
Studies in Informatics and Control, Vol. 20, No. 2, June 2011 http://www.sic.ici.ro 121

1. Introduction

Data processing as a business object or XML
Web services, used within data exchange
between applications, requires XML data
format [17]. Relational systems convert XML
data into a relational format which may be
effectively memorized and queried as a set
of relations.

Various approaches of storing XML data in
relational databases suggest use of metadata,
of generic relational table diagrams (pre-
defined) including mapping of XML
documents. Kossman şi Florescu [1]
represented XML documents using graphs,
where each edge is a tuple of a relation. This
approach uses recursive SQL99 queries
including constructions of assessment of
XML queries. Zhang, DeWitt and others [2]
proposed a system labeling each node by
numbers obtained by pre and post order
crossing of tree.

To solve multiple joins, Yoshikawa,
Amagasa and others [3] suggest storing
information about each node of tree in the
XML document, especially the path from the
root of the tree until each leaf node. The
algorithm of translation of XML data as
proposed by Yoshikawa and Amagasa is
appropriate only for non-recursive data and
fails to succeed in correct results when XML
data have ancestors with the same label
within representation tree [4]. This algorithm
requires use of joins with µ operators (<or>),
implying a very expensive processing [2].

Bohannon, Freire and others [5] have cost
based approach using information from XML
diagram to select an alternative of execution
of XML queries for the lowest price.

The relational diagram allows elaboration of
algorithms for translation of XQuery queries
into SQL queries, as XQuery is a standard
language for XML data query. For instance,
Oracle XML [3] allows storing the entire
XML document using CLOB type data, the
assessment of XML queries being similar to
process of queries in native XML databases.
Microsoft SQL Server enables creation of
relational data XML views. Query of views
using XPath language is restricted at
XPath expressions.

For optimization of XPath queries, a semantic
cache could memorize XML views. In order
to avoid repeated connection with backend
database, views materialized in cache are
subject to queries. This type of middle-tier
cache became very popular in Web
applications using relational databases [6].

Mandhani and Suciu [7] have suggested a
method of creating a semantic cache storing
XPath views, used in query processing.
Views materialized in cache are XPath
expressions and queries could be XQuery or
XPath fragments, for whose execution the
systems checks firstly in cache if it may
return the result. They memorized the views
cache in relational tables showing the
efficiency of the techniques for selection
of views.

Models XP for Rewriting XPath Queries

Nicoleta Liviana Tudor

Department of Computer Science, Petroleum-Gas University of Ploiesti,
39, Bucureşti Street, 100680, Romania,
LTudor@upg-ploiesti.ro

Abstract: This paper defines XP models for classes of XPath queries stored in cache, as materialized views. After
declaration of issue of the correspondence between the tree models used for classes of XPath queries stored in cache
and the set of trees associated to a XML document, it follows the solutions for rewriting the XPath views by
transformation of patterns of trees. Author's personal contribution consists in modelling the set of trees associated to
XP queries, for a multitude of constraints of XPath expressions and description of functions of correspondence in
XP{ /, //, *, [] } representation. Verification of possibility to return the result of a query using the views materialized
in cache requires the analysis of compatibility of tree models associated to XPath queries and XPath views
materialized in cache. Finding a morphism of XP models demonstrates the real possibility of rewriting the XP view.
This paper describes a method for establishing a semantic cache of XPath views. Composition of queries using a
semantic cache of XP views, assumes the existence of a query which, by composition with a view from cache, will
return the result of query.

Keywords: XPath query, rewriting views, XP models, XML tree, morphism, composition of queries, cache.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 2, June 2011 122

Lee and Wesley Chu [8] presented a semantic
cache for Web databases relying upon
translations of queries and made an analysis of
compatibilities of queries with views
memorized in cache. The semantic cache
proposed by Lee and Wesley Chu consists of a
hash table with input data type (key, value),
where the key is a semantic description
following the queries made and value contains
results of the queries associated to the key. In
this type of cache, the semantic views use only
conjunctive predicates, queries being
transformed in conjunctive components.

The paper is organized as follows:

 the section Rewriting XPath views
describes the issue of rewriting the XML
data based on XPath views, within
relational databases

 the section Tree models for XPath
queries is dedicated to tree models
associated to certain classes of XPath
queries, using XP{ /, //, *, [] }
representation within context of rewriting
XPath views and describes the
correspondence functions

 the section Morphism of XP models
demonstrates that there is a morphism of
XP models on the set of functions of
transformation of tree models associated
to XP queries

 the section Semantic Cache of XP Views
describes the composition of XPath
queries and the way of processing a query
using a semantic cache of XP views

 the section Conclusions.

2. Rewriting XPath Views

A standard approach for optimization of
XPath queries uses rewriting algorithms of
XPath view. The problem of data rewriting
has been thoroughly studied in the relational
model of data [7], [9]. XML data permit also
equivalent rewriting using navigation of
interior structure of a XPath view.

Certain systems as XPath 2.0 standard, allow
XPath queries [10], using identifiers for
nodes at execution of intersection of sets of
nodes. These nodes’ identifiers enable
multiple rewriting by intersection of results
of views.

Lakshmanan, Gao et al [11, 12], have
analyzed the issue of processing the XPath
queries and rewriting the XML queries using
views, irrespective of intersection of results
of views. Cautis, Deutsch and Onose [13]
studied the matter of equivalent rewriting of
XPath views without using operators of union
or intersection and then they analyzed the
effect of applying the intersection operator
upon optimization of XPath 2.0 queries.
Results of queries are stored in cache as
materialized views. Benedikt and others [14]
used for XPath queries negation and
disjunction operators, which can together
simulate an intersection. Another approach
[15] consists of replacement of intersection
operator with heuristic methods for
simplification of XPath expressions.

Let’s consider a XML fragment from an
XML Web service of transactions SQL
Server, for a database ‘accounting’:

XML data will be represented as a certain
tree, unsorted, with a set of edges U, a set of
nodes X, a root r and a function f labeling
the tree’s nodes (Figure 1):

We consider XPath queries containing child
nodes marked / and nodes representing
descendants’ type subtree marked //,
predicates used to filter data marked with []
and the notation * used for substitution of a
descendant node. So, the formalization of the
tree representation of an XP (XPath) query
uses XP{ /, //, *, [] } language.

<Document name = "accounts">
 < symbol >
 <nr>300</nr>
 <account>RawMaterial </account>
 <DebitTransactions>
 <AssetsLiabilities>A</AssetsLiabilities>
 <value>145000</value>
 </DebitTransactions>
 </ symbol >
 < symbol >
 <nr>401</nr>
 <account> Suppliers </account>
 <DebitTransactions>
 <AssetsLiabilities>L</AssetsLiabilities>
 <value>14000</value>
 </DebitTransactions>
 </ symbol >
</Document>

Studies in Informatics and Control, Vol. 20, No. 2, June 2011 http://www.sic.ici.ro 123

Definition of rewriting issue based on
XPath views

To define the problem of rewriting of XP
views, Cautis, Deutsch and Onose [13]
consider one set of V views, defined by XP
queries upon a XML document. DV is the
series of document views {doc(“v”) / v 
V}, where the first node is labeled with the
name of view. For a query r upon a view
document DV, let mark r’ as a query obtained
by replacing in r of each view doc(“v”)/v by
the definition of v. Cautis, Deutsch and
Onose [13] have described rewriting a view
as follows:

Definition 1. Considering a XML document,
a XP query marked q and XP views from V
series. A plan to rewrite the query q using
views from V series is a query r upon DV
with r’  q.

The issue of rewriting a XP view is
equivalent to the issue of equivalence of tree
models associated to the XP queries classes
[16]. If there are defined two models M1 and
M2, then M1  M2  there is a plan based
on XP views for equivalent rewriting of M1

using M2.

3. Tree Models for XPath Queries

Onwards we intend to study some tree
models associated to certain XPath queries
classes using XP{ /, //, *, [] } representation
within rewriting XPath views. We formulate
the problem of correspondence of models of
trees associated to XPath queries and there are

suggested solutions for XPath views
rewriting by transformation of tree models.

Author’s personal contribution consists in
modelling of a set of trees associated to XP
queries for a set of constraints of XPath
expressions and description of function of
correspondence in XP{ /, //, *, [] } language.

Consider XPath query Q1, as tree
representation in Figure 2. Results of Q1

query for document ‘accounts‘ previously
described, are stored in cache as materialized
view which extracts information about debit
transactions of active asset (A) Raw Material
with symbol 300.

Q1 : // symbol [nr = 300] / DebitTransactions
[AssetsLiabilities = "A"]

Figure 2. Tree associated to XPath query Q1

From the above mentioned example, we may
generalize and describe by induction a
function of correspondence between the set
of tree models used for representation of
classes of XP queries stored in cache and set
of trees associated to XML documents.

Figure 1. XML tree.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 2, June 2011 124

Further we introduce the concept of the
model of tree associated to XPath query.

Definition 2. A tree model associated to
XPath query is defined as a tuple (XM, UM,
rM, oM), where:

 XM is the set of nodes of model tree,

 UM is the set of edges,

 rM is the root,

 oM contains the XP{ /, //, *, []}
representation operators.

Let us note the tree associated to a XML
document: (XG, UG, rG), where XG is the set
of nodes of XML tree, UG is the set of edges,
rG is the root of tree G.

We define the function

 : XM → XG, where XM is the set of nodes of
model tree and XG is the set of nodes of XML
tree, such as each node of model tree has in
the XML tree a correspondent:

 for operators /, *, [] , a node and

 for operator //, the root of the subtree
extracted from XML tree.

if | {//}

() the root of XML subtree,

if | / /

M M

M

y x X O

x

x X


 

 
 

 (1)

The result of projection of XP{ /, //, *, [] }
representation’s operators in the XML
document will be found in a subset of nodes
from XG:

 '
M M G(X | O) / Xy y   , (2)

where '
G GX X , OM = {/, //, *, [] }, XM | OM

is the set of nodes of model tree, marked with
the operators of the XP{ /, //, *, [] }
representation and XG is the set of nodes of
XML tree.

Examples:

(XM | *) = { x3 } (Figure 3)

(XM | //) = { x4 } Node labeled with operator
// corresponds to the node x4, the root of
subtree extracted from XML tree.

Figure 3. Correspondence between model and
XML tree

4. Morphisms of XP models

We will define the correspondence between
the tree models used for classes of XPath
queries stored in cache and the set of trees
associated to a XML document, in the issue
of equivalent rewriting of XPath views, in
presence of certain constraints p(1), p(2), and
so on (predicates used for filtration or
validation of XPath expressions).

Rewriting requires filtering of nodes which
will form the image equivalent to XP views,
from the nodes to be deleted XPath
expressions may contain variables for
filtration of nodes from trees.

We will take into account that for XP{ /, //, *,
[] }, there are many types of representations
for the subclasses of XP queries: XP{/, //, []
}, XP{/, //, *} and XP{/, *, [] } (Figure 4):

Figure 4. XP models

It has to be solved the issue of
correspondence of tree models associated to
XPath queries and to check the possibility to
rewrite the XPath views by transformation of
tree models.

Let be (i) (i) (i) (i)
M M M M(X ,U ,r ,o), i 1 , a model of

tree associated to XPath query previously
defined. We will consider as follows:

Studies in Informatics and Control, Vol. 20, No. 2, June 2011 http://www.sic.ici.ro 125

1 (1) 1 (1) (1)
M G M M G: X X , α (X | o ,p) X   ,

where XG is the set of nodes of XML tree
associated to a XML document

We note (1)
GX set of nodes of XML tree

associated with XPath view and selected by

application of function 1 to the set (1)
MX ,

with nodes labeled by the operators from oM
and application of p(1) constraint to XPath
expressions as follows:

1(1) (1) (1)
M M GX | o ,p X (by notation), where
(1) (1) (1) (1)

G G GG =(X ,U ,r) is a XML subtree,
(1)
GX is the set of nodes of XML tree, (1)

GU is

the set of edges, (1)
Gr is the root

1 (1) (1) (1)
M M Gα (X | o ,p) X (3)

(1)
GX is the set of nodes of XML tree

associated to XPath view because it contains
results of the XPath query stored in cache as
materialized view.

Similarly, we define the function 2 and we

note (2)
GX the set of nodes of XML trees,

associated to XPath view and selected by

application of function 2 to the set (2)
MX ,

with nodes labeled by the operators from oM
and application of p(2) constraint to XPath
expressions as follows:

2(2) (2) (2)
M M GX | o ,p X (by notation),

where (2) (2) (2) (2)
G G GG =(X ,U ,r) is a XML subtree,

(2)
GX is the set of nodes of XML tree, (2)

GU is

the set of edges, (2)
Gr is the root.

2 (2) (2) (2)
M M G Gα (X | o ,p) X X  , and so on.

(i)
G (i 1)X  contains results of the XPath

query stored in cache, as materialized view.

Further we introduce the concept of
XP models.

Definition 3. A model XP is defined as a

tuple (i) (i) (i) (i)
G G GG =(X ,U ,r), i 1 , where

(i) i (i) ()
G MX =α (X | ,)i

Mo p , p(i) constraints for

XPath expressions, (i)
GU is the set of edges,

()i
Gr is the root, and (i)

GX contains nodes of
XML trees associated to XPath views stored
in cache, restricted by application of

operators of XP{ /, //, *, [] } representation
and by application of p(i) constraints.

Filtering and validation constraints of XPath
expressions p(1), p(2), … can be used for
selection of nodes of XML trees needed for
rewriting XPath views.

We will define the function of
transformations in XP{ /, //, *, []}
representation:

Definition 4. Considering functions

i (i) (i)
j G Gβ : X X , j 1  , where

(i) (i) (i) (i)
G G GG =(X ,U ,r) is a model XP, i 1 . We

assign i
jβ , j 1 , functions of transformation

of sets of trees associated to XP queries
stored in cache, restricted by application of
operators of XP{ /, //, *, [] } representation
and by application of p(i) constraints, i >= 1,
for filtering the XPath expressions.

We note A the set of all functions i
j , where

i (i) (i)
j G Gβ : X X ,

 i i (i) (i)
j j G GA= β / β : X X , i, j 1 

Composition of functions defines a law of
composition on A which may be defined as

follows: oA A A  ,

oi i i i i i
j k j k j k(β ,β) β oβ , () β ,β A,j,k 1   

Verification of the axioms of monoid (A, o):

 composition of functions is associative

 identical function 1A is the neutral element

Invertible elements of monoid (A, o) are

bijective functions (i) (i) (i)
G Gβ : X X , i 1  ,

used for equivalent rewriting of XP views (
trees with the same number of nodes).

We note i
j

j 1

G β , i 1


  , the set of all

invertible functions of monoid (A, o), used
for equivalent rewriting of XP views stored in
cache  (G, o) is group

i
j

j 1

G β , i 1


  , is a set of bijective functions

i (i) (i)
j G Gβ : X X , j 1 

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 2, June 2011 126

Group (G, o) is commutative:
i i
j kβ ,β G, j,k 1  , i

jβ , i
kβ are functions of

equivalent rewriting of a XP query

i i i i
k j j kβ oβ β oβ 

Sentence 1: Consider the set i
j

j 1

G β


 ,

where i (i) (i)
j G Gβ : X X , j 1  ,

(i) (i) (i) (i)
G G GG =(X ,U ,r) is a model XP, i 1 .

Then on G there is a morphism.

Proof:

We will demonstrate that there is a morphism
on the group (G, o):

(G, o) group commutative
(i) (i)
G G()f G, ()g G, f:X X      ,

(i) (i)
G Gg:X X , i 1  , such as

f o g = g o f = 1G

We define the function :G→G, (h)=fohog,
hG

We have to demonstrate that  is a morphism
of groups:

(h o h’) = (h)o(h’), () h, h’G

 (h o h’) = f o h o h’ o g = (f o h o g) o h’
= (f o h o g) o h’ o 1G=

= (f o h o g) o (h’ o f o g) (4)

(h) o (h’) = (f o h o g) o (f o h’ o g) = (f
o h o g) o (h’ o f o g) (5)

From the relations (4) and (5) → (h o h’) =
(h) o (h’)  is a morphism on

i
j

j 1

G β , i 1


  .

Comments: The existence of a morphism of
XP models proves the possibility of
equivalent rewriting of XPath views, using
transformations of tree models associated to
XP queries from cache, under filtering
constraints of XPath expressions, in XP{ /, //,
*, [] } representation.

5. Semantic Cache of XP Views

We consider a view V materialized in cache
and a XPath query Q which must be
processed. Composition of queries using a

semantic cache of XPath views, supposes the
existence of a query C which, by composition
with a view V from cache, will return the
result of query Q, that is C o V = Q.

Within context of composition of queries
using the cache of XP views, we will describe
the operation of inserting a XP view in cache,
the selection of a view from cache and then
we will present a case when a query cannot
be resolved from the cache, even if its results
are already there.

Insertion of View in Cache

We consider XP views Vi, 1 ≤ i ≤ n and the
filtering and validation constraints of XPath
expressions p(1), p(2), and so on.

A semantic description of cache with n XP
views, may be as follows:

semantic cache := { Vi / Vi : / a / child :: b [
p(j)] [p(k)], where a and b are XML elements
of view, 1 ≤ i ≤ n, j, k  1}

Inclusion of XPath expressions p(i)  p(j), i, j
 1, shows that the set of nodes resulted from
the evaluation of p(i) is included in the set of
nodes selected by the p(j) expression. A XPath
expression is considered invalid when the set
of nodes evaluated is always void.

Mandhani and Suciu [7] have stored cache of
XPath views in tables of a Microsoft SQL
Server relational database, which offers XML
support. Cache is stored in three relational
tables, one containing a column type XML,
and the other 2 tables memorize the prefix
common to XPath views and queries and the
conditions of XML elements filtering.

Lee and Wesley Chu [8] have stored the
semantic cache in Hash tables with input data
of type (key, value), where the key is a
semantic description based on the precedent
queries and the value contains results of
queries associated to the key.

A semantic cache of XPath views can be
created using a collection of TigerLogic
XDMS files, from Stylus Studio XML
Enterprise Suite, stored in the Microsoft SQL
Server relational database. XQuery queries
will use as source the cache represented by
the TigerLogic XDMS files collection and
will be executed by the TigerLogic XDMS
XQuery processor.

Studies in Informatics and Control, Vol. 20, No. 2, June 2011 http://www.sic.ici.ro 127

Selection of XP view from cache

For use of XP view from cache, let’s consider
three XP views and a query Q:

V1: / a / child :: b [x = "sir"] [y >= 13000]
V2: / a / b [x = " sir "]

V3: // b [x = " string"] /c

Q: // child :: b [x = "sir"] [y >= 10000] / c

Query Q is related to views V1 and V2 (results
of query Q are included in views V1 and V2),
but the constraint [y >= 13000] does not
contain [y >= 10000]. Therefore only view
V2 returns results for query Q, and query C, to
whom it composes is:

C: // b [y >= 10000] / c

Composition of queries complies with
relation C o V2 = Q.

This is a demonstration that to process the
query Q, the cache of XPath views may be
used, because there is a query C and a view
V2 materialized in cache thus C o V2 = Q.

A special case is when a query cannot be
resolved from the cache, even the semantic
cache contains materialized views.

Let’s consider a query Q and two XP views
V1 and V2 stored in cache.

Q: / a / b [x = "sir"] [y >= 10000] / c

V1: / a / b [x = "A"]

V2: // child :: b [y <= 3000]

Results of query Q are included in views V1

and V2, but the constraints [y >= 10000] and
[x = "sir"] (for node b) are not related to
views V1 and V2.

6. Conclusions

This paper presents a study of issue of
equivalent rewriting of XPath queries, using
XP views stored in cache.

The author’s personal contribution consists of
modelling the set of trees associated to XP
queries and description of the functions of
transformation in XP{ /, //, *, [] } language,
for a set of constraints of XPath expressions.

An original approach is Sentence 1, showing
that there is a morphism on the group of XP
models, suggesting the possibility to rewrite
the XPath queries, by transformation of tree

models associated to XP views, under
filtering constraints of XPath expressions, in
XP{ /, //, *, [] } representation.

It demonstrates that a semantic cache of XPath
views may be used for processing a XPath
query Q, because there is a query C and a view
V materialized in cache thus CoV=Q.

REFERENCES

1. KOSSMAN, D., D. FLORESCU,
Storing and Querying XML Data using
an RDBMS, IEEE Data Engineering
Bulletin, 1999.

2. ZHANG, C., J. NAUGHTON, D.
DEWITT, Q. LUO, G. LOHMAN, On
Supporting Containment Queries in
Relational Database Management
Systems, in ACM SIGMOD, 2001,
pp. 425-436.

3. YOSHIKAWA, M., A. TOSHIYUKI, T.
SHIMURA, S. S. UEMURA, Xrel: A
Path-based Approach to Storage and
Retrieval of XML Documents using
Relational Databases, ACM
Transactions on Internet Technology, Nr.
1, 2001, pp. 110-141.

4. KRISHNAMURTHY, R., R. KAUSHIK,
J. F. NAUGHTON, XML to SQL Query
Translation Literature: The State of
the Art and Open Problem, in XML
Database Symposium, XSym, 2003,
pp. 31-38.

5. BOHANNON, P., J. FREIRE, P. ROY, J.
SIMEON, From XML Schema to
Relations: A Cost-based Approach to
XML Storage, in 18th International
Conference on Data Engineering, 2002,
pp. 64-76.

6. LUO, Q., S. KRISHNAMURTHY, C.
MOHAN, H. PIRAHESH, H. WOO, B.
LINDSAY, J. NAUGHTON, Middle-
tier Database Caching for e-Business,
in Proceedings of the ACM SIGMOD,
2002, pp. 600 – 611.

7. MANDHANI, B., D. SUCIU, Query
Caching and View Selection for XML
Databases, Proceedings of the 31st
VLDB Conference, Trondheim, Norway,
2005.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 2, June 2011 128

8. DONGWON, L., W. CHU WESLEY, A
Semantic Caching Scheme for
Wrappers in Web Databases, In ACM
International Workshop on Web
Information and Data Management
(WIDM), USA, 1999.

9. TANG, J., S. ZHOU, A Theoretic
Framework for Answering XPath
Queries using Views, In XSym, 2005.

10. BALMIN, A., F. ÖZCAN, K. S. BEYER,
R. COCHRANE, H. PIRAHESH, A
Framework for using Materialized
XPath Views in XML Query
Processing, in VLDB, 2004.

11. LAKSHMANAN, L. V. S., H. WANG,
Z. ZHAO, Answering Tree Pattern
Queries using Views, in VLDB, 2006.

12. GAO, J., T. WANG, D. YANG,
MQTree based Query Rewriting over
Multiple XML Views, in DEXA, 2007.

13. CAUTIS, B., A. DEUTSCH, N. ONOSE,
XPath Views for Documents with
Persistent Identifiers, in SIGMOD, 2007.

14. BENEDIKT, M., W. FAN, F. GEERTS,
XPath Satisfiability in the Presence of
DTDs, in PODS, 2005.

15. GROPPE, S., S. BÖTTCHER, J.
GROPPE, XPath Query Simplification
with Regard to the Elimination of
Intersect and Except Operators, in
ICDE Workshops, 2006.

16. XU, W., Z. M. ÖZSOYOĞLU,
Rewriting XPath Queries Using
Materialized Views, VLDB 2005.

17. VOLOVICI, D., G. D. CUREA, M.
BREAZU, D. I. MORARIU, Statistical
Methods for Performance Evaluation
of WEB Document Classification,
Studies in Informatics and Control, Vol.
19, No. 2, 2010.

