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1. Introduction 

To face new consumer centered 
manufacturing paradigms, like mass 
customization and personalization, factories 
must be capable to adapt themselves in real 
time to continuously changing market 
demand. Thus, the whole production cycle 
for small or even single batches has to be 
executed in very short times, i.e. a few days 
or even hours. In order to properly approach 
such complex and strict requirements 
adaptive knowledge based production 
systems have to be developed. In particular, 
the conception and development of a new 
generation of automation solutions, that 
integrate all factory levels from machines 
controls up to shop-floor supervision and 
production planning in a unique real time 
framework, is mandatory. Future factory 
automation systems have to be modular, 
open, agile and knowledge based in order to 
promptly self-adapt themselves to changing 
exogenous conditions, like consumers 
expectations, market dynamics, design 
innovation, new materials and components 
integration. To such an aim, a new generation 
of intelligent, highly-interoperable and self-
reconfigurable control systems is a fundamental 
enabling technology. 

To tackle such a challenge, agile 
manufacturing paradigms - particularly 
flexible manufacturing systems (FMS) - have 
been adopted, often proving to be expensive 
and difficult to manage due to overall 
complexity. Furthermore, the integration of 
flexibility capability is not feasible for any 

 

 

 

 

 

 

 

 

 

 

 

kind of application. Therefore, to overcome 
such barriers and to provide cost effective 
flexible solutions, Reconfigurable 
Manufacturing Systems (RMS) have been 
introduced, characterized by strongly 
modular architectures and easy 
reconfiguration capabilities. Therefore, 
modularity, integrability, diagnosability, 
customization and convertibility are 
identified as key features of a RMS [1]. 
Among these, system modularity can surely 
be considered the most important property, as 
outlined in [2] where implications and 
relationships between the architecture of a 
logic control system, its modularity and the 
overall system reconfigurability, are 
discussed. The problem of agile systems 
reconfiguration has been faced mainly from 
the mechanical point of view with the 
development of easily pluggable mechatronic 
solutions. Nevertheless, proper solutions 
addressing a fully modular and 
reconfigurable control system have still to be 
identified. As a matter of fact, present 
automation approaches and architectures - 
adopted in current industrial practice - are 
still based on rigid, loosely-coupled solutions, 
difficult to manage and to adapt, while 
current methods and tools for control system 
programming do not effectively support 
control system reconfigurability [3]. Thus, 
the integration of a new device within the 
overall production system, or the replacement 
of a faulty device, very often requires a 
critical stop of the system, to perform 
physical connections and allocations of the 
new device, as well as partial/total 
reprogramming of some parts of the control 

Reconfigurable Knowledge-based Control Solutions 
for Responsive Manufacturing Systems 

Alessandro Brusaferri, Andrea Ballarino, Emanuele Carpanzano 

Institute of Industrial Technologies and Automation, National Research Council,                                        
via Bassini 15, Milan 20133, Italy,                                                                                                
{alessandro.brusaferri, andrea.ballarino, emanuele.carpanzano}@itia.cnr.it 

Abstract: Nowadays, a new generation of responsive factories is needed to face continuous changes in product 
demand and variety, and to manage complex and variant production processes. To such an aim, innovative self-
adaptive automation solutions are required, capable to adapt their control strategies in real-time to cope with planned 
as well as unforeseen product and process variations. In such a context, the present paper describes an automation
solution based on a modular distributed approach for agile factories integration and reconfiguration, integrating a
knowledge based cooperation policy providing self-adaptation to endogenous as well as exogenous events. The 
proposed approach is discussed through its application to a plant for customized shoes manufacturing. 

Keywords: Distributed Control, Reconfigurable Manufacturing Systems, IEC 61499, Multi-agent, Semantic Web. 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 1, March 2011 32 

system, and modifications in production 
plans, which need time consuming testing 
and commissioning operations to be executed 
afterwards [4]. 

The present paper proposes a self-adaptive 
control solution in order to support the RMS 
agility. Particularly, Section 2 briefly 
analyzes the current state of the art related to 
the development of self-adaptive control 
solutions for RMS and summarizes the main 
features to be guaranteed. Section 3 
introduces the IEC 61499 standard exploited 
for the control solution design. In Section 4 
the considered industrial application case is 
presented. In Section 5 the proposed control 
solution strategy, architecture and 
implementation are illustrated, highlighting 
the exploited paradigms and tools. Section 6 
describes how the control solution has been 
verified by means of simulation based 
methods. Finally, Section 7 addresses 
conclusions and next developments.  

2. Requirements and Available 
Technologies  

RMS architecture and requirements 

Typically, Reconfigurable Manufacturing 
Systems architectures may be structured into 
three major hierarchical layers as shown in 
Figure 1: unit level, cell level and system 
level. In particular, the overall system is 
composed by the aggregation of different cell 
modules, according to the system layout, 
while each cell module is constituted by the 
aggregation of more units. Such units can be 
either operating machines or modules 
dedicated to parts handling and 
transportation, e.g. conveyors, rotating tables 
and manipulators. 

 

 

Figure 1. RMS overall architecture. 

Starting from last sampled status of 
underlying controlled objects, each module of 
the RMS control system - being unit control 
module, cell control module or system 
control module – decides and performs its 
control actions according to the fixed 
decision policy defined and hard-coded 
during the control system development phase. 
The interactions among modules are 
established ex ante and implemented 
according to fixed bindings among different 
modules interfaces. Such a strictly coupled 
architecture is very difficult to modify during 
RMS reconfiguration phases, as time and 
costs required for such operations grow 
rapidly with the increase in system 
complexity. To such an aim, a new 
generation of loosely–coupled control 
architectures, based on a distributed easy-
reconfigurable architecture, integrating a 
flexible knowledge based decision policy, has 
to be introduced. 

Available enabling technologies 

Today, the required levels of modularity and 
distribution of control solutions are not 
properly adopted in industrial practice due to 
the lack of well defined and accepted 
reference models. Major consequences of this 
lack are twofold. First of all, implemented 
control and supervision strategies are today 
typically based on rigid centralized 
approaches organized into strictly coupled 
sequences of operations. Difficulties in 
reconfiguration and in real-time adaptation to 
production needs are most relevant resulting 
problems. As a second major consequence, 
suitable readability, portability and 
integrability of overall control and 
automation solutions are not supported. 
Therefore, the capitalization and reuse of 
company specific know-how on process and 
control is very difficult. Flexibility, 
optimization and failure management features 
are not properly tackled as well, thus 
critically impacting the overall production 
process efficiency and fault tolerance. 

Great research efforts have been spent in 
recent years to conceive a common and well 
accepted reference model. In such a direction, 
the multi-agent system (MAS) paradigm shall 
be mentioned as one the major efforts for 
development of robust distributed control 
systems. Such a paradigm is based on 
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autonomous modules, which integrate 
knowledge-base for decision making 
inference, high-level communication 
protocols and languages to support loosely 
coupled architectural organizations [5]. 
Despite its potential capabilities, major limits 
of such an approach for complex industrial 
test-cases reside in difficulties of 
guaranteeing strict execution time 
requirements. 

Recently different research projects, as 
SIRENA[6], RIMACS[7], SOCRADES[8], 
have considered an alternative architectural 
solution for developing systems composed of 
autonomous and interoperable units: the 
Service Oriented Architecture - SOA. Such 
paradigm is characterized by coarse-grained 
service interfaces, loose coupling between 
service providers and service consumers, and 
message-based, asynchronous communication 
systems [9]. Leveraging the SOA paradigm 
allows services to be re-used across processes 
and systems, and systems to be "built for 
change". Reliability is improved as 
applications and systems can be made up of 
tested and proven components. SOA offers 
the potential to provide the necessary system-
wide visibility and interoperability in 
complex systems subject to frequent changes 
and operating in a multi-vendor environment. 
Nonetheless, Service Oriented solutions are 
still unable to reach the hard-real time 
constraints in particular for controlling 
complex manufacturing processes with huge 
amounts of data and high numbers of units. 
Furthermore, the decisional logic is not 
directly supported by SOA, thus, intelligence 
has to be integrated onto the SOA level. In 
particular, self-adaptivity needs self-
interoperability of information: the 
knowledge has to be structured in order to be 
understood by autonomous intelligent agents 
able to interpret the boundary conditions and 
to take the proper decisions. For such reason, 
a major research effort is ongoing widespread 
to exploit the adoption of Semantic Web 
approaches into the factory automation 
domain. Such paradigm is oriented to the 
adoption of machine interpretable 
information supporting the implementation of 
intelligent control solutions based on formal 
knowledge models. Particularly, the formal 
definition of classes’ properties and instances 

allows inferring new knowledge from the one 
already structured into a model. 

To cope with real time distributed control, a 
formal model has been proposed within the 
IEC 61499 standard of the International 
Electro technical Committee, also promoted 
by the international O3NEIDA network [10]. 
The normative states the common interfaces 
and structure of the embedded solutions from 
simple basic function blocks, to composite 
functional integrations, up to overall control 
systems applications. It also provides 
guidelines for the application distribution 
within multi-vendor control execution 
devices. Nonetheless, it does not provide 
structured indications related to self-adaptive 
control systems design. 

Several research actions have been also 
oriented to the integration of the low level, 
hard real-time, control layer and the high 
level, low real-time, control/supervision 
layer. In particular, [11] propose an interface 
for the integration of a heterogeneous low 
level control based on IEC 61499 standard 
and a Multi-Agent System for the 
manufacturing domain. [12] proposes the 
integration of Service Oriented Architecture 
and a Multi-Agent System (MAS) in order to 
build a control architecture suitable for 
automated reconfigurability. [13] introduces a 
holonic manufacturing control architecture 
integrated with the logic control layer, 
designed to improve the agility and 
reconfigurability of production systems. 
Despite the performed research efforts and 
the emerged benefits, such paradigms are 
currently not implemented within industrial 
solutions. In fact, the real world applicability 
needs to be demonstrated through complex 
industrial test cases highlighting the concrete 
advantages and providing guidelines for 
industrial applications.  

Such open problems will be approached 
within the following sections while 
describing main architectural and functional 
aspects regarding the proposed self-adaptive 
control solution. In particular, starting from 
the process specification, a modular and 
distributed control architecture has been 
defined, integrating a real-time IEC 61499 
distributed control layer and a multi-agent 
semantic enriched control and supervision 
layer. Furthermore, a real industrial plant is 
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considered as a test-case in order to properly 
support the description and provide 
application details. The proposed solution can 
be integrated within any manufacturing 
automation system. Therefore, a proper 
configuration of specific control rules and 
knowledge base classes is required. 

3. IEC 61499 Based Control 
System Design 

In the present approach, in order to achieve 
the desired agility objectives, object-oriented 
concepts have been exploited within control 
system development. To such an aim, the IEC 
61499 standard has been adopted as design 
paradigm due to its orientation to the 
deployment of modular and distributed 
control solutions [14]. As briefly introduced 
within the previous section, the IEC 61499 
standard application is based on a 
fundamental module, the Function Block 
(FB), which represents a functional unit of 
software, associated to a hardware resource 
of the control system, as shown in Figure 2. 

 

Figure 2. The IEC 61499 distributed model. 

A FB instance is characterized by: its type 
name and instance name, sets of event 
inputs/outputs and data inputs/outputs, 
internal data, an Execution Control Chart 
(ECC) and a set of algorithms, associated 
with the ECC states. The ECC has an 
architecture similar to a Petri Net [15], 
consisting of states, transitions and actions, 
which invokes the execution of algorithms in 
response to event inputs. The external 
interface of a function block is represented in 
Figure 3. 

The execution of algorithms is invoked by the 
ECC (which is basically a Moore automaton) 
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Figure 3. Function block model. 

of a FB instance, in response to event inputs. 
As an example, Figure 4 shows a simple 
Execution Control Chart. When the execution 
of an algorithm is scheduled, the needed 
inputs and internal data values are read and 
new values for outputs and internal data may 
be computed. Furthermore, upon completion 
of execution of an algorithm, the execution 
control part generates zero or more event 
outputs as appropriate.  

 

Figure 4. Execution Control Chart. 

By properly connecting more FBs an 
application is defined. Furthermore, a 
hierarchical approach can be adopted by 
connecting and encapsulating basic function 
blocks into composite function blocks. The 
architecture of composite function blocks will 
be detailed within the next sections. 
Regarding configuration aspects, an 
application can be distributed among several 
control system devices. A device uses the 
causal relationship specified by the 
application to determine the appropriate 
responses to events. Furthermore, in the IEC 
61499 standard a resource is considered to be 
a logical subdivision within the software (and 
possibly hardware) structure of a device, 
which has independent control of its 
operations. Each FB instance is associated to 
one single resource. With given definitions, 
the architecture of a manufacturing 
automation system can be modeled as a 
collection of devices, divided in resources, 
interconnected and communicating with one 
another by means of one or more 
communication networks, while the functions 
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performed by such a system are modeled     
as applications.  

The adoption of the IEC 61499 standard as 
formal reference model enhances the 
definition of reusable models, since the 
principles of modularity, encapsulation and 
standardization of interfaces are strongly 
exploited. In fact, the encapsulation of the 
control functionalities into a network of 
interconnected function blocks provides an 
effective high-level view of the application, 
supporting agile integration and (re)use of the 
developed control solutions. Besides, 
modularization implies the possibility of 
developing software code in different control 
sub-programs, communicating by means of 
suitable software interfaces, so having 
smaller and more manageable modules and 
related software programs. The modules can 
be structured on different hierarchic levels, 
according to a top-down functional 
decomposition approach. Moreover, based on 
encapsulation principle, every module hides 
its internal algorithms and variables to the 
other components of the control system, so 
making both the software development and 
its maintenance easier. Furthermore, the 
possibility of deriving specialized 
components allows re-using existing software 
functionalities by simply extending them with 
minor functional and software modifications. 
The IEC 61499 supports also the adoption of 
an event-driven design approach, so 
enhancing control solutions manageability 
and reconfigurability. 

4. Industrial Application Case 

Before starting the description of the deployed 
control architecture, the considered real 
industrial application is presented, i.e. an 
innovative shoe manufacturing plant managed 
by ITIA-CNR, see Figure 5. For the sake of 
brevity, a simplified version of a part of the 
manufacturing system is here considered. 

The focused manufacturing system integrates 
an innovative transport line for moving the 
semi-finished shoes from a machining station 
to another one according to operations to be 
performed. The transport line innovative 
molecular structure enhances the modularity, 
scalability, integrability and reconfigurability 
properties of the production system, 
increasing the overall flexibility of the plant. 

 

Figure 5. Shoe manufacturing plant. 

The basic element of the molecular structure 
is the “Tern”, which is constituted by two 
rotating tables, called “Table” and “Island”, 
and by a rotating three arms manipulator. The 
Table moves the semi-finished shoes either to 
the next Tern or to the Island of the same 
Tern. Moreover, it moves backward the lasts 
flowing back towards the warehouse (the last 
is the object around which the semi-finished 
shoe is built upon). The Island directs the 
semi-finished shoes towards the different 
machining stations, laid around the Island 
itself. The manipulator carries out the 
transport of the semi-finished shoes and lasts 
between Tables and Islands.  

Furthermore, each rotating element integrates 
one equipment necessary to perform the 
rotation, plus a certain number of pushing 
devices, namely two on the Table, three on 
the Manipulator, and an amount equal to the 
number on connected machines on the Island, 
for moving the semi-finished shoes from a 
rotating element to another one. Pushing 
equipments are managed by dedicated electro 
- pneumatic valves connected to the Tern 
controller by means of I/O signals. 
Furthermore, sensors aimed at monitoring the 
position between the In and Out state have 
been integrated. Similarly, each rotating 
device is actuated by an electrical motor and 
monitored by position (rotation) sensors 
connected to the Tern controller I/O channels. 
Thus, the overall molecular transport system 
integrates about 300 input and output signals 
to be properly managed by the control system. 

 



http://www.sic.ici.ro Studies in Informatics and Control, Vol. 20, No. 1, March 2011 36 

5. Control Solution Development 

Control strategy 

The present section details the Tern control 
logic. As introduced within the previous 
section, the molecular transport system is aimed 
at moving the semifinished shoes between the 
production line working stations. In particular, 
arrows in Figure 6 depict the possible 
movements that involve a generic semi-finished 
shoe or last in a generic single Tern.  
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Figure 6. Work pieces flows. 

A semifinished shoe that arrives on the Table 
of a Tern (arrow H) and which has not to be 
machined by the Tern itself is directly moved 
to the next Tern (arrow C); otherwise, it is 
moved to the Island (arrow F), where it is 
properly machined (arrows D and E). For the 
sake of simplicity only one machining station 
has been here represented. As soon as the 
machining is over, the shoe is moved towards 
the next Tern (arrow G).  

Whenever a shoe is finished, it is removed 
from its last, and the last itself goes back to 
the warehouse by flowing back through the 
whole transport system. So, for a generic 
Tern, the last that must be stored in the 
warehouse comes from the adjacent Tern 
(arrow B) and goes back, through the Table, to 
the previous Tern (arrow A). Specifically, the 
lasts start their way back to the warehouse in 
the last Tern, once the shoe working process is 
over (arrow I). The proposed control strategy 
for a generic Tern is based on the following 
three basic assumptions:  

 avoid deadlocks, i.e. avoid situations into 
which none semifinished shoe or last can 
be moved;  

 favor the backward lasts flow respect to 
the forward one of the semifinished shoes;  

 favor the unloading of the Tern 
resources, i.e. of the Table, Island and 
Operation Stations.  

Such heuristic rules have been defined to 
guarantee a correct and efficient use of the 
system resources. To implement the first 
assertion it has been decided to have always 
one slot free on a Table for the last backward 
movement toward the warehouse. Moreover, 
to implement the second and third assertions 
proper priorities have been assigned to the 
different possible operations illustrated with 
reference to Figure 6. Such priorities are 
represented in Figure 7. In the columns of the 
table the different operations have been listed. 
The presence of the character “x” in a cross 
between a column and a row means that the 
operation associated to the column has minor 
priority than the one associated to the row. 

 

Figure 7. Tern priority logic. 

Notice that the possibility to execute 
concurrent operations, e.g. operations A and 
H, is also considered in the table, e.g. 
operation AH. As a consequence, it is not 
significant to define a priority between 
operations A and H, since the concurrent 
operation AH can be carried out.  

Control solution architecture 

Within the present section, the implemented 
control solution architecture is described. In 
particular, the molecular line has been 
considered as a set of interacting Terns, each 
one with its own independent control system. 
Each Tern control module communicates 
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with the related Table, Island and 
Manipulator control modules, and is 
connected to the adjacent Terns control 
system modules, to coordinate the exchanges 
of semi-finished shoes and lasts, as shown in 
Figure 8. 

 

Furthermore, each basic function block 
encapsulates the control logic by means of a 
state machine responsible for the activation 
of dedicated IEC 61131 based control 
algorithms depending on run-time events and 
conditions. As an example, in Figure 9, the 
Pusher Function Block is shown.  

Auto DiagnosticManual

 

Figure 9. Pusher function block 

In particular, the execution control is 
structured into initialization state, manual and 
automatic execution, failure and diagnostic 
state, so as to decouple different running 
modes. The elementary control modules have 
been integrated so as to obtain the overall 
control solution. Therefore, a bottom-up 
approach has been adopted. The intrinsic 
modularity of the process to be controlled has 
been maintained within the developed control 
application by composing Pusher and 
Rotation devices Function Blocks and the 
coordination function block within Table, 
Island and Manipulator composite FBs in the 

same way. Figure 10 shows the Table control 
Function Block. 

Besides, the semiworked shoes flow policies 
have been embedded within the Table, 
Manipulator and Island coordination function 
blocks. In particular, an asynchronous event- 

 

 

 

 

 

 

 

 

 

driven interaction approach has been adopted. 
For each shoe to be moved from a transport 
system module to another, the former sends an 
event to the later. Then, the decision is taken by 
evaluating the shoes priority and the feasibility 
of the operation (i.e. target slot free). 

Coordinator
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Rotation

 

Figure 10. Table composite function block 

Moreover, the Tern Control modules 
represent the low level control layer, 
responsible for real time control tasks. 
Additionally, tasks dedicated to manage 
nominal and failure operating conditions have 
been integrated. Such control modules have 
been implemented within the ISaGRAF 5 
Workbench [16]. By supporting IEC 61499, 
such environment acts as backbone for the 
overall application development, from design 
to implementation and validation. In 
ISaGRAF 5 the distributed hardware 
architecture can be defined by properly 
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Figure 8. Control architecture of the Molecular transport line. 
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assigning the Resources (Virtual PLCs) 
executed within each device, and each device 
integrates I/O interfaces connected to the 
factory field. The application can so be 
designed as a unique control program. 
Furthermore, the developed control application 
can be generated into target-independent C 
code, executable by a firmware, which 
emulates a virtual machine on a hardware 
target, being it an Industrial PC, an embedded 
board or a tiny controller. Therefore, 
portability and scalability of the developed 
application is guaranteed. In order to provide 
self-adaptive capabilities to the deployed 
automation solution while reconfiguring 
manufacturing resources (i.e. adding, 
removing operational units or integrating 
manufacturing functions) a multi-agent 
control and supervision layer has been 
integrated onto the object-oriented real-time 
control layer. In particular, each Tern control 
module has been connected to a Tern agent, 
responsible for the interaction within the high 
level control layer. The interface between the 
IEC 61499 modules and the multi-agent 
layer, deployed in Java language, has been 
developed by means of the Java Native 
Interface provided by Sun Microsystems    
Inc. [17]. 

 

The higher level control layer is responsible for 
the coordination of the low level real-time 
control layer in response of predicted as well as 
unforeseen events. The overall control 
architecture is outlined in Figure 11. In fact, the 
decisional logic has to be dynamically adapted 
to follow changing products features/ 
requirements contextually to machine 
operational capabilities reconfiguration, tools 
integrations, and new machines implementation 
into production cells. The higher level control 
layer is also aimed at interacting within MES 
and ERP systems so to receive incoming 

production orders as well as provide a run-time 
updated factory image to the management 
layers. To such an aim, dedicated interaction 
mechanisms have been implemented.  

Furthermore, the self-adaptation mechanism 
has also to react when operational capabilities 
become unavailable due for example to 
failures or maintenance operations. 
Therefore, a dedicated management  agent  
has  been  integrated, implementing a 
knowledge based reasoner connected to a 
complementary knowledge model based on 
a common formal domain description: 

 Product knowledge based model: aimed 
at the structuring of information related 
to products to be processed by the 
manufacturing system, as required 
operations and priorities with reference to 
the overall production plan; 

 Resource knowledge based model: aimed 
at the formal description of the intelligent 
units run-time integrated within the 
production facility, i.e. the operations 
provided and execution states. 

Such models are dynamically updated by 
means of a dedicated Interface agent, in order to 
be aligned to the process evolution, supporting 

 

 

 

 

 

 

 

 

the optimal real-time decision strategy. Two 
dedicated model update mechanisms have 
been implemented: the first has in charge the 
management of the products entering/leaving 
the system and their operational state changes 
due to processed manufacturing tasks 
performed within the RMS; the second 
supervises the resources integrated within the 
system, updating their available operations 
depending on their evolving execution states 
and/or reconfigurations.  
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Figure 11. Overall multi-agent control architecture.  
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Thanks to the adoption of such an 
asynchronous policy, the model adaptation 
task is called only when required, reducing 
the overall execution time. Furthermore, 
semantically-rich based descriptions have 
been adopted to implement the knowledge 
based solution. In particular RDF and OWL-
DL W3C standards [18] coming from the 
Semantic Web area have been considered. 

 

As an example, Figure 12 shows the RDF 
based representation of the manufacturing 
operations provided by the machines 
integrated within a Tern of the line. In 
particular, the finishing Tern, aimed at 
cleaning the shoes before being putted into 
the boxes is described. Figure 13 shows the 
XML file implementing the finishing Tern 
RDF description. Such format is processed by 
the reasoner integrated within the supervisor.  

 
Figure 13. RDF XML format  

Machine reasoning has been used to perform 
automatic matchmaking of required and offered 
services using logical inference, rather than 
performing hard-coded one-to-one mappings. 
Such type of matchmaking enables the use of 
services that did not exist or were not known 
when the requestor side was programmed, 
enabling automation system reconfiguration 
without control logic reprogramming.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Once a new operational unit is plugged into 
the production system its agent asks for the 
registration service to the manager passing is 
description as argument, formally reporting 
the operations to be provided and the required 
resources (i.e. tools) to be used during 
operation execution. The operations to be 
provided and the resources to be used are 
described with reference to a common 
ontology [19]. 

The manager interprets the ontological 
description of the intelligent unit and 
integrates it into a dedicated knowledge base 
within the manager architecture. To such an 
aim, software utilities provided by the Jena 
Semantic Web framework [20] have been 
adopted. Jena is an open source Java 
framework for building Semantic Web 
applications. It provides a programmatic 
environment for RDF, RDFS and OWL, 
SPARQL and includes a rule-based  
inference engine.  

Figure 12. RDF based description of the finishing Tern.  
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A searching algorithm, implemented in Java, 
is then executed in order to find the run-time 
available manufacturing resources capable of 
providing the requested operations.  

6. Control Solution Verification 

The validation of the control software is the 
final task of the whole automation system 
design life cycle before the system deliver to 
customers. Within such phase, the 
correspondence of the automation system 
behaviour with the requirements described in 
the system specifications is verified. Normally, 
the control software development is not 
carried out directly on the hardware devices, 
but is performed “offline”, into dedicated 
development environments. Once completed, 
deployed control software is downloaded on 
the hardware devices and tested onsite, by 
controlling the real process. Major drawbacks 
are the increase in commissioning times and 
costs, huge underperforming conditions and 
critical damages on the plant devices, caused 
by undetected errors in the control system. 
Furthermore, software modifications are more 
difficult to be implemented in such conditions, 
due to complexity of overall system.  

For bigger plants, the first validation of the 
software is often carried out by means of 
software/hardware test panels, offering to the 
control system the same electrical interface, 
manually operated to change field values so 
emulating the process variables variation. 
This method is carried out without any 
structured criteria and the dynamic control 
system response cannot be tested deeply, so 
leading to the identification only of some 
rough implementation errors. 

A different way to validate the control 
software is possible by using process 
simulators, which are not widely adopted in 
industrial practice because their usage 
requires relevant process competencies - not 
always available - and additional costs for 
programming activities. 

In the present work, a closed loop simulation 
approach has been adopted for the validation 
of overall developed control application also 
considering the bottom-up methodology 
presented in [21]. In particular, a simulation 
model of the process to be controlled, 
running on a dedicated PC, has been 

developed and connected to the control 
system by mapping I/O boards.  

Figure 14 illustrates the architecture of the 
verification framework. In this application 
the Simulink, State Flow and Virtual Reality 
toolboxes of the Matlab platform have been 
respectively utilized for the development of 
the logical and graphical model of the 
molecular transport system. 

Simulation model

Graphical Model Logical Model

Control Application

NI DIO-96 Boards

  

Figure 14. Simulation framework. 

Furthermore, the software solutions running 
on the real control hardware, before being 
installed into the real manufacturing plant, 
have been validated within a pilot plant 
which reproduces in scale 1:10 the molecular 
transport line, as shown in Figure 15. This 
technologic demonstrator is part of the ITIA 
Automatic Control Laboratory and it has 
been realized with the same number of I/O 
signals exchanged between the real 
manufacturing plant and its automation 
system, for study and testing purposes.  

 

Figure 15. Technological demonstrator 

Thus, an automation system tested with the 
demonstrator can be directly connected to the 
real manufacturing plant, reducing ramp-up 
efforts and costs.  
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7. Conclusions 

The present paper describes a self-adaptive 
control architecture deployed for a real 
industrial plant. To such an aim, a modular 
and distributed approach has been adopted, 
integrating an IEC 61499 based control 
solution for real-time control purposes and a 
semantically enriched multi-agent control 
layer for dynamic supervision strategy. Main 
focus of the paper is kept on the description 
of the overall solution structure, highlighting 
the capabilities of run-time updating of the 
knowledge model used for control decisions, 
while factory products and resources  
changes occur.  

Furthermore, the designed control strategy, 
implemented within a structured and 
reconfigurable IEC 61499 based application 
has been detailed.  

Moreover, a closed loop simulation based 
approach has been adopted to validate the 
implemented control solution before the 
integration into the real manufacturing plant, 
thus reducing commissioning time and costs. 

Next efforts will mainly regard the 
integration of dedicated supervision and on-
line dispatching/scheduling facilities onto the 
deployed control architecture. 
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