed for finding good solutions for this problem. Since DNA fragment 
assembly is a crucial part of any sequencing project, researchers are still focusing on developing better assemblers. We are 
introducing in this paper a distributed reinforcement learning based approach for solving the fragment assembly problem,
an NP-complete optimization problem that attempts to reconstruct the original DNA sequence from a large number of 
fragments, each several hundred base-pairs long. Our model is based on a distributed Q-learning approach. The 
experimental evaluation of the proposed system has provided encouraging results, indicating the potential of our proposal. 
The advantages and drawbacks of the proposed approach are also emphasized. 

Keywords: Bioinformatics, distributed reinforcement learning, DNA fragment assembly. 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 3, September 2011 222 

deoxyribonucleic acid is composed of complex 
organic molecules and is the information-
bearing molecule in the cell – it stores 
information that contains the instructions 
needed to construct other components of the 
cell such as proteins and RNA, and eventually, 
entire organisms. 

Determining the order of nucleotide bases, or 
the process of DNA sequencing, has nowadays 
become of great importance in basic biology 
research, as well as in various fields such as 
medicine, biotechnology or forensic biology. 
Several techniques have been developed to 
achieve the DNA sequencing, but the main 
problem with the current technology is that it 
cannot read an entire genome at once, not even 
more than 1000 bases. As even the simplest 
organisms (such as viruses or bacteria) have 
much longer genomes, the need to develop 
methods that would overcome this limitation 
arose. One of these, called shotgun sequencing 
was introduced in 1982, by Fred Sanger [8] and 
it consists of the next steps: first, several copies 
of the DNA molecule are created; then each of 
the copies is cut at random sites in order to 
obtain molecules short enough to be sequenced 
directly - fragments; the last and most difficult 
step involves assembling these molecules back 
into the original DNA molecule, based on 
common subsequences   of fragments. 

The DNA Fragment Assembly Problem 
specifically refers to this last step. Usually, 
there are three phases that must be followed in 
order to obtain a solution for this problem [1]:  

- Overlap Phase - consists of finding the 
longest match between the prefix of a 
fragment and the suffix of another. All 
possible pairs of fragments are compared, 
in order to determine their similarity. 

- Layout Phase - refers to finding the order 
of fragments. This is the most difficult step, 
because of various challenges: 

1. Unknown orientation: the fragments’ 
orientation is lost, so if for a specific 
fragment there are no overlapping 
fragments, there might be some that are 
similar with the fragment’s reverse. 

2. Base call errors: these are errors that might 
appear during the experimental phase. There 
are three types of such errors: substitutions 
(a certain nucleotide base is subtituted by 
another), insertions (a new nucleotide base 
is inserted to a fragment it does not belong 

to) and deletions (certain nucleotide bases 
are deleted from fragments. These errors 
affect the overlaps between the fragments). 

3. Incomplete coverage: The given set of 
fragments cannot form the orginial DNA. 

4. Repeated regions: some subsequences 
may be repeated several times in the 
original DNA. These repeats can cause 
serious problems in the assembly process. 

5. Chimeras: these occur when two fragments 
that are not adjacent in the original molecule 
join together in one fragment. 

- Consensus Phase - consists of determining 
the original DNA molecule from the layout 
obtained in the previous phase. 

Next, we will illustrate the assembly process, by 
using a simple example, taken from [9]. Let us 
assume that, for the DNA sequence TTACCGTGC 
we are given the set of fragments: 

F1 = ACCGT 
F2 = CGTGC 
F3 = TTAC 
F4 = TACCGT 

First we need to determine the overlap of each 
fragment with the other three fragments. This is 
usually done using an alignment algorithm and 
a similarity measure. Then, we need to find the 
order of these fragments, based on the 
computed similarities. The order is: F3F4F1F2. 

F3      T     T      A      C                      

F4           T      A      C     C   G   T          

F1                 A      C     C   G   T          

F2                             C   G   T    G    C  

             T     T     A      C     C   G   T    G    C   

3. Literature Review 

Many algorithms have already been developed 
in the literature to solve the DNA fragment 
assembly problem. 

The FA problem is known to be NP-complete 
[10], therefore exact solutions for this problem 
are very difficult to obtain. For this reason, 
various heuristic methods have been applied: 
genetic algorithms, clustering algorithms, ant 
colony optimization algorithms. 
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In this section we briefly present several 
approaches existing in the literature for solving 
the fragment assembly problem. 

3.1 Fragment assembly  

Kikuchi and Chakraborty approach the 
Fragment Assembly Problem using an 
improved genetic algorithm [11]. A 
chromosome is represented as a permutation of 
the DNA fragments’ labels (numbers from 1 to 
N, where N is the total number of fragments), 
while the fitness function is represented as the 
sum of similarity measures of all adjacent 
fragments. The authors add two new methods 
to their genetic algorithm, in order to improve 
its efficiency: The Chromosome Reduction 
Step - used to make the search more efficient 
(the fragments which are contained within 
contigs formed in the best chromosome are 
deleted from all the other chromosomes, thus 
decreasing their lengths); The Chromosome 
Refinement Step - greedy heuristic to locally 
improve the fitness of chromosomes (if the 
beginning of fragment i overlaps with the end 
of fragment i+1 in the chromosome, then these 
fragments are swapped). 

A four-phase approach is proposed in [12] in 
order to reconstruct a DNA sequence from 
fragments. The authors firstly construct an 
overlap graph, whose vertices contain the 
fragments and whose edges contain the 
approximate overlaps between every pair of 
fragments. Secondly, they try to find an 
oriented subgraph, by assigning an orientation 
to each fragment, in order to eliminate some 
overlaps and retain the possibility of using 
others. As this phase is NP-complete, the 
authors proposed a new greedy approximation 
algorithm that computes an optimal orientation. 
The third phase consists of selecting a set of 
edges from an oriented subgraph determined in 
the previous phase to induce a consistent layout 
of the oriented fragments. The final step is to 
determine the original DNA sequence by 
merging the selected overlaps into a multiple 
sequence alignment and voting on a consensus. 

Parsons, Forrest and Burks [13] argue that the 
FA problem is quite similar to the Travelling 
Salesman Problem (TSP) and that genetic 
algorithms could provide an efficient approach. 
A solution is represented as a permutation of 
integer numbers, which represent fragments, 
and where each two successive fragments 
overlap. The authors use two fitness functions, 

one that simply sums the overlap scores over 
all adjacent fragments - which has to be 
maximized and another one, that considers the 
overlap strength among all possible pairs, 
penalizing layouts in which fragments with 
strong overlap are far apart – which has to be 
minimized. New genetic operators that try to 
preserve or extend existing contigs are defined: 
order crossover, edge recombination, inversion 
and transposition. 

Angeleri et al. [14] presents a supervised 
learning approach to the fragment assembly 
problem. The idea is to train a recurrent neural 
network to track a sequence of bases 
constituting a given fragment and to assign to 
the same cluster all sequences which are well 
tracked by this network. 

3.2 Distributed fragment assembly  

The literature offers few approaches that make 
use of multi-agent systems to the purpose of 
proposing solutions to this problem. We will 
briefly present some of these approaches. 

Luque, Alba and Khuri approach the DNA 
Fragment Assembly problem using a sequential 
and also a distributed genetic algorithm [15]. 
The distributed method is implemented using a 
parallel genetic algorithm, which has multiple 
component genetic algorithms, each of these 
having a single population and being able to 
communicate results to the other component 
algorithms. The authors used a descentralized 
distributed search, by developing a parallel 
implementation, where separate subpopulations 
evolve independently and exchange individuals 
among them, with a certain frequency and 
following certain rules. Compared to the 
sequential approach, the distributed one 
obtained high accuracy solutions for large 
DNA sequences, in lower waiting times. 

In Artificial Intelligence, an agent is an 
autonomous entity that receives perceptions 
and performs actions upon an environment in 
order to achieve a certain goal. Therefore, an 
Ant Colony Optimization (ACO) method can 
be regarded as a multi-agent system, where ants 
are simple agents which indirectly 
communicate through interaction with the 
environment, by depositing pheromone on the 
paths they follow. An ant colony system 
algorithm was used by Meksangsouy and 
Chaiyaratana [16] in order to solve the FA 
problem. The solution is cooperatively 
generated by all ants in the colony and the 
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performance measur is determined as the sum 
of the overlap scores calculated for each 
successive pair of adjacent fragments in the 
final layout. The authors investigated two types 
of assembly problems: single-contig and 
multiple-contig problems, obtaining very good 
results, especially for the latter. 

Another approach that uses an ant colony 
system combined with a nearest neighbor 
search heuristic is proposed in [17]. The 
assembly process is composed of two phases: 
fragment assembly and contig assembly. 
During the first stage, the ant colony 
optimization algorithm is used to determine 
alignments between fragments and 
subsequently contiguous sequences (contigs), 
using possible orders of fragments. The second 
phase consists of assembling together the 
contigs obtained in the previous stage, using 
the nearest neighbor rule. 

4.  Distributed Reinforcement 
Learning 

Reinforcement learning is a synonym of 
learning by interaction [18]. During learning, 
the adaptive system tries some actions (i.e., 
output values) on its environment, then, it is 
reinforced by receiving a scalar evaluation (the 
reward) of its actions. The reinforcement 
learning algorithms selectively retain the 
outputs that maximize the received reward over 
time. Reinforcement learning tasks are 
generally treated in discrete time steps. In RL, 
the computer is simply given a goal to achieve. 
The computer then learns how to achieve that 
goal by trial-and-error interactions with          
its environment. 

Recently there has been great interest in 
distributed reinforcement learning multi-agent 
systems (MASs) consisting of agents that work 
together in order to optimize a joint 
performance measure. 

Distributed reinforcement learning problems 
may be modeled in different ways, one of the 
most frequently used being the Multi-Agent 
Markov Decision Process (MAMDP), which is 
an extension of the single-agent Markov 
Decision Process [19]. In an MAMDP each 
agent has a finite state space and a finite action 
space and thus the joint state space will be the 
Cartesian product of all state spaces of all the 
agents, while the joint action space will be, 
similarly, the Cartesian product of all action 

spaces, corresponding to all the agents. 
Therefore, an MAMDP can be modeled as a 5-
tuple ( RASN ,,,,  ), where N is the set of 
agents, S is the joint state space, A is the joint 
action space,   is the transition probability and 
R is the reward. These last two functions -   
and R are similar to those in the standard MDP, 
except that they are defined over the joint state 
and joint action spaces, being independent of 
the time step. Consequently, the Markov 
property still holds within this model. 

One of the most frequently used single agent 
RL algorithms is Q-Learning [19], which finds 
a mapping from state/action pairs to values 
(called Q-values). An optimal Q-value is the 
sum of reinforcements received when 
performing the associated action and following 
the optimal policy thereafter. Q-values were 
proven to converge to their optimal values 
within the Q-Learning algorithm if all the 
state/action pairs are visited an infinite number 
of times. Still, in MASs, the convergence of Q-
values cannot be guaranteed, as each agent is 
simultaneously learning its own actions and the 
environment becomes non-stationary. 

In the literature, there are several approaches to 
the problem of applying Q-Learning in MASs. 
Claus and Boutilier present in [20] two ways in 
which Q-Learning could be used in MASs: the 
Independent Learners (IL) Algorithm - agents 
ignore other agents’ actions and each one learns 
its Q-values independently; the Joint Action 
Learners (JAL) - agents that learn Q-values for 
the joint state/action space, rather than the 
individual state/action space. Each JAL 
maintains information about the strategies of the 
other agents and chooses its actions according to 
the expected value based on this information. 

In [21] the author studies cooperative agents 
and independent agents for the purpose of 
concluding whether the former outperform the 
latter. The author states that several 
independent RL agents will surely outperform 
one single RL agent, due to the fact that they 
have more resources and better chances of 
receiving rewards and then he proposes to 
study the results obtained by several agents that 
cooperate. Three ways of cooperation are 
identified: agents can communicate 
instantaneous information such as perceptions, 
actions or rewards; they can communicate 
experienced episodes (sequences of 
perceptions, actions and rewards); or they can 
communicate learnt decision policies. The 
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conclusion of the paper is that cooperative RL 
agents that share episodes or policies learn 
faster and converge sooner than independent 
agents, but coordination also has 
somedrawbacks, as sharing knowledge comes 
with a communication cost and cooperative 
behavior for joint tasks automatically implies a 
larger state space. 

In [22], Lauer and Riedmiller propose an 
algorithm which finds optimal policies for 
distributed Q-learning in deterministic 
environments. As it is considered impossible 
for each agent to distinguish between different 
joint action vectors that contain the same 
individual action for an agent, the individual 
agents are not capable of computing Q-
functions defined on the current state of the 
whole environment and the joint vector of 
actions. Therefore, the authors propose 
projecting the large Q-table in smaller Q-tables 
that compress the information of the large one, 
specific for each agent. A projection based on 
the optimistic assumption is introduced: each 
agent assumes that the other agents will behave 
optimally, i.e. the joint action vector composed 
of all the individual actions of the agents 
represents an optimal action for the system. In 
this case, the Q-values of each agent are chosen 
as the optimal values of the large Q-table. Still, 
the optimal assumption can be violated in the 
case of several optimal joint actions in a single 
state, when the optimal behavior of each agent 
is not guaranteed. For this reason, an additional 
mechanism for coordination between the agents 
is introduced: the learning algorithm of each 
agent updates the current policy only if there 
was an improvement in its own Q-value. 

Marino and Morales describe in [23] a new 
distributed Q-Learning algorithm - DQL: the 
agents find a common policy in a distributed 
environment by transmitting information about 
how optimal each action is, using traces (of all 
the other agents) generated from transition 
between states. The final policy is based on the 
most frequently selected actions. 

 

 

 

 

 

5. A Distributed Reinforcement 
Learning Model for Solving the 
DNA Fragment Assembly 
Problem 

5.1 Background  

In this section we present the reinforcement 
learning model that we have previously 
introduced in [6] for solving the DNA 
Fragment Assembly problem. 

Let us consider, in the following, that Seq is a 
DNA sequence and nFFF ,...,, 21  ( 1n ) is a set 
of fragments. As indicated in Section 2, the FA 
problem consists of determining the order in 
which these fragments have to be assembled 
back into the original DNA molecule, based on 
common subsequences of fragments. 
Consequently, the FA problem can be viewed 
as the problem of generating a permutation   
of },...,2,1{ n  that optimizes the performance of 

the alignment ),...,,(
21 n

FFFF   . The 

performance measure PM we consider in this 
paper is one of the fitness functions defined in 
[13], which sums the overlap scores over all 
adjacent fragments and which has to               
be maximized. 

According to [13], the performance measure 
PM for the sequence of fragments 

),...,,(
21 n

FFFF    is defined as in 

Equation (1): 








1
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n

i
ii

FFwFPM   (1) 

where w(a, b) denotes the similarity measure 
between sequences a and b. 

We define the RL task associated to the FA 
problem as follows: 

- The state space S (the agent’s environment) 

will consist of 
1

11




n

nn

 states, i.e. 

},...,,{
1

121 1




n

nnsssS . The initial state of 

the agent in the environment is 1s . A state 
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 reached by the 

agent at a given moment after it has visited 
states 

niii ssss ,...,,,
211  and has selected 
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actions 
niii aaa ,...,,

21
 is a terminal (final or 

goal) state if the number of states visited by 
the agent in the current sequence is n + 1 
and all the actions are distinct, i.e 

kjnkjaa
kj ii  ,,1, . 

- The action space A consists of n actions 
available to the problem solving agent and 
corresponding to the n possible values 

n,...,2,1  used to represent a solution 
(permutation of },...,2,1{ n ), i.e. 

},...,,{ 21 naaaA  , where ,iai   

ni 1 . 

- The transition function )(: SPS   
between the states is defined as in   
Formula (2). 

,
1

1
1,),()(

1


n

k

n

kjj n

n
jjass

 


  (2) 

where ],1[),( 1 nksas knjnkj   . 

This means that, at a given moment, from a 
state Ss  the agent can move in n 
successor states, by executing one of the n 
possible actions. We say that a state Ss'  
that is accessible from state s, i.e. 


Aa

ass


 ),(' , is the neighbor (successor) 

state of s. The transitions between the states 
are equiprobable, the transition probability 

),( 'ssP between a state s and each 
neighbor state 's  of s is equal to 0.25. 

- The reward function will be defined below 
(Formula (3)). 

Let us consider a path   in the above defined 
environment from the initial to a final state, 

),...,,( 210 n   , where 10 s  and 

10  nk  the state 1k  is a neighbor of 

state k . The sequence of actions obtained 
following the transitions between the 
successive states from path   will be denoted 
by ),...,,(

1210 


n
aaaaa  , where 

10),,(1  nka
kkk  . The 

sequence a  will be referred as the action 

configuration associated to the path  . A path 
  is called valid if all the actions within its 
action configuration are distinct, i.e 

kjnkjaa
kj

 ,,1, . The action 

configuration a  associated to a valid path   

can be viewed as a possible order for the 
fragments assembly process, i.e a permutation 
that gives the assembly order (the fragments are 
assembled in the order 

1210
,...,,

n
aaaa  ). 

Consequently we can associate to a valid path 
  a value denoted by )(

aFPM  representing 

the performance measure (see Equation (1)) of 
the alignment ),...,,(

1210 


n
aaaaa FFFFF


.  

The FA problem formulated as a RL problem 
will consist in training the agent to find a path 
   from the initial to a final state having the 
maximum associated performance measure 

)(
aFPM . It is known that the estimated utility 

of a state [19] in a reinforcement learning 
process is the estimated reward-to-go of the 
state (the sum of rewards received from the 
given state to a final state). So, after a 
reinforcement learning process, the agent learns 
to execute those transitions that maximize the 
sum of rewards received on a path from the 
initial to a final state. 

As we aim at obtaining a valid path   having 
the maximum associated performance measure, 
we define the reinforcement function as follows 
(Formula (3)): 

- the reward received after a transition to a 
non terminal state is  , where   is a small 
positive constant (e.q 0.1); 

- the reward received after a transition to a 
final state n  after states 

12110 ,...,,,  ns   were visited is the 
performance measure PM of the alignment 

),...,(
110 


n

aaaa FFFF


                     

(see Equation (1)). 



 

 otherwise

nkFPM
sr a

kk 
 

,)(
),....,,,|( 1211  (3) 

where by ),....,,,|( 1211 kk sr  we denote 

the reward received by the agent in state k , 
after its history in the environment is 

12110 ,...,,,  ks  . 

Considering the reward defined in Formula (3), as 
the learning goal is to maximize the total amount 
of rewards received on a path from the initial to a 
final state, it can be easily shown that the agent is 
trained to find a path   that maximizes the 
performance of the associated alignment. 
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During the training step of the learning process, 
the agent will determine its optimal policy in 
the environment, i.e the policy that maximizes 
the sum of the received rewards. 

For training the FA (Fragment Assembly) 
agent, we propose a Q-learning approach [4]. 
The idea of the training process is                  
the following: 

- The Q-values are initialized with 0. 

- During some training episodes, the agent 
will experiment (using the  -Greedy 
action selection mechanism) some 
(possible optimal) valid paths from the 
initial to a final state, updating the Q-values 
estimations according to the Q-learning 
algorithm [24]. 

- During the training process, the Q-values 
estimations converge to their exact values, 
thus, at the end of the training rocess, the 
estimations will be in the vicinity of the 
exact values. 

After the training step of the agent has been 
completed, the solution learned by the agent is 
constructed by starting from the nitial state and 
following the Greedy mechanism until a 
solution is reached. From a given state i, using 
the Greedy policy, he agent transitions to a 
neighbor j of i having the maximum Q-value. 
Consequently, the solution of the FA problem 
reported y the RL agent is a path 

),...,,( 211 ns    from the initial to a final 
state, obtained following the policy described 
above. We mention that there may be more 
than one optimal policy in the environment 
determined following the Greedy mechanism 
described above. In this case, the agent may 
report a single optimal policy or all optimal 
policies, according to the way it was designed. 

It is proven in [25] that the learned Q-values 
converge to their optimal values as long as all 
state-action pairs are visited an infinite number 
of times. Consequently, the action 
configuration a  corresponding to the path   

learned by the FA agent converges, in the limit, 
to the optimal order in which the fragments 
have to be assembled, indicating the alignment 

110
,...,

n
aaa FFF


 having the maximum 

associated performance measure. 

5.2 Our distributed approach proposal 

As we have shown in [6], a very large number 
of training episodes is required in order to 
obtain an accurate solution using the Q-
learning approach presented in Subsection 5.1. 
That is why, in order to speed up the training 
process, we extend the proposed approach 
towards a distributed one, in which multiple 
cooperative agents learn to coordinate in order 
to find the optimal policy in their environment. 
The approach proposed in the section is a kind 
of concurrent Q-learning [24].  

We have two types of agents in our distributed 
architecture: 

- FAA (Fragment Assembly Agents). Each 
FAA agent runs in a separate process or 
thread and is trained using the Q-learning 
algorithm [26]. Each local agent performs 
local Q-values estimations updates from its 
own point of view. 

- a FAS (Fragment Assembly Supervisor) 
agent wich supervises the learning process 
and synchronizes the computations of the 
individual FAA agents. It keeps a 
blackboard [27] which stores the global Q-
values estimations. The local FAA agents 
use the global Q-values estimations stored 
in the blackboard and comunicate to the 
FAS agent their intention to update a Q-
value estimation. If a local agent tries to 
update a certain Q-value, the FAS agent 
will update the global Q-value estimation 
only if the new estimation received from 
the local agent is greater than the Q-value 
estimation existing in the blackboard. This 
updating strategy is based on our previous 
result from [26] in which we have proven 
that in a non-distributed RL scenario the Q-
values estimates for each state-action pair 
increase during the training process and are 
upper bounded by the exact values. 

We have two possible architectures for the 
proposed multiagent system: 

1. The FAA agents are running in the same 
process with the supervisor agent FAS. In 
this case each FAA agent has an instance of 
the supervisor FAS agent, and this will 
reduce the cost of communication 
(messages exchanges) between the agents. 
The blackboard stored by FAS allows a 
kind of indirect data communication 
between the local agents and the global 
supervising agent. 
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2. The FAA agents are distributed across multiple 
processes/machines. In this case network 
communication is involved when the FAA 
agents ask the supervisor for Q-values or 
request a Q-value update. In order to reduce 
the number of messages exchanged between 
FAA agents and the supervisor FAS, the 
frequency for updating the Q-values in the 
blackboard can be decreased if the FAA agents 
will synchronize their Q-values with the 
supervisor only after several training epochs. 

The training process consists of three phases 
and will be briefly described in the following. 

Phase 1. Initial phase 

The FAS supervisor agent initializes with 0 the 
Q-values from the blackboard. 

Phase 2. Training phase of each         
FAA agent 

During some training episodes, the individual 
FAA agents will experiment (using the  -
Greedy action selection mechanism) some 
(possible optimal) valid paths from the initial to 
a final state, updating the Q-values estimations 
according to the Q-learning algorithm [24]. 

 

Figure 1. The distributed Q-learning algorithm 

The general form of the distributed Q-learning 
algorithm is given in Figure 1. We denote in 
the following by Q(s, a) the Q-value estimate 
associated to the state s and action a, as stored 
by the blackboard of the FAS agent. 

Phase 3. Final phase 

After the training of the multiagent system has 
been completed, the solution learned by the 
FAS supervisor agent is constructed by starting 
from the initial state and following the Greedy 
mechanism until a solution is reached. 

The architecture that we propose for the 
distributed Q-learning system for solving the 
fragment assembly problem is presented in 
Figure 2. The message exchanges between the 
agents, as highlighted in Figure 1, are 
illustrated in Figure 2 by the labeled arrows. 

6. Computational Experiment 

In this section we aim at providing the reader 
with an easy to follow example illustrating how 
our approach works. The example is taken from 
[9] and was described in Section 2. 

6.1 Example  

In the following, we will present all possible 
permutations of fragments from the example 
given in the Section 2, and their associated 
performance measures, in order to show that our 
distributed approach obtains the optimal results. 

 

Figure 2. The distributed Q-learning architecture 

Table 1 and Table 2 illustrate, respectively, the 
overlap (similarity) scores and the sub-
sequence alignments for all possible pairs of 
fragments that can be obtained. These 
similarity measures and local alignments 

Repeat (for each episode) 

  Select the initial state s. 

  Choose action a from s using policy 

      derived from Q ( -Greedy, SoftMax [4]) 

  Repeat (for each step of the episode) 

      Take action a, observe the reward r(s, a)  

        and the next state s’. 

      FAA agent asks FAS agent for Q(s, a). 

      FAS agent retrieves Q(s, a) from the  

                   blackboard. 

      FAS sends the retrieved Q(s ,a) to FAA 

      FAA agent updates the table entry Q(s, a) 

  as follows 

  
'

)','(max),(),(
a

asQasrasQ    

      FAA sends the new Q(s, a) to FAS. 

      FAS updates Q(s, a) in the blackboard  

                   if needed 

      'ss   

  until s is terminal 

Until the maximum number of episodes is 

     reached or the Q-values do not change 
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between two fragments are obtained using the 
Smith-Waterman algorithm that detects a local 
alignment by dynamic programming (as 
parameters for the scoring matrix of the Smith-
Waterman algorithm [28], we used: match=1, 
mismatch=-0.33 and gap=1.33). 

Table 1. The similarity scores for the fragments, 
obtained by the Smith-Waterman algorithm [28]. 

 
1F  2F  3F  4F  

1F   3.00 2.00 5.00 

2F  3.00  1.67 3.00 

3F  2.00 1.67  3.00 

4F  5.00 3.00 3.00  

Table 2. The alignments for the fragments, obtained 
by the Smith-Waterman algorithm [28]. 

 
1F  2F  3F  4F  

1F   CGT AC ACCGT 

2F CGT  TGC-TAC CGT 

3F
 

AC TGC-TAC  TAC 

4F ACCGT CGT TAC  

Table 3 presents all the possible permutations 
of the 4 given fragments and the performance 
measure PM (Equation (1)) for each 
permutation. It can be seen that the maximum 
values for the performance measure PM are 
obtained in two cases: for the alignments 
F2F1F4F3 and F3F4F1F2. The original DNA is 
the one indicated by the alignment F2F1F4F3. 

6.2 Distributed RL model and results  

Let us consider the example mentioned in the 
previous subsection, the DNA sequence Seq = 
TTACCGTGC and four fragments F1 = 
ACCGT; F2 = CGTGC; F3 = TTAC; F4 = 
TACCGT, i.e. n = 4. We aim at identifying the 
most appropriate order in which the fragments 
have to be assembled back into the original 
sequence Seq. As we have presented in Section 
5, the states space will consist of 341 states, i.e 

},...,,{ 34121 sssS  .  

We have applied the distributed RL approach 
introduced in Subsection 5.1 with the following 
settings: 

- two local FAA agents were used; 

- the number of training episodes for each 
local FAA agent is 106; 

- both local FAA agents have the same 
behaviour in the Q-learning scenario: they 
use the  -Greeedy action selection 
mechanism, and a discount factor for the 
future rewards 9.0 . 

Using the above defined settings and under the 
assumptions that the state action pairs are 
equally visited during the training and that each 
local FAA agent explores its search space (the 
  parameter is set to 1). After the training of 
the FAA agents was completed, two solutions 
are reported by the FAS agent. The solutions 
are determined starting from state 1s , following 
the Greedy policy. Both of them are optimal, 
having the the maximum associated 
performance of 11 (see Table 3). 

The learned optimal solutions are: 

1. The path )( 164411031 sssss  having the 
associated action configuration 

)2143(a . 

2. The path )( 263661741 sssss  having the 
associated action configuration 

)3412(a . 

7. Discussion 

Regarding the Q-learning approach presented 
in Subsection 5.1 and previously introduced in 
[6] for solving the DNA fragment assembly 
problem, we remark the following: 

- The training process during an episode has 
a time complexity of )(n , where n is the 
number of fragments considered in the 
assembly process. Consequently, assuming 
that the number of training episodes is k, 
the overall complexity of the algorithm for 
training the FA agent    is )( nk  . 

- If the number n of the fragments 
considered in the assembly problem is large 
and consequently the state space becomes 
very large, in order to store the Q-values 
estimates, a neural network should be used. 

The main drawback of the non-distributed 
learning approach is that a very large number 
of training episodes has to be considered in 
order to obtain accurate results and this leads to 
a slow convergence. 
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It is obvious that the distributed RL approach 
presented in this paper, by using multiple 
agents during the training step reduces the 
overall computational time. The problem that 
has to be further investigated is how to 
preserve the accuracy of the results in the 
distributed approach. 

8. Conclusions and Further Work 

We have proposed in this paper a distributed 
reinforcement learning based model for solving 
the DNA fragment assembly problem. To our 
knowledge, except for the ant based 
approaches, the fragment assembly problem 
has not been addressed in the literature using 
distributed reinforcement learning, so far. We 
have emphasized the potential of our proposal 
by evaluating it on a simple case study, 
highlighting its advantages and drawbacks. 

We plan to extend the evaluation of the 
proposed distributed RL model for some larger 
instances, to further test its performance. 

We will also investigate possible improvements 
of the distributed RL model by improving the 
behavior of the local FAA agents, by using 
different reinforcement functions and by adding 
different local search mechanisms in order to 
increase the agents’ performance. 
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