
Studies in Informatics and Control, Vol. 20, No. 1, March 2011 http://www.sic.ici.ro 31

1. Introduction

To face new consumer centered
manufacturing paradigms, like mass
customization and personalization, factories
must be capable to adapt themselves in real
time to continuously changing market
demand. Thus, the whole production cycle
for small or even single batches has to be
executed in very short times, i.e. a few days
or even hours. In order to properly approach
such complex and strict requirements
adaptive knowledge based production
systems have to be developed. In particular,
the conception and development of a new
generation of automation solutions, that
integrate all factory levels from machines
controls up to shop-floor supervision and
production planning in a unique real time
framework, is mandatory. Future factory
automation systems have to be modular,
open, agile and knowledge based in order to
promptly self-adapt themselves to changing
exogenous conditions, like consumers
expectations, market dynamics, design
innovation, new materials and components
integration. To such an aim, a new generation
of intelligent, highly-interoperable and self-
reconfigurable control systems is a fundamental
enabling technology.

To tackle such a challenge, agile
manufacturing paradigms - particularly
flexible manufacturing systems (FMS) - have
been adopted, often proving to be expensive
and difficult to manage due to overall
complexity. Furthermore, the integration of
flexibility capability is not feasible for any

kind of application. Therefore, to overcome
such barriers and to provide cost effective
flexible solutions, Reconfigurable
Manufacturing Systems (RMS) have been
introduced, characterized by strongly
modular architectures and easy
reconfiguration capabilities. Therefore,
modularity, integrability, diagnosability,
customization and convertibility are
identified as key features of a RMS [1].
Among these, system modularity can surely
be considered the most important property, as
outlined in [2] where implications and
relationships between the architecture of a
logic control system, its modularity and the
overall system reconfigurability, are
discussed. The problem of agile systems
reconfiguration has been faced mainly from
the mechanical point of view with the
development of easily pluggable mechatronic
solutions. Nevertheless, proper solutions
addressing a fully modular and
reconfigurable control system have still to be
identified. As a matter of fact, present
automation approaches and architectures -
adopted in current industrial practice - are
still based on rigid, loosely-coupled solutions,
difficult to manage and to adapt, while
current methods and tools for control system
programming do not effectively support
control system reconfigurability [3]. Thus,
the integration of a new device within the
overall production system, or the replacement
of a faulty device, very often requires a
critical stop of the system, to perform
physical connections and allocations of the
new device, as well as partial/total
reprogramming of some parts of the control

Reconfigurable Knowledge-based Control Solutions
for Responsive Manufacturing Systems

Alessandro Brusaferri, Andrea Ballarino, Emanuele Carpanzano

Institute of Industrial Technologies and Automation, National Research Council,
via Bassini 15, Milan 20133, Italy,
{alessandro.brusaferri, andrea.ballarino, emanuele.carpanzano}@itia.cnr.it

Abstract: Nowadays, a new generation of responsive factories is needed to face continuous changes in product
demand and variety, and to manage complex and variant production processes. To such an aim, innovative self-
adaptive automation solutions are required, capable to adapt their control strategies in real-time to cope with planned
as well as unforeseen product and process variations. In such a context, the present paper describes an automation
solution based on a modular distributed approach for agile factories integration and reconfiguration, integrating a
knowledge based cooperation policy providing self-adaptation to endogenous as well as exogenous events. The
proposed approach is discussed through its application to a plant for customized shoes manufacturing.

Keywords: Distributed Control, Reconfigurable Manufacturing Systems, IEC 61499, Multi-agent, Semantic Web.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 1, March 2011 32

system, and modifications in production
plans, which need time consuming testing
and commissioning operations to be executed
afterwards [4].

The present paper proposes a self-adaptive
control solution in order to support the RMS
agility. Particularly, Section 2 briefly
analyzes the current state of the art related to
the development of self-adaptive control
solutions for RMS and summarizes the main
features to be guaranteed. Section 3
introduces the IEC 61499 standard exploited
for the control solution design. In Section 4
the considered industrial application case is
presented. In Section 5 the proposed control
solution strategy, architecture and
implementation are illustrated, highlighting
the exploited paradigms and tools. Section 6
describes how the control solution has been
verified by means of simulation based
methods. Finally, Section 7 addresses
conclusions and next developments.

2. Requirements and Available
Technologies

RMS architecture and requirements

Typically, Reconfigurable Manufacturing
Systems architectures may be structured into
three major hierarchical layers as shown in
Figure 1: unit level, cell level and system
level. In particular, the overall system is
composed by the aggregation of different cell
modules, according to the system layout,
while each cell module is constituted by the
aggregation of more units. Such units can be
either operating machines or modules
dedicated to parts handling and
transportation, e.g. conveyors, rotating tables
and manipulators.

Figure 1. RMS overall architecture.

Starting from last sampled status of
underlying controlled objects, each module of
the RMS control system - being unit control
module, cell control module or system
control module – decides and performs its
control actions according to the fixed
decision policy defined and hard-coded
during the control system development phase.
The interactions among modules are
established ex ante and implemented
according to fixed bindings among different
modules interfaces. Such a strictly coupled
architecture is very difficult to modify during
RMS reconfiguration phases, as time and
costs required for such operations grow
rapidly with the increase in system
complexity. To such an aim, a new
generation of loosely–coupled control
architectures, based on a distributed easy-
reconfigurable architecture, integrating a
flexible knowledge based decision policy, has
to be introduced.

Available enabling technologies

Today, the required levels of modularity and
distribution of control solutions are not
properly adopted in industrial practice due to
the lack of well defined and accepted
reference models. Major consequences of this
lack are twofold. First of all, implemented
control and supervision strategies are today
typically based on rigid centralized
approaches organized into strictly coupled
sequences of operations. Difficulties in
reconfiguration and in real-time adaptation to
production needs are most relevant resulting
problems. As a second major consequence,
suitable readability, portability and
integrability of overall control and
automation solutions are not supported.
Therefore, the capitalization and reuse of
company specific know-how on process and
control is very difficult. Flexibility,
optimization and failure management features
are not properly tackled as well, thus
critically impacting the overall production
process efficiency and fault tolerance.

Great research efforts have been spent in
recent years to conceive a common and well
accepted reference model. In such a direction,
the multi-agent system (MAS) paradigm shall
be mentioned as one the major efforts for
development of robust distributed control
systems. Such a paradigm is based on

Studies in Informatics and Control, Vol. 20, No. 1, March 2011 http://www.sic.ici.ro 33

autonomous modules, which integrate
knowledge-base for decision making
inference, high-level communication
protocols and languages to support loosely
coupled architectural organizations [5].
Despite its potential capabilities, major limits
of such an approach for complex industrial
test-cases reside in difficulties of
guaranteeing strict execution time
requirements.

Recently different research projects, as
SIRENA[6], RIMACS[7], SOCRADES[8],
have considered an alternative architectural
solution for developing systems composed of
autonomous and interoperable units: the
Service Oriented Architecture - SOA. Such
paradigm is characterized by coarse-grained
service interfaces, loose coupling between
service providers and service consumers, and
message-based, asynchronous communication
systems [9]. Leveraging the SOA paradigm
allows services to be re-used across processes
and systems, and systems to be "built for
change". Reliability is improved as
applications and systems can be made up of
tested and proven components. SOA offers
the potential to provide the necessary system-
wide visibility and interoperability in
complex systems subject to frequent changes
and operating in a multi-vendor environment.
Nonetheless, Service Oriented solutions are
still unable to reach the hard-real time
constraints in particular for controlling
complex manufacturing processes with huge
amounts of data and high numbers of units.
Furthermore, the decisional logic is not
directly supported by SOA, thus, intelligence
has to be integrated onto the SOA level. In
particular, self-adaptivity needs self-
interoperability of information: the
knowledge has to be structured in order to be
understood by autonomous intelligent agents
able to interpret the boundary conditions and
to take the proper decisions. For such reason,
a major research effort is ongoing widespread
to exploit the adoption of Semantic Web
approaches into the factory automation
domain. Such paradigm is oriented to the
adoption of machine interpretable
information supporting the implementation of
intelligent control solutions based on formal
knowledge models. Particularly, the formal
definition of classes’ properties and instances

allows inferring new knowledge from the one
already structured into a model.

To cope with real time distributed control, a
formal model has been proposed within the
IEC 61499 standard of the International
Electro technical Committee, also promoted
by the international O3NEIDA network [10].
The normative states the common interfaces
and structure of the embedded solutions from
simple basic function blocks, to composite
functional integrations, up to overall control
systems applications. It also provides
guidelines for the application distribution
within multi-vendor control execution
devices. Nonetheless, it does not provide
structured indications related to self-adaptive
control systems design.

Several research actions have been also
oriented to the integration of the low level,
hard real-time, control layer and the high
level, low real-time, control/supervision
layer. In particular, [11] propose an interface
for the integration of a heterogeneous low
level control based on IEC 61499 standard
and a Multi-Agent System for the
manufacturing domain. [12] proposes the
integration of Service Oriented Architecture
and a Multi-Agent System (MAS) in order to
build a control architecture suitable for
automated reconfigurability. [13] introduces a
holonic manufacturing control architecture
integrated with the logic control layer,
designed to improve the agility and
reconfigurability of production systems.
Despite the performed research efforts and
the emerged benefits, such paradigms are
currently not implemented within industrial
solutions. In fact, the real world applicability
needs to be demonstrated through complex
industrial test cases highlighting the concrete
advantages and providing guidelines for
industrial applications.

Such open problems will be approached
within the following sections while
describing main architectural and functional
aspects regarding the proposed self-adaptive
control solution. In particular, starting from
the process specification, a modular and
distributed control architecture has been
defined, integrating a real-time IEC 61499
distributed control layer and a multi-agent
semantic enriched control and supervision
layer. Furthermore, a real industrial plant is

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 1, March 2011 34

considered as a test-case in order to properly
support the description and provide
application details. The proposed solution can
be integrated within any manufacturing
automation system. Therefore, a proper
configuration of specific control rules and
knowledge base classes is required.

3. IEC 61499 Based Control
System Design

In the present approach, in order to achieve
the desired agility objectives, object-oriented
concepts have been exploited within control
system development. To such an aim, the IEC
61499 standard has been adopted as design
paradigm due to its orientation to the
deployment of modular and distributed
control solutions [14]. As briefly introduced
within the previous section, the IEC 61499
standard application is based on a
fundamental module, the Function Block
(FB), which represents a functional unit of
software, associated to a hardware resource
of the control system, as shown in Figure 2.

Figure 2. The IEC 61499 distributed model.

A FB instance is characterized by: its type
name and instance name, sets of event
inputs/outputs and data inputs/outputs,
internal data, an Execution Control Chart
(ECC) and a set of algorithms, associated
with the ECC states. The ECC has an
architecture similar to a Petri Net [15],
consisting of states, transitions and actions,
which invokes the execution of algorithms in
response to event inputs. The external
interface of a function block is represented in
Figure 3.

The execution of algorithms is invoked by the
ECC (which is basically a Moore automaton)

Data
Inputs

Event
Inputs

Event

Outputs

Data

Outputs

Execution
Control Chart

Algorithm s

Internal Da t a

Figure 3. Function block model.

of a FB instance, in response to event inputs.
As an example, Figure 4 shows a simple
Execution Control Chart. When the execution
of an algorithm is scheduled, the needed
inputs and internal data values are read and
new values for outputs and internal data may
be computed. Furthermore, upon completion
of execution of an algorithm, the execution
control part generates zero or more event
outputs as appropriate.

Figure 4. Execution Control Chart.

By properly connecting more FBs an
application is defined. Furthermore, a
hierarchical approach can be adopted by
connecting and encapsulating basic function
blocks into composite function blocks. The
architecture of composite function blocks will
be detailed within the next sections.
Regarding configuration aspects, an
application can be distributed among several
control system devices. A device uses the
causal relationship specified by the
application to determine the appropriate
responses to events. Furthermore, in the IEC
61499 standard a resource is considered to be
a logical subdivision within the software (and
possibly hardware) structure of a device,
which has independent control of its
operations. Each FB instance is associated to
one single resource. With given definitions,
the architecture of a manufacturing
automation system can be modeled as a
collection of devices, divided in resources,
interconnected and communicating with one
another by means of one or more
communication networks, while the functions

Studies in Informatics and Control, Vol. 20, No. 1, March 2011 http://www.sic.ici.ro 35

performed by such a system are modeled
as applications.

The adoption of the IEC 61499 standard as
formal reference model enhances the
definition of reusable models, since the
principles of modularity, encapsulation and
standardization of interfaces are strongly
exploited. In fact, the encapsulation of the
control functionalities into a network of
interconnected function blocks provides an
effective high-level view of the application,
supporting agile integration and (re)use of the
developed control solutions. Besides,
modularization implies the possibility of
developing software code in different control
sub-programs, communicating by means of
suitable software interfaces, so having
smaller and more manageable modules and
related software programs. The modules can
be structured on different hierarchic levels,
according to a top-down functional
decomposition approach. Moreover, based on
encapsulation principle, every module hides
its internal algorithms and variables to the
other components of the control system, so
making both the software development and
its maintenance easier. Furthermore, the
possibility of deriving specialized
components allows re-using existing software
functionalities by simply extending them with
minor functional and software modifications.
The IEC 61499 supports also the adoption of
an event-driven design approach, so
enhancing control solutions manageability
and reconfigurability.

4. Industrial Application Case

Before starting the description of the deployed
control architecture, the considered real
industrial application is presented, i.e. an
innovative shoe manufacturing plant managed
by ITIA-CNR, see Figure 5. For the sake of
brevity, a simplified version of a part of the
manufacturing system is here considered.

The focused manufacturing system integrates
an innovative transport line for moving the
semi-finished shoes from a machining station
to another one according to operations to be
performed. The transport line innovative
molecular structure enhances the modularity,
scalability, integrability and reconfigurability
properties of the production system,
increasing the overall flexibility of the plant.

Figure 5. Shoe manufacturing plant.

The basic element of the molecular structure
is the “Tern”, which is constituted by two
rotating tables, called “Table” and “Island”,
and by a rotating three arms manipulator. The
Table moves the semi-finished shoes either to
the next Tern or to the Island of the same
Tern. Moreover, it moves backward the lasts
flowing back towards the warehouse (the last
is the object around which the semi-finished
shoe is built upon). The Island directs the
semi-finished shoes towards the different
machining stations, laid around the Island
itself. The manipulator carries out the
transport of the semi-finished shoes and lasts
between Tables and Islands.

Furthermore, each rotating element integrates
one equipment necessary to perform the
rotation, plus a certain number of pushing
devices, namely two on the Table, three on
the Manipulator, and an amount equal to the
number on connected machines on the Island,
for moving the semi-finished shoes from a
rotating element to another one. Pushing
equipments are managed by dedicated electro
- pneumatic valves connected to the Tern
controller by means of I/O signals.
Furthermore, sensors aimed at monitoring the
position between the In and Out state have
been integrated. Similarly, each rotating
device is actuated by an electrical motor and
monitored by position (rotation) sensors
connected to the Tern controller I/O channels.
Thus, the overall molecular transport system
integrates about 300 input and output signals
to be properly managed by the control system.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 1, March 2011 36

5. Control Solution Development

Control strategy

The present section details the Tern control
logic. As introduced within the previous
section, the molecular transport system is aimed
at moving the semifinished shoes between the
production line working stations. In particular,
arrows in Figure 6 depict the possible
movements that involve a generic semi-finished
shoe or last in a generic single Tern.

A B

Last
Transport

Cell

G F

H

Previous
Transport

Cell

C

E

Operation
Units

D

I

Figure 6. Work pieces flows.

A semifinished shoe that arrives on the Table
of a Tern (arrow H) and which has not to be
machined by the Tern itself is directly moved
to the next Tern (arrow C); otherwise, it is
moved to the Island (arrow F), where it is
properly machined (arrows D and E). For the
sake of simplicity only one machining station
has been here represented. As soon as the
machining is over, the shoe is moved towards
the next Tern (arrow G).

Whenever a shoe is finished, it is removed
from its last, and the last itself goes back to
the warehouse by flowing back through the
whole transport system. So, for a generic
Tern, the last that must be stored in the
warehouse comes from the adjacent Tern
(arrow B) and goes back, through the Table, to
the previous Tern (arrow A). Specifically, the
lasts start their way back to the warehouse in
the last Tern, once the shoe working process is
over (arrow I). The proposed control strategy
for a generic Tern is based on the following
three basic assumptions:

 avoid deadlocks, i.e. avoid situations into
which none semifinished shoe or last can
be moved;

 favor the backward lasts flow respect to
the forward one of the semifinished shoes;

 favor the unloading of the Tern
resources, i.e. of the Table, Island and
Operation Stations.

Such heuristic rules have been defined to
guarantee a correct and efficient use of the
system resources. To implement the first
assertion it has been decided to have always
one slot free on a Table for the last backward
movement toward the warehouse. Moreover,
to implement the second and third assertions
proper priorities have been assigned to the
different possible operations illustrated with
reference to Figure 6. Such priorities are
represented in Figure 7. In the columns of the
table the different operations have been listed.
The presence of the character “x” in a cross
between a column and a row means that the
operation associated to the column has minor
priority than the one associated to the row.

Figure 7. Tern priority logic.

Notice that the possibility to execute
concurrent operations, e.g. operations A and
H, is also considered in the table, e.g.
operation AH. As a consequence, it is not
significant to define a priority between
operations A and H, since the concurrent
operation AH can be carried out.

Control solution architecture

Within the present section, the implemented
control solution architecture is described. In
particular, the molecular line has been
considered as a set of interacting Terns, each
one with its own independent control system.
Each Tern control module communicates

Studies in Informatics and Control, Vol. 20, No. 1, March 2011 http://www.sic.ici.ro 37

with the related Table, Island and
Manipulator control modules, and is
connected to the adjacent Terns control
system modules, to coordinate the exchanges
of semi-finished shoes and lasts, as shown in
Figure 8.

Furthermore, each basic function block
encapsulates the control logic by means of a
state machine responsible for the activation
of dedicated IEC 61131 based control
algorithms depending on run-time events and
conditions. As an example, in Figure 9, the
Pusher Function Block is shown.

Auto DiagnosticManual

Figure 9. Pusher function block

In particular, the execution control is
structured into initialization state, manual and
automatic execution, failure and diagnostic
state, so as to decouple different running
modes. The elementary control modules have
been integrated so as to obtain the overall
control solution. Therefore, a bottom-up
approach has been adopted. The intrinsic
modularity of the process to be controlled has
been maintained within the developed control
application by composing Pusher and
Rotation devices Function Blocks and the
coordination function block within Table,
Island and Manipulator composite FBs in the

same way. Figure 10 shows the Table control
Function Block.

Besides, the semiworked shoes flow policies
have been embedded within the Table,
Manipulator and Island coordination function
blocks. In particular, an asynchronous event-

driven interaction approach has been adopted.
For each shoe to be moved from a transport
system module to another, the former sends an
event to the later. Then, the decision is taken by
evaluating the shoes priority and the feasibility
of the operation (i.e. target slot free).

Coordinator

Pusher

Rotation

Figure 10. Table composite function block

Moreover, the Tern Control modules
represent the low level control layer,
responsible for real time control tasks.
Additionally, tasks dedicated to manage
nominal and failure operating conditions have
been integrated. Such control modules have
been implemented within the ISaGRAF 5
Workbench [16]. By supporting IEC 61499,
such environment acts as backbone for the
overall application development, from design
to implementation and validation. In
ISaGRAF 5 the distributed hardware
architecture can be defined by properly

1
6

1
21

1

2

3
1

7

1

1

2

3

1

7

1

19

1

2

3
1

7

1

1

2

3

1
8

1

1 2

3

1

6

1

1

2

3

Tern1 Tern2 Tern3 Tern4 Tern5 Tern6

Manipulator IslandTable

Molecular transport system control application

Figure 8. Control architecture of the Molecular transport line.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 1, March 2011 38

assigning the Resources (Virtual PLCs)
executed within each device, and each device
integrates I/O interfaces connected to the
factory field. The application can so be
designed as a unique control program.
Furthermore, the developed control application
can be generated into target-independent C
code, executable by a firmware, which
emulates a virtual machine on a hardware
target, being it an Industrial PC, an embedded
board or a tiny controller. Therefore,
portability and scalability of the developed
application is guaranteed. In order to provide
self-adaptive capabilities to the deployed
automation solution while reconfiguring
manufacturing resources (i.e. adding,
removing operational units or integrating
manufacturing functions) a multi-agent
control and supervision layer has been
integrated onto the object-oriented real-time
control layer. In particular, each Tern control
module has been connected to a Tern agent,
responsible for the interaction within the high
level control layer. The interface between the
IEC 61499 modules and the multi-agent
layer, deployed in Java language, has been
developed by means of the Java Native
Interface provided by Sun Microsystems
Inc. [17].

The higher level control layer is responsible for
the coordination of the low level real-time
control layer in response of predicted as well as
unforeseen events. The overall control
architecture is outlined in Figure 11. In fact, the
decisional logic has to be dynamically adapted
to follow changing products features/
requirements contextually to machine
operational capabilities reconfiguration, tools
integrations, and new machines implementation
into production cells. The higher level control
layer is also aimed at interacting within MES
and ERP systems so to receive incoming

production orders as well as provide a run-time
updated factory image to the management
layers. To such an aim, dedicated interaction
mechanisms have been implemented.

Furthermore, the self-adaptation mechanism
has also to react when operational capabilities
become unavailable due for example to
failures or maintenance operations.
Therefore, a dedicated management agent
has been integrated, implementing a
knowledge based reasoner connected to a
complementary knowledge model based on
a common formal domain description:

 Product knowledge based model: aimed
at the structuring of information related
to products to be processed by the
manufacturing system, as required
operations and priorities with reference to
the overall production plan;

 Resource knowledge based model: aimed
at the formal description of the intelligent
units run-time integrated within the
production facility, i.e. the operations
provided and execution states.

Such models are dynamically updated by
means of a dedicated Interface agent, in order to
be aligned to the process evolution, supporting

the optimal real-time decision strategy. Two
dedicated model update mechanisms have
been implemented: the first has in charge the
management of the products entering/leaving
the system and their operational state changes
due to processed manufacturing tasks
performed within the RMS; the second
supervises the resources integrated within the
system, updating their available operations
depending on their evolving execution states
and/or reconfigurations.

I/OsI/Os

JNI

I/Os

Tern SW
Agent

JNI

Tern SW
Agent

JNI

Tern SW
Agent

Controlled Automation system

Ethernet based communication framework

T
er

n
C

o
n

tr
o

l m
o

d
u

le

Products
Knowledge

Model

Resources
Knowledge

Model

KB Model
Reasoner

Control
Strategy

Interface
Agent

1

2

3

1- Knowledge
Model update
2- Informations
collection
3- Model Inference
4- Control strategy
execution

4

Figure 11. Overall multi-agent control architecture.

Studies in Informatics and Control, Vol. 20, No. 1, March 2011 http://www.sic.ici.ro 39

Thanks to the adoption of such an
asynchronous policy, the model adaptation
task is called only when required, reducing
the overall execution time. Furthermore,
semantically-rich based descriptions have
been adopted to implement the knowledge
based solution. In particular RDF and OWL-
DL W3C standards [18] coming from the
Semantic Web area have been considered.

As an example, Figure 12 shows the RDF
based representation of the manufacturing
operations provided by the machines
integrated within a Tern of the line. In
particular, the finishing Tern, aimed at
cleaning the shoes before being putted into
the boxes is described. Figure 13 shows the
XML file implementing the finishing Tern
RDF description. Such format is processed by
the reasoner integrated within the supervisor.

Figure 13. RDF XML format

Machine reasoning has been used to perform
automatic matchmaking of required and offered
services using logical inference, rather than
performing hard-coded one-to-one mappings.
Such type of matchmaking enables the use of
services that did not exist or were not known
when the requestor side was programmed,
enabling automation system reconfiguration
without control logic reprogramming.

Once a new operational unit is plugged into
the production system its agent asks for the
registration service to the manager passing is
description as argument, formally reporting
the operations to be provided and the required
resources (i.e. tools) to be used during
operation execution. The operations to be
provided and the resources to be used are
described with reference to a common
ontology [19].

The manager interprets the ontological
description of the intelligent unit and
integrates it into a dedicated knowledge base
within the manager architecture. To such an
aim, software utilities provided by the Jena
Semantic Web framework [20] have been
adopted. Jena is an open source Java
framework for building Semantic Web
applications. It provides a programmatic
environment for RDF, RDFS and OWL,
SPARQL and includes a rule-based
inference engine.

Figure 12. RDF based description of the finishing Tern.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 1, March 2011 40

A searching algorithm, implemented in Java,
is then executed in order to find the run-time
available manufacturing resources capable of
providing the requested operations.

6. Control Solution Verification

The validation of the control software is the
final task of the whole automation system
design life cycle before the system deliver to
customers. Within such phase, the
correspondence of the automation system
behaviour with the requirements described in
the system specifications is verified. Normally,
the control software development is not
carried out directly on the hardware devices,
but is performed “offline”, into dedicated
development environments. Once completed,
deployed control software is downloaded on
the hardware devices and tested onsite, by
controlling the real process. Major drawbacks
are the increase in commissioning times and
costs, huge underperforming conditions and
critical damages on the plant devices, caused
by undetected errors in the control system.
Furthermore, software modifications are more
difficult to be implemented in such conditions,
due to complexity of overall system.

For bigger plants, the first validation of the
software is often carried out by means of
software/hardware test panels, offering to the
control system the same electrical interface,
manually operated to change field values so
emulating the process variables variation.
This method is carried out without any
structured criteria and the dynamic control
system response cannot be tested deeply, so
leading to the identification only of some
rough implementation errors.

A different way to validate the control
software is possible by using process
simulators, which are not widely adopted in
industrial practice because their usage
requires relevant process competencies - not
always available - and additional costs for
programming activities.

In the present work, a closed loop simulation
approach has been adopted for the validation
of overall developed control application also
considering the bottom-up methodology
presented in [21]. In particular, a simulation
model of the process to be controlled,
running on a dedicated PC, has been

developed and connected to the control
system by mapping I/O boards.

Figure 14 illustrates the architecture of the
verification framework. In this application
the Simulink, State Flow and Virtual Reality
toolboxes of the Matlab platform have been
respectively utilized for the development of
the logical and graphical model of the
molecular transport system.

Simulation model

Graphical Model Logical Model

Control Application

NI DIO-96 Boards

Figure 14. Simulation framework.

Furthermore, the software solutions running
on the real control hardware, before being
installed into the real manufacturing plant,
have been validated within a pilot plant
which reproduces in scale 1:10 the molecular
transport line, as shown in Figure 15. This
technologic demonstrator is part of the ITIA
Automatic Control Laboratory and it has
been realized with the same number of I/O
signals exchanged between the real
manufacturing plant and its automation
system, for study and testing purposes.

Figure 15. Technological demonstrator

Thus, an automation system tested with the
demonstrator can be directly connected to the
real manufacturing plant, reducing ramp-up
efforts and costs.

Studies in Informatics and Control, Vol. 20, No. 1, March 2011 http://www.sic.ici.ro 41

7. Conclusions

The present paper describes a self-adaptive
control architecture deployed for a real
industrial plant. To such an aim, a modular
and distributed approach has been adopted,
integrating an IEC 61499 based control
solution for real-time control purposes and a
semantically enriched multi-agent control
layer for dynamic supervision strategy. Main
focus of the paper is kept on the description
of the overall solution structure, highlighting
the capabilities of run-time updating of the
knowledge model used for control decisions,
while factory products and resources
changes occur.

Furthermore, the designed control strategy,
implemented within a structured and
reconfigurable IEC 61499 based application
has been detailed.

Moreover, a closed loop simulation based
approach has been adopted to validate the
implemented control solution before the
integration into the real manufacturing plant,
thus reducing commissioning time and costs.

Next efforts will mainly regard the
integration of dedicated supervision and on-
line dispatching/scheduling facilities onto the
deployed control architecture.

Acknowledgements

The work presented in this paper has been
partially supported by Regione Lombardia
within the project “Accordo di Programma
Quadro CNR - Regione Lombardia: Progetto
3 - Processi high tech e prodotti orientati al
consumatore per la competitività del
manifatturiero lombardo”.

REFERENCES

1. KOREN, Y., U. HEISEL, F. JOVANE,
T. MORIWAKI, G. PRITSCHOW, G.
ULSOY, H. V. BRUSEEL,
Reconfigurable Manufacturing
Systems, in Ann. CIRP 1999, vol. 48(2),
pp. 527-540.

2. ALMEIDA, E., J. LUNTZ, D.
TILBURY, Event - Condition - Action
Systems for Reconfigurable Logic
Control, IEEE Transaction on

Automation Science and Engineering,
Vol. 4(2), April 2007, pp. 167-181.

3. BRUSAFERRI, A., A. BALLARINO, E.
CARPANZANO, Enabling Agile
Manufacturing through
Reconfigurable Control Solutions,
Proc. at 14th IEEE International
Conference on Enabling Technologies
and Factory Automation (ETFA09),
September 2009, Mallorca, Spain.

4. CARPANZANO, E., F. JOVANE,
Advanced Automation Solutions for
Future Adaptive Factories, Annals of
the CIRP, 2007, pp. 435-438.

5. PECHOUCEK, M., V. MARIK,
Industrial Deployment of Multi-agent
Technologies: Review and Selected
Case Studies, Autonomous Agents and
Multi-Agent Systems Journal, Publisher:
Springer Netherlands, Published online:
14 May 2008, pp. 397-431.

6. SIRENA Project www.sirena-itea.org.

7. RIMACS Project - Radically Innovative
Mechatronics and Advanced Control
Systems, www.rimacs.org.

8. SOCRADES Project www.socrades.eu.

9. LASTRA, J., I. DELAMER, Web
Services in Factory Automation:
Fundamental Insights and Research
Roadmap, IEEE Transactions on
Industrial Informatics, Vol. 2(1),
February 2006, pp. 1-11.

10. O3NEIDA Network of Networks to
Advance Distributed Industrial
Automation, www.oooneida.org

11. LEPUSCHITZ, W., M. VALLEE, M.
MERDAN, P. VRBA, J. RESCH,
Integration of a Heterogeneous Low
Level Control in a Multi-Agent System
for the Manufacturing Domain, Proc. at
14th IEEE International Conference on
Enabling Technologies and Factory
Automation (ETFA09), September 2009,
Mallorca, Spain.

12. HERRERA, V., A. BEPPERLING, A.
LOBOV, H. SMIT, A. W. COLOMBO, J.
L. LASTRA, Integration of Multi-Agent
Systems and Service-Oriented
Architecture for Industrial Automation,
Proc. at IEEE International Conference on

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 1, March 2011 42

Industrial Informatics (INDIN2008),
Daejeon, Korea, July 13-16.

13. LEITAO, P., F. RESTIVO,
Implementation of a Holonic Control
System in a Flexible Manufacturing
System, IEEE Transactions on Systems
on, Man, and Cybernetics - Part C:
Applications and Reviews, Vol. 38, No.
5, September 2008, pp. 699-709.

14. International Electro - technical
Commission, (IEC), International
Standard IEC61499, Function Blocks,
part 1-4, IEC Jan. 2005 Edition 1.0.,
http://www.iec.ch/

15. MEDJOUDJ, M., ESA_PetriNet: a Tool
for Extracting Scenarios in Computer
Controlled Systems, Studies in
Informatics and Control, vol. 17, No.
1/2008, Published by the National
Institute for Research and Development
in Informatics, pp. 71-84.

16. ISaGRAF Workbench-www.isagraf.com.

17. Java Native Interface -http://java.sun.
com/j2se/1.4.2/docs/guide/jni/.

18. OWL Web Ontology Language -
http://www.w3.org/TR/owl-guide/.

19. OPREA, M., Ontology Mapping in
Open Multi-Agent Systems, Studies in
Informatics and Control, Vol. 16, No.
2/2007, Published by the National
Institute for Research and Development
in Informatics.

20. Jena Semantic Web framework -
http://jena.sourceforge.net/

21. CARPANZANO, E., A. BALLARINO,
A Structured Approach to the Design
and Simulation-based Testing of
Factory Automation Systems, IEEE
ISIE’2002 International Symposium on
Industrial, Electronics, L’Aquila, July
8-11, 2002.

