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1. Introduction 

Over the past few decades, major progress in 
the field of molecular biology, combined with 
the advances in genomic technologies, have 
led to a fulminating growth in the biological 
information generated by scientists. There are 
databases which contains hundreds of billions 
of bases and sequence records. Therefore, 
computers have become an indispensable tool 
for biological research as they provide the 
means for storing large quantities of data and 
revealing the relationships between them. 

A surprising genetic difference among 
species is the size of their genomes. 
Relatively simple organisms may have much 
larger genomes than complex organisms. 
These major differences might be due to the 
presence of repeats. In general, for 
eukaryotes duplicated genetic material is 
abundant and can represent up to 60% of the 
genome. Although some of the mechanisms 
that generate these repeats are known, from 
an evolutionary point of view, the reasons for 
such redundancy remains unknown [1]. The 
presence of repeated sequences is a 
fundamental feature of all genomes.  

A repeat is the simplest form of regularity and 
analyzing repeats can lead to first clues to 
discovering new biological phenomena. 
Tandem repeats are two or more contiguous, 
approximate copies of a pattern of nucleotides. 
Tandem duplication occurs as a result of 
mutational events in which an original segment 
of DNA (the pattern) is converted into a 
sequence of individual copies. 

 

 

 

 

 

 

 

 

 

 

 

 

The centromere of most complex eukaryotic 
chromosomes is a specialized locus made up 
of repetitive DNA which is responsible for 
chromosome segregation at mitosis            
and meiosis. 

A major challenge in genomic signal 
processing is to understand the information 
contained in the biological genomes. Almost 
all DSP techniques require two parts: 
mapping the symbolic data (symbols for 
nucleotides) into a numeric form in a non-
arbitrary manner and calculating a kind of 
transform of that numeric sequence. 
Consequently, the numerical representation 
of genomic signals becomes very important. 

Fourier spectral analysis is used to reveal 
periodicity in symbolic sequences because 
they are rather robust in the presence of 
substitutions, insertions and deletions and 
may identify approximate periodicities in 
DNA sequences. 

This paper presents results obtained using 
different numerical representations (including 
two  new) and spectral analysis to isolate the 
position and length of DNA repeats in short 
sequences containing microsatellites and on 
long sequences with alpha DNA repeats.  

Most of the numerical representations used 
for repeats detection associate a numerical 
value to one position in the sequence using 
numerical values associated to each 
nucleotide and, finally, reflect the presence or 
the absence of a certain nucleotide in a 
specific position. In order to include 
information about the number of consecutive 
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nucleotides and to generate only one 
numerical sequence for each DNA 
subsequence which may be associated with a 
repeat [9, 10], we’ve introduced two novel 
representations.  Therefore, to emphasize 
subsequences with consecutive repeats of the 
same nucleotide, we used a modified form of 
indicator sequences which includes the 
repeating factor. Then, we proposed a novel 
sequence representation and a mapping 
algorithm which takes into account the length 
of the expected repeats and the number of 
possible mismatches due to point mutations, 
based on polynomial-like representation. 

Grey-levels spectrograms were used to 
validate numerical representations because 
they provide an overview of the 
informational content of the analyzed 
sequence and allow a fast and easy 
determination of the presence of repeated 
sequences. In addition, spectrograms do not 
need to specify the length, the pattern or the 
number of mismatches for target repeats. Thus, 
the spectrogram can be used for a qualitative 
assessment of numerical representation. The 
main focus was on numerical representations 
and on qualitative differences that occur in 
spectrograms and not on spectral analysis 
itself. Our goal was not the comparison of the 
different ways for identifying the repeated 
sequences but the comparison of the different 
numeric representations using one of the 
frequent used methods. 

Interests in DNA Repeats  

Nucleotide sequences contain patterns or 
motifs that have been preserved throughout 
evolution because of their importance to the 
structure or function of the DNA molecule. 
Nucleotide sequences outside the coding 
regions generally tend to be less conserved 
among organisms, except where they have a 
functional importance, like the involvement 
in gene expression regulation. Motifs 
discovery in protein and nucleotide sequences 
can lead to determination of function and to 
the elucidation of the evolutionary 
relationships among sequences. 

The interest in detecting tandem repeats can 
be summarized as follows [2]: 

 Theoretical interest: regarding their role in 
the structure and evolution of the genome. 

 Technical interest: they can be used as 
polymorphic markers, either to trace the 
propagation of genetic traits in 
populations or as genetic identifiers in 
forensic studies. 

 Medical interest: the appearance of 
specific tandem repeats has been linked 
to a number of different severe diseases 
(e.g. Huntington's disease). In healthy 
individuals, the repeat size varies around 
a few tens of copies, while in affected 
individuals the number of copies at the 
same locus reaches at least hundreds. 

Definitions 

Nucleotide and protein sequences are 
represented by character strings, in which 
each element is one out of a finite number of 
possible symbols of an “alphabet.” In the 
case of DNA sequences, the alphabet has four 
symbols and consists of the letters A, T, C 
and G, corresponding to Adenine, Thymine, 
Cytosine and Guanine nucleotides. 

A perfect (exact) repeat is a string that can be 
represented as a smaller string repeated 
contiguously twice or more. For example, 
ACACAC is a repeat, as it can be represented 
as string AC repeated three times. The length 
of the repeated pattern is called the period (2 
for the case of ACACAC), and the number of 
pattern copies is called the exponent (3 for 
ACACAC). If the exponent is 2 or more, the 
repeat is usually called a tandem repeat (TR). 
Repeats, whose copies are distant in the 
genome, whether or not located on the same 
chromosome, are called distant/dispersed 
repeats. Among those, biologists distinguish 
micro-satellites, mini-satellites, and satellites, 
according to the length of their repeated unit. 

However, perfect tandem repeats are of 
limited biological interest, since different 
biological events will often render the copies 
imperfect [3]. The result is an approximate 
tandem repeat (ATR), defined as a string of 
nucleotides repeated consecutively at least 
twice with small differences between the 
instances. The role of ATRs discovered by 
using some of the algorithmic approaches is 
limited by constraints on the input data, search 
parameters, the type of allowed mutations and 
the number of such mutations. In other ATRs, 
time requirements render the algorithm 
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infeasible for the analysis of whole genomes 
containing millions of base pairs (bp). 

The centromere of most complex eukaryotic 
chromosomes is a specialized locus 
comprised of repetitive DNA that is 
responsible for chromosome segregation 
during mitosis and meiosis. Alpha satellite 
DNA has been identified at every human 
centromere. There are two major types of 
alpha satellite: higher-order and monomeric 
[4]. Higher-order alpha satellite is the 
predominant type in the genome (megabase 
quantities at each centromere) and made up 
of ~171 bp monomers organized in arrays of 
multimeric repeat units that are highly 
homogeneous. Monomeric alpha satellite lies 
at the edges of higher-order arrays and lacks 
any higher-order periodicity; its monomers 
are only on average ~70% identical to each 
other [4]. 

2. Methods 

Applying a transform technique requires 
mapping the symbolic domain into the 
numeric domain such that no additional 
structure is placed on the symbolic sequence 
beyond that inherent to it.  

One common representation is to map 
nucleotides to a set of indicator sequences in 
order to indicate the presence or absence of a 
nucleotide in a certain position [5]. Consider 
a sequence (ak), k=0,..,N-1 from the alphabet 
A4={A, C, G, T}. For each different letter α 
in A we form an indicator sequence xα,[k], 
k=0,..,N-1 such as: 
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
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And it is obvious that: 

 
j

j kallforkx ,1][  (2) 

This approach produces a four-dimensional 
representation yielding an efficient 
representation for spectral analysis. 

One simple representation is to use numbers 
assigned to each nucleotide which preserve 
the DNA’s reverse complementary properties 
[6], such as: 

3210  T,C,G,A  (3) 

Or 

4321  T,C,G,A  (4) 

Another representation uses geometrical 
notations taken from the telecommunication 
QPSK constellation [7]: 

- j-j, C--j, Gj, TA 1111   (5) 

This representation was useful for nucleotide 
quantization to amino acids and in 
autocorrelation analysis. 

A different representation - inspired from 
pulse amplitude modulation (PAM) - which 
preserves the DNA’s reverse complementary 
properties [8] uses discrete numerical values 
which are symmetric about y-axis: 

51505051 ., T., C.-, G.-A   (6) 

All previous representations are punctual 
ones: they associate a numerical value to one 
position in the sequence using numerical 
values associated to each nucleotide and, 
finally, reflect the presence or the absence of 
a certain nucleotide in a specific position. 

Starting from these representations we 
introduced two novel representations to 
include information about the number of 
consecutive nucleotides and to reduce the 
dimensionality of representation by obtaining 
only one numerical sequence for each DNA 
subsequence which may be associated with a 
repeat [9, 10]. 

Often, the pattern of the repeats contains 
repeated subsequences of the same 
nucleotide. For example, 11mer repeats from 
Table 1, shows subsequences of repeating 
nucleotides like CC, TTT, GGG. In order to 
emphasize these subsequences we used a 
modified form of indicator sequences.  

First, the indicator sequences are modified to 
include the repeating factor m as the number 
of consecutive positions with the same values 
in the sequence [9]: 
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Consider the nucleotide sequence: 
TGACTTTGGGG. The modified indicator 
sequences which include the repeating  
factors are: 
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00003330001][

44440000010][

00000001000][

00000000100][
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Second, the expected repeated factors in the 
repeat sequence, for each nucleotide, are 
included in the indicator sequences by 
limiting the initial repeat factor to the 
expected repeat factor in the repeat sequence. 
Assuming the next expected repeating factors 
for each nucleotide: rA=1, rC=2, rG=3, rT=2 
then the final indicator sequences become: 

00002220001][

33330000010][

00000001000][

00000000100][


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A

 (9) 

DNA spectral analysis would be simpler if 
we could use only one numerical sequence 
instead of four indicator sequences. One way 
to do this was proposed in [4, 7, 11] as 
quartic mapping. In this case, the numerical 
sequence is given by: 

1,...,2,1

],[][][][][




Nk

kxgkxckxtkxakx GCTA  (10) 

Where a, t, c, and g are numerical values 
assigned to the nucleotides A, T, C, and G, 
respectively.  

The coefficients used in (10) can be: 

 Consecutive integer values based on the 
nucleotides appearing frequencies in the 
original sequence. For example, these 
values can be a=4, t=3, c=2, g=1 if the 
nucleotides frequencies are in this order. 

 Consecutive integer values like in (3) and (4). 

 Numerical values from (6). 

 Electron-ion interaction pseudo-potential 
values for nucleotides [12]: 

0.1335 t0.1340,c

 0.0806,g 0.1260,a


  (11) 

In order to increase DNA spectral analysis 
accuracy for repeats detection, we proposed a 
sequence representation and a mapping 
algorithm [9, 10], which takes into account 
the length of the expected repeats and the 
number of possible mismatches because of 
point mutations.  

For a DNA sequence of length L a numerical 
value is associated in a polynomial-           
like representation: 
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k
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


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where Vα is the value of a single nucleotide.  

One possibility is to use consecutive natural 
numbers, preserving DNA’s reverse 
complementary properties, such as A=1, 
G=2, C=3, T=4. Another possibility is to use 
consecutive natural numbers (e.g. 1, 2, 3, and 
4) based on nucleotides frequencies in the 
original DNA sequence. 

But for two very similar sequences (which 
differ, for instance, by a single nucleotide) 
will get two very different numbers. So it 
takes an algorithm that allows finding similar 
sequences and then generates single 
numerical values for these sequences. 

The following input values are needed:  

 A DNA sequence of length N; 

 The length of expected repeated 
sequence, L; 

 The maximum number of mismatches in 
the repeated sequences, Mm. 

To pass from DNA sequence to numerical 
values, Hamming distance and consensus 
value are needed: 

 Hamming distance measures the number of 
mismatches between sequences of the same 
length [13]; if two sequences are identical 
then the Hamming distance is zero; 

 Given a number of sequences of the same 
length, the consensus sequence is a 
sequence formed by the most frequent 
nucleotide in the same positions. 

The mapping algorithm is summarized bellow: 

 Step 1: Consider all successive 
subsequences of length L in the initial 
DNA sequence; 

 Step 2: Determine all the positions (and 
the associated subsequences of length L) 
in the original sequence for which the 
Hamming distance (against a sequence 
from Step1) is less or equal to the 
prefixed mismatches number Mm; 
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 Step 3: Determine the consensus 
sequence for all subsequences from 
Step2, starting at these positions; 

 Step 4: Compute the numerical value for 
consensus sequence (using 12) and assign 
this value to all these positions. 

As output, the algorithm generates a single 
vector, SeqVal, of (N-L) numerical values; 
each value it is associated to a unique 
subsequence of length L (possible a repeat 
unit). We also need a vector, Dist[N], to store 
the distances for a sequence of length L, 
starting on a given position, to all other 
subsequences of same length L, starting on 
all possible positions. 

This mapping algorithm has the          
following properties: 

 Even for an L value smaller than the 
actual length of repeated sequence, the 
final numerical sequence will highlight a 
repeat. 

 If the L value is a prime factor of 
repeated sequence length then the entire 
repeated sequence will be emphasized. 
This allows a significant reduction of the 
computational effort. 

The algorithm can be improved if the 
Hamming distance and the consensus 
sequences are evaluated only in the forward 
direction (from the current position) and 
exclude first L subsequences starting from 
current position (these ones makes no sense 
to evaluate the distance).  

Here is the pseudocode description of         
the algorithm: 

 

Function GetDistance() computes the 
Hamming distance between the subsequence 
starting at current position and other 
subsequence (of the same length) which has 
different position (in forward direction). 
Function GetConsensus() determines the 
consensus sequence for all subsequences of 
length L, whose positions are stored in the 
Dist[] vector; function GetValue() computes 
the associated numerical value for the 
consensus sequence, using (12). 

The algorithm can be further improved if    
we consider: 

 Using negative values to reflect available 
positions in Dist[] vector; 

 Storing positions of similar subsequences 
in another vector (PozSimilar[]); 

 Replacing already calculated distances 
only if the newer distance is lower than 
the existing distances. 

Below is the pseudocode description of the 
mapping algorithm which includes the 
improvements described above: 

 

foreach curr_pos in (0,…, N - L) 
{ 
   foreach calc_pos in (curr_pos +  L,…,N - L) 
  { 
      Dist[calc_pos] =  
GetDistance(curr_pos,calc_pos, L); 
      if (Dist[calc_pos] > Mm) 
         Dist [calc_pos] = -1; 
  } 
  consensus = GetConsensus (Dist, L); (13)
  val = GetValue (consesnsus, L); 
  foreach calc_pos in (curr_pos + L,…,N-L) 
  { 
    if (Dist [calc_pos] >= 0) 
      SeqVal [calc_pos] = val; 
  } 
} 

foreach curr_pos in (0,…, N - L) 
{ 
  Dist[curr_pos] = -1; 
} 
foreach curr_pos in (0,…, N - L) 
{ 
  if (seqVal[curr_pos] >= 0) 
   continue; 
  cnt = 0; 
  foreach calc_pos in (curr_pos + L,…,N - L) 
  { 
    dd = GetDistance(curr_pos, calc_pos, L); 
    if (dd < Mm) 
    { 
      if (Dist[calc_pos] < 0) OR (dd <  
        Dist[calc_pos])) 
       { 
         Dist[calc_pos] = dd; 
         PozSimilar[cnt] = calc_pos;  (14)
         cnt++; 
      } 
   } 
} 
if (cnt > 0) 
{ 
  consensus = GetConsensus (Dist, L);  
  val = GetVal (consesnsus, L); 
   foreach i in (0,…,cnt-1) 
  { 
    SeqVal [PozSimilar[i]] = val; 
    } 
  } 
 SeqVal[curr_pos] = val; 
} 
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To analyze the algorithm’s complexity we 
have considered major operations categories 
of the algorithm: 

 Calculating distance between two 
subsequences:  

◦ In the worst case, no similar 
subsequences at all, and the complexity 
is O(n2); each distance implies L 
comparisons between two characters; 

◦ Once you have determined several 
similar subsequences and a numerical 
value was associated, the 
corresponding positions are no longer 
used in the outer iteration. Increasing 
the number of similar subsequences 
decreases the number of distance 
evaluations. In this way the number of 
such operations will decrease. 

 Determining the consensus sequence for 
similar subsequences founded at a time: 

◦ In the worst case, one evaluation for 
each current position, the complexity is 
O(n); 

◦ If there are repeated sequences, the 
number of calls decreases but is applicable 
to a growing number of subsequences; if 
there are no repeated sequences, the 
number of calls is higher but applies to a 
small number of subsequences; 

◦ Again, once you have determined several 
similar subsequences and a numerical 
value was associated, the corresponding 
positions are no longer used in the outer 
iteration, hence the number of such 
operations will decrease. 

◦ Determination of consensus sequence 
among n subsequences of length L 
involves counting types of nucleotides 
in each position and then, at least three 
comparisons between these numbers. 

 Calculating the numerical value 
associated to the consensus sequence: 

◦ The first considerations in the previous 
case apply also here; 

◦ Determining the numerical value 
associated to a subsequence of length L 
involves calculating the value of a 
polynomial function of degree L. 

Mm parameter influences the algorithm’s 
performance. Thus, a high value increases the 

probability of finding similar subsequences 
when low values significantly reduce the 
number of similar subsequences. 

Our implementation uses a threshold to prevent 
the determination of consensus sequence and 
the associated numerical value in case of a 
small number of similar subsequences. 

The proposed algorithm has the advantage of 
simplicity. Generates only one numerical 
sequence containing embedded information 
about the repeated sequences searched for 
(length and number of mismatches) which 
can be exploited later. Also, no additional 
structures or special memory requirements 
are needed and if the length of the repeated 
sequence admits divisors, computing effort 
can be reduced substantially. The main 
limitation is related to increased complexity 
(O(n2) related to distance evaluation) and a 
priori information about the length of the 
repeat and the maximum number of 
mismatches (in most of the situations, 
biologists know this information in advance. 

3. Results 

Case study 

Our intention was to study numerical 
representations on short sequences with a 
small number of short repeats and on large 
sequences with alpha satellites. Well known 
and analyzed sequences were used to validate 
the new numeric representations, without 
introducing new information regarding 
repeated sequences from these nucleotide 
sequences. Our case study was the human 
microsatellite sequence M65145 (GenBank) 
and the 16mer high order repeat in 
AC017075 sequence from human 
chromosome 7 (GenBank). Table 1 lists the 
repeats values and positions from M65145 
microsatellite [14].  
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Table 1. - 11mer Repeats in the Microsatellite 
M65145 [14] 

Position Sequence 

131–141 T G A C C T T T G G G 

157–167 T G A C C T T G G G G 

256–266 T G A C T T T A G G G 

300–310 T T T C T T T G G G G 

322–332 T G A C T T T G G G G 

346–356 T G A T T T T G A G G 

411–421 T G A C T T T G A A G 

458–468 T G A C T C T G G G G 

634–644 T G G C T T G G G G G 

738–748 T G T C T C T G G G G 

Consensus 
sequence 

T G A C T T T G G G G 

In case of AC017075 high-order repeats 
(highly homogeneous, organized in arrays of 
multimeric repeat units) were identified in the 
central domain (positions 31338 to 177434, 
total length 148147 bp) while in the front 
domain of genomic sequence (31337 bp) and 
in the back domain (15843 bp), alpha satellite 
monomers (which exhibit substantial mutual 
sequence divergence) were found [4, 11]. 

In the next sections, DNA power spectrum 
was computed and then represented as 
spectrograms using different numerical 
representations in order to detect repeats in 
micro-satellite M65145 and in alpha satellite 
DNA AC017075. The spectrograms were 
obtained using a custom application 
developed in Delphi. 

DNA Spectral Analysis Using  
Indicator Sequences 

Spectral analysis may be performed by taking 
the Discrete Fourier Transform (DFT) of 
each of the indicator sequences [6, 7]. 
Applying DFT definition to all indicator 
sequences, for alphabet A4, we obtain other 
sequences XA[k], XC[k], XG[k], and XT [k]: 

1,...,1,0,)][(][
21

0





 NkemnxkX

kn
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


 (15) 

Where: 
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n

 





 (16) 

Subtracting of the mean of each indicator 
sequence is used to avoid interference from 
the dc component of the Fourier spectrum. 

The sequences XA[k], XC[k], XG[k], and XT 
[k] provide the total spectrum of the DNA 
sequence [8, 14, 15, 16]: 

2222
][][][][][ kXkXkXkXkS TGCA  (17) 

In most cases S[k] has a peak at the sample 
value k=N/3, as shown in other papers [18, 
19]. This is the so called period-3 property of 
the DNA sequences and has often been 
attributed to the dominance of the base G at 
certain codon positions in the coding regions. 
This period-3 component seems to appear 
because of the codon structure involved in the 
translation of base sequences into amino 
acids. For eukaryotes (cells with nucleus) this 
periodicity has mostly been observed within 
the exons (coding subregions inside the 
genes) and not within the introns (noncoding 
subregions in the genes). This is the reason 
why the period-3 property was regarded to be 
a good (preliminary) indicator of gene 
location [17, 18, 19]. The periodic behaviour 
indicates strong short-term correlation in the 
coding regions, in addition to the long-range 
correlation or 1/f-like behaviour exhibited by 
DNA sequences in general. 

The spectrum peak at 1/3 indicates the 
presence of exons. The window length N 
should be large enough so that the periodicity 
effect dominates the background 1/f 
spectrum. However, a long window 
compromises the base-domain resolution in 
predicting the exon location. 

These spectra can also be used to compute a 
Fourier product spectrum [20, 21] such as: 





},,,{

1,...,1,0,][][
CGTA

NkkXkP


  (18) 

where Xα[k] is the DFT of the mean removed 
indicator sequence. 

Multiplication as a nonlinear operation is 
used to enhance peaks in a product spectrum. 
If a period p repeat exists in the DNA 
sequence, P[k] should show a peak at 
frequencies f =1/p, 2/p, 3/p,… The period p 
can thus be inferred from the peak location 
but the period is limited by the window 
length (N).  
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When a nucleotide is absent from a given 
(windowed) DNA sequence, one of the 
indicator sequences will be zero for all n. 
Thus, the product defined by (18) will be 
equal to zero. To avoid this, a modified 
product spectrum is defined, as: 





},,,{

1,...,1,0),][(][
CGTA

NkckXkP



 (19) 

where c is a small positive constant. 

The product spectrum of a genome sequence 
enables to detect the presence of repeats 
based on the spectral peaks. But not all peaks 
are significant. A threshold T can be used to 
find peak candidates such that P[k]/Pm>T, 
where Pm is the frame spectral product 
average [16]. Now, the candidate peaks can 
be isolated and the length of repeat, Ni=1/fi 
can be estimated. 

 

However, doing this on a frame-by-frame 
analysis is difficult. A detection technique for 
the start and end position of the repeats 
regions is needed. Once we have detected a 
local repeat and we’ve identified its 
fundamental period, we need to identify what 
subsequence in our window corresponds to 
the local repeat. Instead, P[k] can be used to 

represent DNA sequence spectra in another 
way, namely in grey level spectrograms. 
Colour and grey-levels spectrograms were 
used to analyze nucleotide sequences [7, 16] 
due to their capacity to provide a global view 
of categories of spectra for sequences of high 
length. At the same time they allow easy 
observation of patterns that appear in the 
spectra and do not require a priori 
information related to the repeated sequences 
(length, structure, mutations number or type). 
So, grey-levels spectrograms can be used to 
validate previous numerical representation 
because it provides an overview and allow 
rapid and easy determination of the presence 
of repeated sequence. 

Figure 1 shows sum and product spectrum 
spectrograms using 256 DFT for 
microsatellite M65145 sequence (GenBank).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spectrograms were generated using a 
threshold value set to T=3.5 and a global 
normalization for image. In this way, only 
significant peaks from P[k] will be 
represented and it is easier to identify the 
presence of repeats and the associated length. 
In this case repeats appear as horizontal lines 
(more or less continue) at frequencies values 

 

Figure 1. Spectrograms for M65145 microsatellite (256 DFT) a) Sum spectrum spectrogram. b) Product 
spectrum spectrogram. 
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f1=24, f2=48 (frequency value indicates 
repeats length). Value f1=24 correspond to a 
11mer repeats (256 div 24) while the line at 
f2=48 suggest that some 5mer repeats are part 
of 11mer repeats. Horizontal positions of 
repeats indicate starting positions of windows 
for which DTF is calculated. This is 
approximate information about the location 
of repeats in original sequence.  

Comparing the two types of spectrum it 
follows that: 

 Sum spectrum appears "dirty" with much 
additional information such as repeats are 
harder to detect. 

 Product spectrum is clean, with line 
segments directly related to repeats, but 
repeats are quite attenuated compared to 
the sum spectrum. 

 In case of product spectrum, repeats in 
the upper area (634-644, 738-748) are not 
well highlighted. 

 

Spectrogram offers a global view of product 
spectrum but it is difficult to estimate the 
location of repeats even if horizontal axis 
contains nucleotide position. This can be 

done by calculating and representing the 
values of P[fi] in a sliding window along the 
sequence [15, 16, 22]. 

Figure 2.a presents the product spectrum 
values P[f1] of the same sequence using 
threshold T=3.5 to eliminate weak peaks. In 
this case, is easy to identify the regions 
containing the repeats (11mer repeat) as those 
where peaks are significant. 

Figure 2.b presents the product spectrum 
values P[f2] of the same sequence. In this 
case, the peak positions indicate that 11mer 
and 5mer repeats are located in the same 
region and some 5mer repeats may be part of 
11mer repeats. All repeats from Table 1 can 
be found among maxima of P[f1=24] and 
some of them are also present among maxima 
of P[f2=48].  

Since the length of the repeat (1/fi) and the 
region containing the repeats are both 
completely specified, the actual repeats can be 
identified by a heuristic local alignment method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Product spectrum values in a sliding window along the DNA sequence (for M65145). a) P[f1] 

along DNA sequence; b) P[f2] along  DNA sequence. 
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Next Figure (3) shows sum spectrum and 
product spectrum grey-level spectrograms for 
alpha satellite DNA AC017065         
sequence (GenBank).  

 

In this case: 

 Sum spectrum allows a good estimate of 
the repeat length (≈171bp) by the 
position of first horizontal line, f≈12 (171 
≈ 2048 div 12) and number of repetitions 
(number of equidistant horizontal lines); 

 Product spectrum does not reveal the 
number of repetitions but allows a better 
localization of areas with repetitions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNA Spectral Analysis Using Modified 
Indicator Sequences 

In this case the new indicator sequences are 
calculated using (7) and with different repeating 
factors for each nucleotide. Then, the total 
spectrum is computed using (17) or (19) and 
represented in grey-level spectrograms. 

 
Figure 3. Grey-level spectrograms for AC017065 (2048 DFT) a) Sum spectrum spectrogram b) Product 

spectrum spectrogram 
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Figure 4 shows sum spectrum grey-level 
spectrograms for microsatellite M65145 
sequence (GenBank) using modified 
indicator sequences with different values for 
the expected nucleotide repeating factors rG 

 

and rT. As it can be seen, an increase of 
repeats factors rG and rT allows a decrease of 
residual information but repeats are still hard 
to locate (especially in the upper area). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Sum spectrum spectrograms using modified indicator sequences (for M65145, 256 DFT). a) 
rA=1, rG=1, rC=1, rT=2; b) rA=1, rG=2, rC=1, rT=2; c) rA=1, rG=2, rC=1, rT=3.  
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Figure 5 shows product spectrum grey-level 
spectrograms for the same microsatellite 
M65145 sequence (GenBank) using modified 
indicator sequences with different values for 
expected nucleotide repeating factors rG and 
rT. As one can see, f1 and f2 frequencies are 
more highlighted as rG and rT repeating factors 
are increased. These values correspond to the 

 

repeating factors of nucleotides G and T in 
the consensus sequence from Table 1. On the 
other hand, the product spectrum values for 
other frequencies are diminished such that 
spectrogram zones associated with repeats 
can be more easily localized. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5. Product spectrum spectrograms using modified indicator sequences (for M65145, 2048 DFT). 

a) rA=1, rG=1, rC=1, rT=2; b) rA=1, rG=2, rC=1, rT=2; c) rA=1, rG=2, rC=1, rT=3. 
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DNA Spectral Analysis Using Quartic 
Mapping 

The new sequence, x[n] is calculated using 
(10) and different values for a, c, g, t 
coefficients from (3), (4), (6) and (11). 
Finally x[n] is used to compute power 
spectrum which is represented using grey-
level spectrograms. 

 

Next figure (6) shows grey-level 
spectrograms for microsatellite M65145 
sequence (GenBank) using different values 
for coefficients implied in (10). 

In this case: 

 Repeats of the lower zone are well 
highlighted by all variants; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Spectrograms for M65145 using quartic mapping (256 DFT). a) a=1, g=2, c=3, t=4; b) a=0, 
g=1, c=2, t=3; c) using PAM inspired values; d) with pseudopotential values. 
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 Repeats of the upper zone are not 
highlighted by any variant; 

 PAM inspired values variant gave the 
best results. 

Figures 7 shows grey-level spectrograms for 
satellite AC017075 sequence (GenBank) 
using different values for coefficients implied 
in (10). Repeats length (≈171bp) is shown by 
the first horizontal line at a frequency f≈12 
(171 ≈ 2048 div 12). Repetition number (16) 

 

should be given by the number of equidistant 
lines starting from f≈12. 

As can be seen: 

 All off the approaches used in this research 
allows length determination of the repeated 
sequences but the repetition number is not 
clearly evidenced by any alternative; 

 Again, PAM inspired values variant gave 
the best results (Figure 7.c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Spectrograms for AC017075 using quartic mapping (2048 DFT). a) a=0, g=1, c=2, t=3; b) a=1, 
g=2, c=3, t=4; c) using PAM inspired values; d) with pseudopotential values. 
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DNA Spectral Analysis Using 
Polynomial Representation 

In this case, the new sequence, x[n] is 
calculated using (12) and algorithm (14) with 
different values for expected repeats length (L) 
and number of mismatches (Mm). Finally, x[n] 
is used to compute power spectrum which is 
represented using grey-level spectrograms. 

Several experiments were conducted with 
different values for the parameters L and Mm. 
Below are the best results for certain values 
of parameter L. 

 

Figure 8 shows grey-level spectrograms for 
microsatellite M65145 sequence (GenBank) 
using different values for L (repeat length) 
and those Mm values with best results 
(number of mismatches). 

In this case:  

 All Mm values allow a good highlighting 
of repeats in the lower zone and        
upper zone; 

 Values Mm=2 and Mm=3 allow the direct 
evidence 11mers repeats in all zones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Spectrograms for M65145 using polynomial mapping (256 DFT). a) L=11, Mm=2; b) L=11, 
Mm=3; c) L=11, Mm=4. 
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Next Figure (9) shows grey-level 
spectrograms for satellite AC017075 
sequence (GenBank) using different values 
for the same parameters L (repeat length) and 
Mm values with the best results (number        
of mismatches). 

 

Analyzing the above figures, we can 
formulate the following conclusions:  

 All figures allow the isolation of the area of 
a high-order repeat alpha satellite (27000 
bp-176000 bp) and areas with monomeric 
alpha satellite in the front domain and back 
domain of genomic sequence; 

 The length of the repeat is best evidenced 
when L is increased (L=19); 

 Repetition number appears clearly only 
in Figure 9.b (L=19); 

 It is sufficient to use divisors of repeat 
length (171: 9, 19) for L values; this 
allows a significant reduction in the 
number of searches; 

Mm values affect the quality of the results. 
The best results were obtained for values of 
30-40% of L value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusions 

Fourier analysis and grey level spectrograms 
provide a robust detection method for DNA 
repeats. Repeats are easily recognizable by 
regular horizontal lines, which give 
information about repeat length and number 
of repeats. However, DNA numerical 
representation affects the results of the 
analysis. We’ve used several numerical 
representations and we’ve evaluated the 
qualitative differences that have appeared in 
the spectrograms. Tests were conducted on 
short sequences with microsatellites and on 
long sequences containing alpha satellite 
DNA repeats. 

 

Figure 9. Spectrogram for AC017075 using polynomial mapping (2048 DFT).                       
a) L=9, Mm=4; b) L=19, Mm=6. 
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In case of short sequences with short repeats 
(like M65145):  

 Using plain indicator sequences with sum 
spectrum does not lead to good results; 

 Using plain indicator sequences with 
product spectrum allows significantly 
better results than sum spectrum; 

 Adding a supplementary information 
(repeating factor for nucleotides within 
target repeats) to the indicator sequences 
leads to slightly better results for sum 
spectrum and better results for       
product spectrum; 

 Quartic mapping allows obtaining very 
good results for repeats in the lower area 
but does not emphasize repeats in the high 
area. The best results are obtained using 
PAM inspired values, which respect the 
nucleotides complementary properties. 

 Using a polynomial representation (with 
additional information related to the 
repeats’ length) allows obtaining the best 
results, with evidence of all repetitions 
for an adequate value of Mm (number      
of mismatches).  

In case of long sequences with DNA alpha 
satellites (AC017075): 

 Using plain indicator sequences and sum 
spectrum allows a good estimate of the 
repeat’s length and number of repetitions 
while product spectrum does not reveal 
the number of repetitions but allows a 
better localization of areas which   
contain repetitions; 

 Quartic mapping allows obtaining good 
results with all variants. Again, PAM 
inspired values give the best results; 

 Using a polynomial representation (with 
additional information related to the 
repeats’ length) allows obtaining the best 
results, with evidence of all repetitions for 
an adequate value of Mm. In both cases, 
for polynomial representation, Mm values 
affect computational effort and the quality 
of the results. If the values used for Mm are 
too small or too large, this may damage 
results. The values of this parameter are 
chosen using biological criteria. 

Inclusion of additional information (such as 
nucleotide repeating factor within target 
repeat) or using a numerical representation 
which respects DNA’s chemical properties 
allows the obtaining of better results. If the 
length of the searched repeats is known, 
polynomial representations lead to the best 
results regardless of repeat length. In 
addition, if the length of repeated sequence 
admits divisors, computational effort can be 
reduced substantially but a preprocessing 
stage is necessary to obtain the associated 
numerical sequence. 
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