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1. Introduction 

Evolutionary Algorithms (EAs) are stochastic 
search metaheuristics that have been used 
successfully to solve many optimisation 
problems such as scheduling, routing, etc [2, 
17, 23, 14, 15]. EAs are population based 
metaheuristics that perform well global 
search by exploring simultaneously different 
regions of the search space. They are 
therefore less attracted to local optima and 
are suitable to solve Multi-Objective 
Optimisation problems (MOP) where a set of 
non-dominated solutions is sought. This is in 
contrast to the single-objective optimisation 
problems where a unique optimum is sought. 
Several algorithms are proposed to adapt EAs 
to MOPs, including NSGA-II [9, 25], SPEA-
II [28], NPGA-II [20]. These algorithms can 
be divided into two categories: the non-
Pareto and the Pareto Multi-Objective 
Evolutionary Algorithms (MOEAs). The 
concept of Pareto dominance is used to rank 
the population in such a way that all non-
dominated individuals in the population are 
assigned the same cost. Pareto elitist MOEAs 
maintain another population than the current 
one, which permits to keep the Pareto-
optimal solutions found during the search. 
This external population participates in the 
process of selection. Thus, elitism permits a 
better intensification of the search. Among 
these algorithms, SPEA-II [28] and NSGA-II 
[25] have powerful search mechanisms and  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

obtained good results. SPEA-II [28] and 
NSGA-II [25] use similar concepts; such as 
Pareto selection, elitism and diversification 
techniques that are proved to be efficient to 
characterise the Pareto Optimal Front (POF). 
A state of the art on MOEAs is given in [13, 
8, 7]. 

Despite their success in solving several real-
world MOPs [11, 16], these algorithms require 
large computational times and memory. 
Several parallel schemes are proposed to 
overcome this problem. Another motivation 
is to exploit parallelism to best explore the 
search space and to discover new ways to 
direct the search. In the single-objective case, 
parallel EAs exploit the inherent parallelism 
in evolutionary computation where crossover, 
mutation, selection and fitness evaluation can 
be easily distributed. Whereas, in the multi-
objective case, many parallel schemes focus 
on how to divide the population on the 
objective or/and the decision space where 
each process will concentrate on a specific 
region of the search space. 

One of the most difficult issues in designing 
metaheuristics for the resolution of both 
single-objective and multi-objective problems 
is how to balance between exploration and 
exploitation of the search space. For example, 
in evolutionary computation a high rate of 
conventional mutation (high diversification) 
makes the search process looks like a random 
exploration. While a high rate of crossover 
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without mutation leads to a premature 
convergence. In Parallel Multi-Objective 
Evolutionary Algorithms (PMOEAs), the 
parallelism can be exploited to direct the 
search toward more exploration or more 
exploitation through the mechanisms of 
collecting, dividing and redistributing the 
global population or a subset of individuals 
among the available processors. In this paper, 
we propose a new parallel evolutionary 
algorithm for multi-objective optimisation 
that is called “Balanced Explore Exploit 
clustering based Distributed Evolutionary 
Algorithm for multi-objective optimisation” 
(BEEDEA). This algorithm is based on 
dividing the search space by clustering 
algorithms then redistributing the individuals 
such that both global search and local search 
will be performed. To test the BEEDEA, we 
use the benchmark functions of Zitzler [27] 
on a network of several computers. 
Experimental results have shown that the 
BEEDEA performs a good balance between 
exploration and exploitation of the search 
space and it is more efficient to characterise 
the POF than a classic island model parallel 
MOEA without migration. 

The paper is organised as follows. Section 2 
reviews the literature on existing PMOEAs. 
Section 3 describes the proposed parallel 
MOEA. Section 4 presents numerical results. 
Section 5 concludes the paper and outlines 
future research directions. 

2.  Parallel Multi-objective 
Evolutionary Algorithms 

Parallel EAs are classified into three 
categories: master-slave population model, 
island model, and cellular model [5, 1]. The 
master-slave model uses a simple distribution 
of the fitness calculation stage. In the island 
model, the entire population is divided into 
small groups which are called sub-
populations or islands. Each sub-population 
evolves on a separate processor, following a 
traditional diagram. Generally, a migration 
stage is added. In the cellular model, one or 
more individuals are set to evolve on each 
processor. Then the selection, replacement 
and crossover operations are performed 
between individuals that are neighbours on 
the topology of the processor network.   

Several proposed PMOEAs are based on the 
specialisation concept [3, 18, 26] which 
means dividing the objective and/or the 
search space then assigning each part to a 
processor. One processor called the organiser 
or the coordinator is usually charged to direct 
the whole algorithm.  

In Branke et al. [3], the cone separation 
technique is based on normalising the fitness 
values and partitioning the fitness space into 
cones by starting from the reference point 
(1,1), dividing the 90° angle encompassing 
the non-dominated front into equal parts. 
Each processor will focus on one region since 
the borders of each region are treated as 
constraints. At regular intervals, 
renormalisation of the fitness space and re-
adaptation of the constraints causes 
individuals violating the constraints of a sub-
population to migrate into the sub-population 
where they do not violate the constraints. 
This approach has several drawbacks. If the 
PF is discontinued or is not evenly 
distributed, one processor may receive an 
empty or small sub-population (for example 
extreme points in two discontinuous parts of 
the front). When the number of processors 
increases, the cone (region) allocated to each 
one becomes small, and the number of 
offspring’s violating the constraints increases. 
This leads to less diversified sub-populations, 
and so large communication time and slow 
convergence. Moreover, this subdivision 
technique becomes rather complicated in the 
case of more then two objectives. 

In the approach of Hiroyasu [18, 19], the 
population is gathered at regular intervals, 
sorted according to one of the objectives 
(objective used for sorting is chosen in turn) 
and divided into sub-populations. A simple 
MOEA is performed for each sub-population. 
In the case of discrete or discontinuous POF, 
this approach has generated Pareto solutions 
which are concentrated on some points rather 
than all over the POF. In fact the partition is 
somewhat arbitrary according to changing 
objectives and does not guide the search 
toward the less explored regions. In [6] De 
Toro et al. have presented a similar parallel 
scheme as [18] with the difference of using a 
Single Front Genetic Algorithm on each 
processor. In the Multi-Objective Genetic 
Algorithm with Distributed Environment 
Scheme (MOGADES) proposed by Kamiura 
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et al. [22], the multi-objective problem is 
transformed into a single objective problem 
which is solved in each island using different 
weight parameters. Setting the weights 
correctly requires a certain amount of search 
space knowledge, which is often not available 
in advance. Moreover, this parallel MOEA 
could miss some Pareto optimal solutions 
when the search space is non-convex. Such 
solutions are called not supported. So, this way 
of dealing with multi-objective optimisation is 
not always possible or efficient. 

In Streichert et al. [26], the sub-populations 
are gathered, clustered by the k-means 
clustering algorithm (the number of clusters 
is equal to the number of processors) and 
then redistributed onto the available 
processors. The constrained dominance 
principle [4] using the cluster centroïd (each 
individual is assigned to one cluster centroid) 
is implemented to limit sub-populations to 
their specific regions. The drawbacks of this 
approach are that the generated individuals 
outside the zone constraints are not 
considered and this may limit the diversity of 
sub-populations. Furthermore, the clustering 
algorithm divides the search space into a 
number of regions which is equal to the 
number of processors. However, this number 
depends on the distribution of individuals in 
the search space. 

 

Deb et. al. [10] use the migration and the 
guided dominance principle [4] to give the 
different islands different search directions. 
The drawback of the approach is that it may 
be difficult to define appropriate search 
directions before the shape of the POF is 
known. Moreover this approach can be 
applied only when the POF is convex. 

In [12], Essabri et al. presented the parallel 
multi-Objective evolutionary algorithm with 
Multi-Front Equitable Distribution (MFED). 
At regular intervals, MFED gathers the k first 
global Pareto fronts (k is a parameter) 
constructed from all processors then 
distributes them with equity between all sub-
populations. The ith (i<1..k>) global Pareto 
front is at first partitioned into NC clusters 
(NC is a parameter) using an agglomerative 
clustering algorithm. Then each cluster is 
distributed on the processors. Each sub-
population receives at least one individual 
from each cluster (Figure 1). The main drawback 
of MFED is that neighbouring solutions are 
distributed to distinct clusters. The MFED 
doesn’t perform well neighbourhood searches 
and converges slowly. 

In this paper, we propose a new parallel scheme 
for MOEAs. The BEEDEA balances between 
the tow main concepts in metaheuristics which 
are local and global exploration.  
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Figure 1. The parallel multi-Objective evolutionary algorithm with Multi-Front Equitable Distribution 
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3. Balanced   Explore-Exploit 
Clustering based Distributed 
Evolutionary Algorithm for 
Multi-objective Optimisation 
(BEEDEA) 

There are two tasks that a MOEA should 
accomplish in solving MOPs: guide the 
search towards the global Pareto-optimal 
region, and maintain population diversity (in 
the objective space, search space, or both) in 
the current non-dominated front. Since 
MOEAs search for a whole set of diversified 
solutions (the Pareto optimal front) instead of 
a single solution, many parallel multi-
objective evolutionary schemes [3, 26, 18] 
are based on dividing the optimisation 
problem (the search space and/or the 
objective space) into multiple sub-problems 
such that each process will focus on one 
region of the search space or one part of the 
Pareto front. These parallel schemes are 
shown to be more efficient to solve MOPs 
than sequential MOEAs. The question is how 
to find a suitable partitioning of a given 
optimisation problem and how to distribute 
the individuals on the available processors?  

 

The basic idea of the proposed parallel 
scheme is motivated by the fact that the 
efficiency of the search process is related to 
obtaining a good balance between the two 
main search mechanisms: exploitation and 
exploration. The exploitation permits to 
explore regions of the search space near of 
those visited earlier that have good quality. 
However, the exploration tries to direct 

research toward the unvisited regions. It 
permits to generate solutions that differ 
meaningfully of those previously visited. The 
algorithm executes iteratively and in turn an 
exploration step and exploitation step (Figure 
2). In the exploitation step, solutions which 
are close to each other are collected into one 
sub-population. A clustering algorithm 
divides the global population into p clusters 
(p is the number of processors) so that 
individuals in the same cluster are similar 
between themselves and dissimilar to 
individuals of other groups. Each processor 
receives one cluster (one sub-population), 
which will evolve for few generations. By 
this way, intensification is performed by 
favouring the recombination of   
neighbouring solutions. 

In the exploration step, solutions belonging to 
different zones of the search space are 
grouped together into one sub-population. 
The global population is partitioned into 2p 
clusters by a clustering algorithm. Each 
processor receives 2 distinct clusters. 
Diversification is performed while favouring 
the recombination of distant individuals. In 
fact, a crossover stage between pairs of 
individuals each one of them from one cluster  

 

 

 

 

 

 

 

 

 

 

 

is performed. After that a MOEA will be 
performed for few generations. 

In our approach, a hierarchical agglomerative 
clustering algorithm is used to partition the 
global population of N individuals into sub-
populations. These individuals are considered 
in the objective space. The agglomerative 
clustering method starts by regarding these as 
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Figure 2. Clustering for the exploitation step with 3 processors. 
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N separate clusters of size 1. Then, finds the 
most similar pair of clusters and merges them 
together into a single cluster to reduce the 
number of clusters to (N−1). This procedure 
continues until the desired number of clusters 
is reached. To compute the similarity 
between two individuals, we use the 
Euclidian distance in the fitness space. We 
consider the distance between one cluster and 
another cluster to be equal to the Euclidian 
distance between their respective centers of 
gravity. Since the fitness space to be searched 
and the shape of the Pareto-Optimal Front 
(POF) are usually unknown at the start of the 
optimisation; such a partitioning of the fitness 
space has to be adapted at regular intervals.  

The main algorithm consists of two kinds of 
processes, an organizer and several elitist 
MOEAs. At regular intervals, the organizer 
collects the different sub-populations from 
the other processors, divides the global 
population into p clusters in the exploitation 
step and 2p clusters in the exploration step. 
Then it distributes them among all processors 
(the organizer and the others). Every sub-
population will evolve with its proper genetic 
operators (crossover and mutation) to explore 
differently the search space. Moreover, the 
use of different genetic environment reduces 
the risk of performing the same individuals in 
the different islands. The model can be 
explained as follow: 

Interval0 

Step 1: Initialise sub-population is performed 
randomly. The global population size is N. 
The size of each sub-population is N/p (p is 
the processor number). 

Step 2: Multi-objective genetic algorithm is 
performed for some generations. The MOEA 
used in this paper and the genetic operators 
are given in the next section. 

Step 3: All the individuals are gathered. Then 
the global PF is formed. 

Interval  Interval +1.  

If Interval mod 2=0 then go to step 4 else go 
to step 5. 

 

 

Step 4:  

 A clustering algorithm is performed on 
the global population. The number of 
clusters is equal to p.  

 Exploitation step: send each cluster to 
one processor. Each processor will 
execute a MOEA for some iterations. Go 
to step 3. 

Step 5:  

 A clustering algorithm is performed on 
the global population. The number of 
clusters is equal to 2p.   

 Exploration step: each process receives 
two distinct clusters and a crossover step 
between pairs of individuals each one 
from one cluster is performed and then a 
MOEA runs for some generations. Go to 
step 3. 

4. Experimental Results 

Our algorithm is implemented using C++ 
language. We ran our algorithm on a cluster 
using several processors. The communication 
between the processors is supported by 
Message Passing Interface library (MPI). Our 
algorithm is based on an elitist MOEA, the 
Strength Pareto Evolutionary Algorithm 
(SPEA) [29], which runs on each processor. 
SPEA keeps individuals whose decision 
vectors are non-dominated in an external 
population. When this set exceeds the 
maximum archive size, it reduces the number 
of individuals externally sorted by means of 
clustering. In order to set the parameters of 
this algorithm, several tests have been 
realised with different occurrences. These 
parameters are fixed as follows: 

 Population size (N): 200 individuals 
between the available processors; 

 Size of the global archive: 200 individuals 
between the available processors; 

 Number of generations (T): 2000; 

 Crossover probability (Pc): 0.99; 

 Mutation probability (Pm): 0.1; 

 Crossover type: one point, two points and 
uniform crossover; 

 Mutation type: bit inversion mutation; 
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The gathering, partitioning and redistribution 
of the global population are performed at 
regular intervals of 15 generations. We have 
tested our approach on the benchmark 
functions of Zitzler [27]: ZDT2 (concave 
Pareto optimal front) and ZDT6 (non-convex 
and non-uniformly distributed Pareto optimal 
front). Both test problems considered here are 
bi-objective. We compare the following 
parallel configurations: 

 PSPEA: A classic island parallel MOEA 
without migration based on SPEA. 

 BEEDEA: The Balanced Explore/Exploit 
clustering based Distributed Evolutionary 
Algorithm for Multi-objective 
Optimisation.  

 Configuration D: The BEEDEA with 
only reiteration of the exploration step. 

 Configuration I: The BEEDEA with only 
reiteration of the exploitation step. 

The results are compared using the metrics of 
GUIMOO (Graphical User Interface for 
Multi-Objective Optimization [21] which 
offers tools to analyse results of multi-
objective methods. To properly evaluate and 
compare MOEA performances, we identify 
three important criteria [7]: 

 Accuracy: the distance of the resulting 
non-dominated set to the POF should    
be minimal. 

 Uniformity: the solutions should be well 
distributed (in most cases uniform). 

 Extent: the non-dominated solutions 
should cover a wide range for each 
objective function value. 

For this reason, to compare and evaluate the 
non-dominated sets, we have used the S 
metric for accuracy, the spacing for the 
uniformity and some figures to see if the non-
dominated set covers the totality of the Pareto 
front. We have added the entropy as a 
measure of diversity and the contribution to 
compare two Pareto Fronts (PF). Since 
evolutionary algorithms are stochastic search 
methods, each algorithm is run five times. 
Then, each metric is calculated as the mean 
of the five executions.  

ZDT2 problem:  

We apply our algorithm to the bi-objective 
and 30 variable ZDT2 problem. The Pareto 
front of that problem is concave. Table 1 
gives the results for the BEEDEA and the 
PSPEA on 5 processors. We conclude that 
the non-dominated set generated by the 
BEEDEA is well distributed 
(spacing(BEEDEA)<spacing(PSPEA)). But it 
is less diversified than that obtained by the 
PSPEA. The entropy values for BEEDEA 
and PSEPA are respectively 0.39 and 0.35. 
The results for the S metric are similar. 

Table 1. Comparison of the BEEDEA and the 
PSPEA for the ZDT2 problem  

 PSPEA BEEDEA 

Contribution 0,53 0,47  

S Metric  0,3206914 0,320606 

Entropie 0,39020272 0,35463096 

Spacing 0,01842744 0,01100374 

In the previous section, we have explained 
that the parallel scheme proposed in this 
paper performs a good balance between 
exploration and exploitation through the re-
iteration of the exploration step and the 
exploitation step. These two steps are 
essential and complementary for the 
efficiency of our approach. To validate this 
idea, we compare the performance of the 
algorithm when we omit one of them. Table 2 
compares the performance when only 
exploration step (D) or exploitation step (I) is 
performed for the ZDT2 problem on 2, 3, 4 
and 5 processors. Figure 3 shows the PFs 
generated by configurations I and D on          
5 processors. 
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Figure 3. Non dominated solutions obtained for 
the ZDT2 problem with configurations I (zdt2 I) 

and D (zdt2 D) on 5 processors 



Studies in Informatics and Control, Vol. 20, No. 2, June 2011 http://www.sic.ici.ro 103

 

Configuration I generates a set of non-
dominated solutions which are well 
distributed since it outperforms configuration 
D for the spacing metric. For the S metric, 
both configurations give very near results. 
The performance of D is slightly better than I 
for the contribution. From Table 1 and 2, we 
conclude that BEEDEA performs better on 
the spacing and the S metric than the 
configurations I and D. These results 
confirms that the two mechanisms are 
essential to better approximate the POF but 
don’t show the efficiency of the 
diversification step to generate a set of 
diversified non-dominated solutions which 
are well uniformly distributed. 

ZDT 6 problem: 

This problem is a difficult multi-objective 
problem since the Pareto optimal front is non 
convex and non-uniformly distributed. Table 
3 gives the results of BEEDEA and PSPEA 
for the ZDT6 problem on 5 processors. Table 
3 shows that The BEEDEA outperforms the 
PSPEA for all the metrics. The BEEDEA is 
more efficient to approximate the POF. Table 
4 gives the contribution of the BEEDEA and 
the PSPEA while varying the number of 
processors from 2 to 5. The contribution of 
the BEEDEA is larger than 62% for 2, 3 and 
5 processors. This confirms the superiority of 
the proposed model to characterise the POF. 

Table 3. Comparison of the BEEDEA and the 
PSPEA for the ZDT6 problem on 5 processors 

 PSPEA BEEDEA 
Contribution 0,421821 0,578179 
S Metric 0,5196546 0,4711904 

Entropie 0,3359376 0,35660548 

 Spacing 0,01497213 0,01259775 

 

 

 

 

 

 

 

 

Table 4. The contribution metric of the BEEDEA 
and the PSPEA for the ZDT6 problem while 
varying the number of processors from 2 to 5 

Contribution number of 
processors PSPEA BEEDEA 
2 0.373397 0.626603 
3 0.316156 0.683844 
4 0.640351 0.359649 
5 0.226531 0.773469 

 

In Table 5 we study the influence of the 
number of processors on the performance of 
the BEEDEA. We remark that the 
contribution increases when the number of 
processors increases. The clustering 
algorithm partitions the global population 
into p (respectively 2p) clusters in the 
exploitation (respectively exploration) step. 
This number of clusters increases with the 
number of processors. This improves 
similarity intra-cluster and increases 
dissimilarity inter-clusters. Thus, exploitation 
and exploration are both well performed 
since neighbouring solutions are gathered in 
the same cluster. 

Table 6 and 7 compare the performance of 
BEEDEA and configurations I and D for the 
ZDT6 problem on 5 processors. The 
BEEDEA outperforms the two configurations 
I and D when the algorithm runs without the 
exploration or the exploitation step. This 
confirms that the combination of the two 
steps performs better exploration of the 
search space. 

 

 

 

 

 

Table 2. Performance of the non dominated solutions obtained for the ZDT2 problem with configurations 
I and D 

Spacing Contribution S metric Number of 
processors  D I D I D I 
2 0.018965 0.0156447 0.530612 0.469388 0.320898 0.320856 
3 0.0168738 0.0157057 0.505495 0.494505 0.321028 0.320666 
4 0.0179484 0.0174855 0.5 0.5 0.320758 0.321172 
5 0.0213763 0.0158287 0.563107 0.436893 0.320435 0.321143 
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5. Conclusion 

MOEAs have been successfully used to solve 
real world MOPs. These algorithms require a 
huge amount of computational time and 
memory.  To deal with this, several 
distributed schemes are proposed. In this 
paper, a new parallel elitist MOEA called 
balanced explore exploit clustering based 
parallel multi-objective evolutionary 
algorithm is proposed. It is based on a 
clustering algorithm. The proposed approach 
is applied to two numerical examples (ZDT2 
and ZDT6). Its performance has been 
analysed in comparison to different versions 
in order to see the effect of the exploration 
and the exploitation mechanisms. 

The combined use of exploitation and 
exploration is aimed to find high-quality 
solutions. From experimental results, we have 
seen that the proposed clustering based 
parallel MOEA have shown its efficiency on 
two benchmark problems. Additional 
experiments are necessary to distinguish 
between search space and objective space 
subdivisions (clustering). 
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