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1. Introduction 

Associated with the increasing demands for 
higher system performance and product 
quality on the one side and more cost 
efficiency in the other side, the complexity 
and the automation degree of technical 
processes are continuously growing. 
However, conventional feedback control 
design for a complex system may result in an 
unsatisfactory performance, or even in 
instability, in the event of malfunctions in 
actuators, sensors or other system 
components. In order to overcome these 
limitations, modern complex systems use 
sophisticated controllers which are developed 
with fault accommodation and tolerance 
capabilities, in order to meet reliability and 
performance requirements.  

Originated in the early 70’s, the model-based 
reconfiguration control technique is a kind of 
active approaches to achieve fault tolerant 
control for dynamic systems which has been 
developed remarkably since then. Its 
efficiency in detecting faults in a system has 
been demonstrated by a great number of 
successful applications in industrial processes 
and automatic control systems.  

Although developed for different purposes by 
means of different techniques, all model-based 
fault tolerant control system are common in 
the explicit use of a process model, based on 
which algorithms are implemented for 

 

 

 

 

 

 

 

 

 

 

 

 

 

processing data that are on-line collected and 
recorded during the system operation. 

In this way, general multiple model-based 
control approaches have been developed in 
last decade, [3]-[5]-[8]-[10]-[21]. Thus, in the 
literature, there are many strategies that take 
in consideration the multi-models methods 
used for reconfiguration of control law and 
diagnosis purposes, [7]-[14]-[18]-[20]-[22]. 
Furthermore, Multiple Models (MM) method 
is proposed in [16]. In addition, controller 
switching approach represents a class of 
active fault tolerant control detailed in [17]. 
Moreover, Multiple Models Switching and 
Tuning (MMST) approach that concerns 
more particularly the reconfigurable control 
method is proposed in [4]-[9]-[19]-[20]-[24]-
[25]-[26]. 

In this paper, for a Single Input Single Output 
(SISO) nonlinear process with multiple 
operating modes, a robust control 
reconfiguration strategy, based on switching 
control, is used to ensure stability and desired 
performances. The multi-model flatness-
based control is based on switching between 
identified operating modes. The minimization 
of criterion value, based on a difference 
between the estimated output of each model 
and the real system output, is generated. The 
LMI tools which are based on quadratic 
Lyapunov criteria in order to guaranty the 
stability of the global system are used. The 
performances obtained by switching in terms 
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of tracking trajectory and disturbance 
rejection are discussed in this paper and the 
stability of the corresponding switched 
discrete-time linear systems is given. The 
case of thermal process is studied. 

2. Reconfiguration Fault Tolerant 
Control Approach 

2.1 Description 

Each controller of the proposed approach is 
designed using a robust pole assignment 
proposed in [1]. This control law presents a 
good performance in term of robustness and 
guarantees closed-loop performance in case 
of small parameters uncertainties. Operating 
mode detection and active fault tolerant 
control structures are introduced in this paper 
to deal with an active supervisory control 
integrating an additional detection 
reconfiguration loop. In the presence of 
exogenous fault, the active method of robust 
control reconfiguration is based on using an 
indirect switching strategy dealing with the 
selection of the right controller.  

The controller selection strategy is based on 
the minimization of the error between the 
output of each model and the real output of 
the system. Each controller Cj is designed 
especially for a given process operating mode 
Gj, [7]. In order to determine when and into 
which controller we should switch, a 
detection method is detailed below: 

 the model Gj is controlled by the signal ur, 
which is issued from the active controller, 

 
 a residual evaluation is calculated for 

each model output,  

 a mode isolation based on the detection 
rule decides if the process Gj is in 
operating mode with sampling period Te. 
A minimization of a criteria Jj is carried 
out and consequently the selected 

controller corresponds to the argument of 
the smallest criteria Jj value which 
expression is given in next paragraph, 

 the detection rule gives the decision of 
the correspond desired trajectory ,

d
k jz  

calculated for active operator mode. 

2.2 Residual evaluation and detection rule  

For j models, the state space representation in 
a discrete-time framework is given by: 

1, , ,
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where Aj, Bj, and Cj, , represent the system 
matrices of state space.  

Among the existing model-based fault 
tolerant control reconfiguration schemes, we 
find the so-called observer-based technique. 
This technique has been developed in the 
framework of the well established advanced 
control theory, where powerful tools for 
designing observers for efficient and reliable 
algorithms for data processing aiming at 
reconstructing process variable are available. 

In order to receive this information, a 
comparison of measured process variables 
(output signals) with their estimates delivered 
by the process models will then be made. The 
difference between the measured process 
variables and their estimates is called residue. 
Roughly speaking a residual signal carries the 
most important message for a successful fault 
reconfiguration control; if residual is different 
to zero then fault otherwise fault free.  

 

 

 

 

 

 

 

The procedure of creating the estimates of the 
process outputs and building the difference 
between the process outputs and their 
estimates is called residual generation. 
Correspondingly, the process model and the 
comparison unit build the so-called residual 
generator, as shown in Figure 1. 

 

Figure 1. Schematic description of the model-based reconfiguration 
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The associated Lunberger observers are then 
given as follows by:  

 
,
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 (2) 

The observers’ banc is illustrated in Figure 2. 

The residual value is expressed by:  

,ˆj k k jy y    (3) 

which will be used to define the detection criterion. 

Lj are the observer gains for which the 
eigenvalues of (Aj – LjCj) are stable, [6]. 

 

Figure 2. Observers’ banc schematic 

The detection rule is calculated online based 
on the minimization of the residue procession 
criterion value and that generates the 
minimum argument in order to choose the 
adequate active controller for the current 
operating mode which behavior represents 
the best the real plant model. 

In this paper, an Operating Mode Detection 
and Accommodation (OMDA) structure [7] is 
introduced to deal with an active supervisory 
control including flatness-based multi-
controllers, (see Figure 3).  

 

Figure 3. Structure of Operating Mode Detection 
and Reconfiguration scheme 

In the presence of exogenous events e , the 
active method of robust control 
reconfiguration is based on the use of an 
indirect switching strategy dealing with the 
detection of the switching time and the 
selection of the right controller. 

Then, a multi-controller structure is required to 
control a process with several Operating Modes. 

The monitoring structure consists of two 
combined blocks, one for the model-based 
detection, which allows detecting a given 
process operating mode (d), and the other one 
for the accommodation decision (), which 
selects the right controller. The controller 
selection strategy is based on the 
minimization of a criterion, which will be 
described bellow. Remember that each 
controller Cj is designed specifically for a 
given process operating mode Gj. An 
operating mode matrix is defined such as: 

    2
, , , ,i j i jM M C G i j I    (4) 

where I is a finite set of integers I={1,2,…,g}. 
If j=i, then Mi,j represents the ith fitted operating 
mode, i.e., the controller matches the OM 
exactly, otherwise if j  i, then Mi,j  corresponds 
to one of the non fitted operating modes, i.e., 
the controller does not match the OM. 

In order to determine when and to which 
controller one should switch, a detection 
method is detailed in the following. 

The detector consists of three functions: 

1. simulation of the models 
  , 1,...,jG G j g  controlled by the signal ur, 

which is issued from the active controller; 

2. evaluation for each model error output 
according to the fixed criterion 
mentioned in equation (5); 

3. mode isolation based on the detection rule.  

For each operating mode, j∈I a criterion is 
associated and expressed by: 

 
1

2
,

0

1

1

N

j j n
n

J ε k
N






   (5) 

where N  is the size of the sliding window, 
 ,j nε k  is the jth modelling error given by: 

     ,j n jε k y k n y k n     (6) 
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The Multi-model Output Recursive Square 
Error (MORSE) criterion [18]:  

       1 2 jJ k J k J k J k      (7) 

is computed with the recursive formula 
obtained from the relation (5): 

        2 2
, ,

1
1

1j j j n j nJ k J k ε k ε k N
N

    


 (8) 

while k N  , the cumulative summation of 
the square errors of the relation (8), is used to 
initialize the criterion jJ  . 

The couple (d,td) defines the detection test, 
which describes each operation mode 
 d k detected and the detection time  dt k  . 

The detection rule is computed on-line by: 

   
1

, arg minm j
j g

d k P G m J k
 

    
 

 (9) 

This rule decides that the process P  is 
operating in the mth mode Gm sampled at the 
control sampling period Te. At each sampling 
period, a minimization of the criterion Jj(k) is 
carried out. The selected controller 
corresponds to the argument of the smallest Jj. 

In this paper, only one objective is 
considered, i.e., regulating the output of a 
SISO system to a reference input signal. The 
accommodation vector α  is a piecewise 
continuous switching signal which represents 
the series of the successive activated 
controllers. This is the set of decisions which 
selects the j th controller corresponding to the 

detected mode and whose the criterion jJ  is 

the smallest.  

2.3 Stability Analysis 

The stability analysis of a switching control 
strategy consists on two steps, [7]: 

stability analysis of each subsystem, i.e., each 
controller must asymptotically stabilize each 
process operating mode, 

stability analysis of the overall system for 
arbitrary switching signals. 

To guarantee the stability of the systems, 
Linear Matrix Inequalities must be solved. A 
common Lyapunov function must be found 
for the switched linear system, [11].  

In the case of Linear Time Invariant (LTI) 
systems, the quadratic stability is determined 
by Lyapunov function as: 
 , 0T

k kV x k x x P and 0P  to study the 

stability of systems of the form are: 

1k kx x  A  (10) 

to guarantee the asymptotic stability of 
systems in accordance with Lyapunov theory, 
the function  ,V x k  must be such that: 

   1, 1 , 0V x k V x k     (11) 

then the system (10) is quadratic stable if   
the inequality:  

0T  A PA P  (12) 

is verified. 

The equivalence is to express the quadratic 
stability using the Linear Matrix Inequalities 
represented by the following relations: 

If 0T P = P , so: 

0 0
T

T  
   

 

P A P
P - A PA

PA P
 (13) 

Using these linear matrix inequalities, we can 
guaranty the stability of the switched system. 
Moreover, using the LMI tools we calculate 
the observer’s gains.  

3. Design of Flatness-based Controller 

In this part, a flatness-based RST controller 
design is presented to be used in the 
switching multi-controllers approach in order 
to track a non constant reference trajectory.  

3.1 Discrete-time flat output 

The discrete-time SISO system, described by 
the following equation: 

   k kA q y B q u  (14) 

where ky  and ku  represent respectively the 
output and the control signals, is flat if it is 
controllable. The discrete-time flat output 

kz is then given by [1]: 

   k k kz N q y D q u   (15) 

where N(q) and D(q) are polynomials which 
represent the solutions of the                         
Bezout equation: 
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        1A q D q B q N q   (16) 

The flat output kz  on which depends the 

output  ky  and the control ku , can be also 
seen as being the partial state of a linear 
system, [1]-[2]-[23]: 

 k ku A q z  (17) 

 k ky B q z  (18) 

The knowledge of the flat output kz and its 
future values makes it possible the 
determination of the open-loop control ku  of 
the system. 

3.2 Trajectories planning 

The objective of the trajectories planning is to 
determine an open-loop control  du t , 

bringing a given system, from a certain initial 
state in a known final state [12]: 

        1,..., dd du t z t z t  B , (19) 

        ,..., dd dy t z t z t C  (20) 

dz  is the desired trajectory for the 
continuous-time flat output that must be 

 sup 1,   time continuously derivable. 

If the objective is to reach two equilibrium 
points of balance       0 0 0, ,u t y t z t  and 

      , ,f f fu t y t z t , 0t  and ft  are the two 

instants known in advance, it is necessary to 
solve the problem of generation of trajectory 
off line.  

Different steps of desired trajectory d
ky  

generation in discrete-time formalism are 
described in [1]-[2], where: 

 d d
k ky B q z  (21) 

where d
kz  are the values of  the continuous-time 

trajectory  dz t  at the k  sampling instant. 

3.3 Flatness-based RST controller design 

The realization of a flatness-based RST 
controller is carried out by considering the 
method of direct calculation of the state 

vector  1 1

T

k k k k nZ z z z    , suggested 

in [1]-[2]-[23]. 

From the relations (17) and (18), we can 
determine the representation of system state 
in its controllable form: 

1 ,

,
k k k

k k

Z Z u

y Z
  

 

A B

C
 (22) 

with: 

0 1 2 1

0 1 0 0

0 1

0

0 0 0 1

n na a a a 

 
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 
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

  
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


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0

0
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1

 
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 
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 
 
 
 

B 

 
 0 1 1nb b b  C  

From this representation, we can write: 

    1
k k kZ O Y M U A,C A,B,C  (23) 

where the observability matrix is: 

 

1n

O



 
 
 
 
  
 

A,C

C

CA

CA


 (24) 

and the controllability matrix M(A,B,C) given by: 

 

-2

0 0

0
n

M

 
 
 
 
 
 
 
 

A,B,C

CB

CAB CB

CA B CAB CB

 

 

 

  



 (25) 

The flatness-based control law is given by the 
following relation: 

   d
k k ku K q z a k Z    (26)  

where a  and k  are two constant vectors 
constituted by the coefficients of the  A q  

and  K q  polynomials: 

 0 1 1... na a a a  ,  0 1 1... nk k k k    

and  K q  is a polynomial containing the 

closed loop poles. The realisable structure of 
RST flatness-based controller can be then 
obtained by:    

     1 1d
k k kS q u K q z R q y    (27)  

where: 

     
1 1 1nR q a k O Q     A,CA  (28) 
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
 

1

1 1
( ) ( )

2

( ) 1 ( )
n

n

S q a k

O M

Q



 



   

 



A ,C A ,B ,CA

A B   B

 (29) 

    1 2* 1...
T

n nQ q q q     ,

    1 2 1... 1
T

n nQ q q q      

The closed-loop dynamics is defined by the 
tracking polynomial  K q  such as: 

         1 1 1 1A q S q B q R q K q      (30) 

This relation represents the Bezout equation 
already defined in the traditional approach of 
RST controller [13]. That proves that closed-
loop poles must be well optimized in order to 
satisfy the desired performances.  

3.4 Robustness 

In order to reject a static perturbation, the 
polynomial  1S q  must have a term in 

 11 q . The introduction of a term of 

 11 q  in the polynomial  1R q makes 

possible the attenuation of the effect of noises 
in high frequencies on the entry of the system 
[1]-[2] and [15]. By taking in account these 
pre-specified fixed parts, polynomials 

 1R q and  1S q  are then given by: 

     1 1 1
RR q H q R q    (31) 

     1 1 1
SS q H q S q    (32) 

where  1 11SH q q    and  1 11RH q q    

The controller is then designed from the model 
governed by the following transfer function: 

     
   

1 1

1

1 1

R

S

B q H q
H q

A q H q

 


 
  (33) 

In order to maintain nominal performances in 
presence of disturbances and of modelling 
errors, the sensitivity functions defined below 
are evaluated and recomputed to satisfy the 
performances required. The sensitivity 
functions are given by [15]: 

 Output disturbance: represented by the 
transfer function Syd(q

-1) between the 
output disturbance d(t) and the output 
system y(t): 

     
 

1 1

1

1yd

A q S q
S q

K q

 






 (34) 

 Input disturbance: represented by the 
transfer function Sud(q

-1) between the 
output disturbance d(t) and the input 
system u(t): 

     
 

1 1

1

1ud

A q R q
S q

K q

 



 


 (35) 

The polynomial K(q-1) is given by the 
equation (30). 

3.5 Saturation effects 

The additive static disturbances cause 
generally the increase in the control signal 
magnitude applied to the system. 
Consequently, it is necessary to design a 
device of anti-saturation according to the 
technique already developed in [15] and 
exploited in [13] where the control law has 
the following forms: 

     1 1
1

d
k k k ku K q z R q y S q u 

    (36) 

with: 

   1 1 11S q q S q     (37) 

In addition, it is possible to impose certain 
dynamics when the system leaves the 
saturation. The desired dynamics is defined by 
the polynomial PS(q

-1) given by equation (38). 

 1 11 exp e
S

sat

T
P q q


  

   
 

 (38) 

sat indicates a time-constant of a system 
chosen of a first order. 

Finally, the new control law of the flatness-
based polynomial controller in the presence 
of saturation is given by the expression: 

     

 

1 1

1
1exp

d
S k k k

e
k

sat

P q u K q z R q y

T
S q u



 




  

  
       




 (39) 

with : 

 
min max

max max

min min

if

if

if

k k

k k

k

u u u u

u u u u

u u u

 
 
 

 (40) 
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minu and maxu  are respectively the lower and 
higher limits of the control saturation. 

4. Structure of Multiple Flatness-
based Controllers 

The realisable structure of the flatness-based 
RST multi-controllers can be obtained by:    

     1 1
, , ,

d
j k j k j j k jS q u K q z R q y    (41) 

where: 
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 (43) 

where ,
d
k jz  are the flat output of each model jG . 

The design of flatness-based multi-controllers 
is presented in Figure 4. 

 

The dynamics of the closed-loop is defined 
by the tracking polynomial  1K q  such as: 
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     
     

     

1 1
1 ,1 ,1 1 ,1

1 1
2 ,2 ,2 2 ,2

1 1
, , ,

d
k k k

d
k k k

d
j k j k j j k j

S q u K q z R q y

S q u K q z R q y

S q u K q z R q y

 

 

 

  

  




 


 (45) 

5. Application to the Control of a 
Thermal Process  

5.1 Thermal process models 

The considered system is a thermal process 
defined in [7]. The flow rate signal is 
assumed piecewise constant and can vary by 
changing the throttle position; the transfer 
function of the model is given by: 

 
1

j p

j
j

cj

k e
G p

T p






 (46) 

where jk  is j th static gain and j is the j th 

delay, cjT is the j th time constant of the 

process and p  is the Laplace operator. Three 
operating points have been chosen to carry 
out the study. 

All continuous-time models are sampled at 
0.3seT  , leading to the structure for the 

corresponding discrete-time transfer 
functions given by [7]: 
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Figure 4. Robust Flatness-based multi-controllers reconfiguration  
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5.2 Trajectories planning 

In the discrete-time framework, the desired 
output trajectory d

ky  is obtained from the 
equation (21).  

In our case of study, the trajectories ( )d
jz t , 

1,2,3j  , are expressed in a continuous-time 
domain according to the following 
polynomial form:  

( )
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0
0

0

0
1

1

 (50) 

where Bj(1) is calculated for each operating mode. 

The transition times are chosen t0=10s and 
tf=20s and the polynomial Poly(t) a reference 
trajectory between these two moments: 

( ) ( ) ( ) ( )( )Poly t M t t c M t t c= - + -1 0 1 2 0 21 0 0  (51) 

where 1c  and 2c  vectors are given by: 

 1 0
dc Z t  (52) 

        1
2 2 0 1 0 0

d d
f f fc M t t Z t M t t Z t     (53) 

with  1M t  and  2M t  defined in [13].  

The roots of the desired polynomial  K q  

are: 1,2 0.5087 0.3019p i  and 3 0.2231p  . 

The desired trajectories  1
dz t ,  2

dz t  and 

 3
dz t  are then represented on Figure 5. 
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Figure 5. The desired flat output trajectories 

 1
dz t ,  2

dz t  and  3
dz t  

5.3 Stability using LMI  

The LMI problem implies to find a common 
Lyapunov function for the switched linear 
system. Hence, the optimization problem is 
feasible and the overall system, i.e., the 
combination of the three controllers with the 
three process transfer functions, is found to 
be globally asymptotically stable. The 
definite positive matrix is given by: 

59.5503  -19.6844

-19.6844 19.5066

 
  
 

P  (55)  

The jL observer’s gains calculated in closed-

loop using LMI are: 

1
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 
  
 

L , 2

0.3140

0.7804

 
  
 

L and 

3

-0.5536

-1.0366

 
  
 

L   

5.4 Simulation results 

The flatness-based RST switching multi-
multi-controllers used for the thermal process 
is described in Figure 6.  

 

Figure 6. Flatness-based RST switching       
multi-controllers 
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(a) Output sensitivity function |Syd|  
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(b) Input sensitivity function |Sud|  

Figure 7. Sensitivity functions for j=1,2,3 

The results of Figure 7 show that the multi-
controllers obtained are robust considering 
the sensitivity functions which remain inside 
the specified templates of robustness. In 
addition, we underline the robustness of such 
multi-controllers related to the static 
disturbance and the high frequency noises 
rejection is clearly guaranteed.  

The simulation results for the case of thermal 
process are shown in Figure 8. 
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(a) Control input  
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(b) Switching sequence of accommodation signal 
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(c) System output y and desired output  
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(d) Tracking error 
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(e) Criterion signals 

Figure 8. Simulation results of robust              
flatness-based RST multi-controllers                  

with anti-windup device 

6. Conclusion  

The proposed approach based on the flatness 
concept is applied to a thermal process with 
multiple operating modes. For each model, a 
corresponding RST flatness-based 
polynomial controller is designed and 
consequently, a reconfiguration strategy 
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based on multi-controllers structure obtained. 
The robust reconfiguration flatness-based 
control is based on switching between 
identified operating mode of a thermal 
process based on the minimization of 
criterion value which is generated from a 
comparison between the estimated operating 
modes output and the real system output. The 
real thermal process is then controlled by a 
control signal which is issued from the active 
flatness-based RST multi-controllers. 
Satisfactory simulation results are obtained. 
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