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1. Introduction 

The paper treats the control problem of a class 
of hyper-redundant robots with continuum 
elements. The control of these systems is very 
complex and a great number of researchers 
have tried to offer solutions. In [2, 3], 
Gravagne analyzed the kinematic models. 
Important results were obtained by Chirikjian 
and Burdick [4], which laid the foundations 
for the kinematical theory of hyper-redundant 
robots. Their results are based on a “backbone 
curve” that captures the robot’s macroscopic 
geometric features. Mochiyama has also 
investigated the problem of controlling the 
shape of an HDOF rigid – link robot with two-
degree-of-freedom joints using spatial curves 
[5]. In other papers [6, 7], several technological 
solutions for actuators used in hyper-
redundant structures are presented and 
conventional control systems are introduced. In 
[8] control problem of a class that performs the 
grasping function by coiling is discussed. A 
frequential stability criterion for the grasping 
control problem is proposed in [9,10,11]. 

In this paper, control problem of continuum 
arms with boundary sensors is treated. 
Standard feedback control design assumes 
full-state feedback with measurements of the 
entire state. Practical constraints require a 
boundary placement of the sensors. In this 
case, the development of the state-feedback 
controllers needs to design state observers. 

The paper is organized as follows: section 2 
presents technological and theoretical 
preliminaries, section 3 studies the dynamic  

 

 

 

 

 

 

 

 

 

 

 

 

model, and section 4 presents the control by 
boundary observer. 

2. Technological System 
The hyper-redundant technological models 
are complex structures that operate in 3D 
space, but the control laws of the elements 
can be infer from the planar models. For this 
reason, the model discussed in this paper is a 
2D model. 

 

Figure 1. A hyper-redundant arm 

The technological model basis is presented in 
Figure 1. It consists of a number (N) of 
continuum segments, each segment having a 
layer structure that ensures the flexibility, the 
driving and position measuring (Figure 2). 

 

Figure 2. A hyper-redundant segment 
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The high flexibility is obtained by an elastic 
non-extensible backbone rod with distributed 
damping and negligible shear effects. The 
driving system consists by two antagonistic 
cable actuators that are connected at the end 
of each segment and determine the bending 
of the arm. The position measuring of the 
segment is obtained by an electro-active 
polymer curvature sensor that is placed on the 
surface at the terminal sub-regions of each 
segment. These sensors can measure the 
curvature on the boundary of the segment 
(s=0 or s=l). 

 

Figure 3. The hyper-redundant arm parameters 

The essence of the segment i is the backbone 
curve Ci. The length of each segment is l. The 
independent parameter s is related to the arc-
length from origin of the curve Ci, s∈, 
=[0,l] [15] (Figure 3). We denote by  the 
equivalent moment at the end of the segment 
(s=l)exercised by the cable forces FA and FB. 
The position of a point s on curve Ci is 
defined by the position vector r=r(s), 
s∈[0,l]. For a dynamic motion, the time 
variable will be introduced, r=r(s,t). The 
segment has the elastic modules E, the 
moment of inertia I, the bending stiffness EI, 
the linear mass density  and rotational 
inertial density I. 

3. Dynamic model 

The dynamic model of a segment can be 
derived from the Hamiltonian principle. Using 
the same procedure as in [3] yields the partial 
differential equations of the arm segment, 

1 1 0ssI q b q EIq c q       (3.1) 

with the initial and boundary conditions 

 0, 0q s   (3.2) 

 ,sEIq t l   (3.3) 

 ,0 0sq t   (3.4) 
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equivalent damping coefficient and 1c  
characterizes the elastic behavior. 

The equations (3.1) – (3.4) can be rewritten as 

ssq aq bq cq     (3.5) 

 ,0 0sq t   (3.6) 

 ,sq t l d    (3.7) 

 0, 0q s  ,  0,s l  (3.8) 
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1

d
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The input of the system is represented by the 
moment  applied at the boundary s=l of the 
arm. The output is determined by the angle 
values measured by the sensor, 

   0,y t q t  (3.10) 

or 

   ,y t q l t  (3.11) 

4. Control 

Standard feedback control design assumes full-
state feedback with measurement of the entire 
state. In this case, the placement of the film 
sensors at the boundary sub-regions of the arm 
segment requires designing the state observer. 

 

Figure 4. Control system  

The following observer is proposed 
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      00ˆ ˆ,0 ,0 ,0sq t k q t q t   (4.2) 

      01ˆ ˆ,0 , ,sq t k q t l q t l d      (4.3) 

 ˆ 0,0 0q   (4.4) 

 ˆ 0, 0q l   (4.5) 

where  ˆ ˆ ,q q t s  is the observer state and 

 10k s ,  11k s , 00k , 01k  are the functions and 

the constants that define the observer 
parameters. The objective is to determine 
these parameters in order to reconstruct the 
state in the domain. 

An error variable q  is introduced 

ˆq q q   (4.6) 

and the error system will be 
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   00,0 ,0sq t k q t    (4.8) 

   01, ,sq t l k q t l    (4.9) 

 0,0 0q   (4.10) 

 0, 0q l   (4.11) 

where 

 lim , 0
t

q t s


 ,  0,s l  (4.12) 

We consider that the desired states of the arm 
motion are given by the curve dC , 

    : , 0,d
dC q s s l  (4.13) 

The control problem is to find the moment 
control law  t  in order to achieve the 

desired state.  

Control algorithm. The closed loop control 
law of the arm (3.5) – (3.8) with the boundary 
observer (4.1) – (4.5) is given by 
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, , , dk l l k l l q t l q l

d
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where  1 ,k s z ,  0 ,k s z  are the solutions of 

the following partial differential equations, 

1 1 1 0ss zzak ak ck    (4.15) 

0 0 0 0ss zzak ak ck    (4.16) 
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with the boundary conditions 

 1 0, 0k z  ,  0 , 0k l z  ,  0,z l  (4.19) 

 0 , 0sk l z  ,  1 0, 0sk z  ,  0,z l  (4.20) 

and the observer parameters are defined by 
the equations 
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Proof. See Appendix. 

5. Conclusions 

The paper treats the control problem of a 
class of hyper-redundant arms with 
continuum elements. The observability 
problems for these models described by 
partial differential equations are analyzed. 
The measuring systems are based on the 
sensors placed on the boundary of the arm. 
Several observers are proposed for 
reconstructing the full state of the arm. A 
back-stepping technique is used in order to 
design a boundary control algorithm. 
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Appendix 
The control algorithm is derived by using the 
back-stepping method developed in [13, 14]. 
The coordinate transformation 
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transforms the error system (4.7) – (4.11) into 
a stable  0b   target system 
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From (A.1) we obtain 
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If we substitute (4.7), (A.7) and (A.8) in 
(A.2) and integrate by parts, we get the 
conditions (4.15) – (4.18) and (4.21), (4.22). 
From (A.1), the velocities at 0t  , 0s  , 
s l  will be 

       1

0

0,0 0,0 0, 0,
l

w q k z q z dz       (A.9) 
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w l q l k l z q l z dz       (A.10) 

and by the boundary and initial conditions 
(4.10), (4.11), (A.5), we obtain 

 1 0, 0k z  ;  0 , 0k l z  ;  0,z l  (A.11) 

and by using the boundary conditions (4.8), 
(4.9), for s=0, s=l, respectively, the observer 
parameters k00, k01 are obtained. 

Also, if we consider that the desired position 
is defined by qd(s), s∈[0,l] and use the 
boundary conditions (4.3) in (A.1), the 
control law (4.13) is easily obtained. 
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