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1. Introduction 

Diffie and Hellman proposed in 1976 the 
public key cryptography [3]. They have 
invented the concept of the encryption 
scheme and the digital signature scheme 
based on the public key. Since then, several 
digital signature schemes have been 
constructed. The most popular signature 
schemes are the RSA signature scheme [18] 
and the ElGamal signature scheme [4]. The 
RSA signature scheme is based on the 
difficulty of factoring a large composite 
number and the ElGamal signature scheme is 
based on the difficulty of solving discrete 
logarithms. Schnorr proposed in 1991 a 
variant [19] of the ElGamal signature 
scheme. Also, NIST proposed the DSA 
signature scheme [12]. The Schnorr’s 
signature and the DSA signature were 
shortened to 320 bits. 

David Chaum proposed first in 1982 blind 
signatures [1] in order to construct an 
electronic version of money (electronic cash 
system).  Blind signatures allow a user to 
obtain signatures from a signer on any 
document, in such a way that the signer 
learns nothing about the message that is being 
signed. Blind signature schemes have been 
widely used to protect customers' right to 
privacy in the untraceable electronic cash (e-
cash) systems [2]. However, it is easy to 
make multiple copies of the electronic coin, 
which is in the form of number strings. 
Therefore, blind signature schemes are used 
in order to eliminate the possible abuse of 
unlinkability. A number of blind signature 
schemes have been proposed to date [5], [10],  

 

 

 

 

 

 

 

 

 

 

[11], [14], [22]. The blind signature schemes 
are useful in some applications [21] where 
the anonymity is a big issue. Examples 
include the online voting systems and the 
electronic cash systems [13], [15], [16], [17]. 

In this paper we propose two blind signature 
schemes and an elliptic curve version of 
Shao’s signature scheme. 

The rest of this paper is organized as follows. 
In the next section we review the model of a 
blind signature scheme, the elliptic curves 
cryptography and the Shao’s signature 
scheme. Then we present our signature 
schemes in the section 3. Furthermore, we 
discuss some aspects of security in the 
section 4. The section 5 concludes the work 
of our paper.  

2. Preliminaries 

In this section we review the model of a blind 
signature scheme, the basic knowledges of 
the elliptic curve cryptography and the 
Shao’s signature scheme. 

2.1 The model of a blind signature scheme  

In this section we review the definition of a 
blind signature scheme and its security [6]. 
The blind signatures are treated as an 
interactive protocols between two players: 

 A Signer, who blindly signs a document m. 

 A User, who obtains the signature of her 
document m.  

Definition 1. A blind signature scheme 
(Signer, User, Gen, Ver) is defined by the 
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two Interactive Turing machines (Signer, 
User) and the following algorithms: 

 The key generation algorithm Gen: is a 
probabilistic polynomial time key 
generation which takes as an input a 
security parameter 1k and outputs a pair 
(pk,sk) of public and secret keys.  

 The verification algorithm Ver: is a 
deterministic polynomial time algorithm 
which takes as input the tuple 
(pk,m,(m)) and outputs accept/reject. If 
both Signer and User follow the protocol 
then the Signer always outputs completed 
and the output of user is always accepted 
by the verification algorithm. 

The Signer(pk,sk) and the User(pk,m) are two 
polynomially bounded probabilistic Interactive 
Turing machines. The both machines have the 
separate tapes: read-only input tape, write-only 
output tape, a read/write work tape, a read-
only random tape, and two communication 
tapes, a read-only and a write-only tape. The 
Signer and the User follow an interactive 
protocol of some polynomial number of 
rounds. The Signer outputs either completed or 
non-completed and the User outputs either fail 
or (m). 

The security of a blind signature scheme 
consists of two properties: blindness and  
non-forgeability. 

2.2 Elliptic curve cryptography 

In 1985, Miller[9] and Koblitz[7] introduced 
Elliptic Curve Cryptography (ECC) which 
has attracted increasing attention in recent 
years due to its shorter key length 
requirement in comparison with other public 
key cryptosystems such as DSA [12], 
ElGamal [4] and RSA[18]. For example, 160-
bit elliptic curve version of DSA signature 
algorithm (ECDSA) has a security level 
equivalent to 1024-bit DSA signature 
algorithm. Such advantages make elliptic 
curve cryptography a better choice for public 
key cryptography. 

The elliptic curve cryptosystems are based on 
the elliptic curve logarithm problem over a 
finite field. Unlike other popular 
cryptosystems such as DSA, RSA or 
ElGamal, the elliptic curve cryptosystem is 
much more difficult to break at equivalent 
key lengths. 

Table 1 compares the key sizes for different 
cryptosystems to encryption for comparable 
levels of security against brute-force attacks. 
ECC is especially well suited for constrained 
environments such as smart cards, mobile 
phones, PDAs, digital postage marks. 

Table 1. NIST Guidelines for Public-Key Sizes 
(Key size in bits) 

Symmetric 
Encryption 

(3DES, AES) 

DSA, RSA 
and Diffie-
Hellman 

Elliptic 
Curve 

80   1024 160 
112 2048  224 
128 3072 256 
192 7680 384 
256 15360 512 

An elliptic curve over a finite field Fp of 
characteristic greater than three can be 
constructed by choosing of two variables a  
and b  within the field Fp. 

Definition 2. The elliptic curve is the set of 
points (x,y) which satisfy the elliptic curve 
equation y2 = x3 + ax + b(mod p), where 
x,y∈Fp, together with a special point (“point 
at infinity”) denoted O and 

3 24 27 0(mod )a b p  . 

The elliptic curve group is an additive abelian 
group with the point O which is the identity 
element. The formulas for addition of two 
points on an elliptic curve over a finite field 
Fp of characteristic greater than three are 
given as follows. Let P(x1,y1) and Q(x2,y2) be 
elements of the elliptic curve group. Then 

3 3( , )P Q x y  , where  
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 (2) 

Next, we give a definition of the elliptic 
curve discrete logarithm problem [8].  

Definition 3. Let E be an elliptic curve 
defined over a finite field Fp and let 
P∈E(Fp) be a point of order n. Given 
Q∈E(Fp), the elliptic curve discrete 
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logarithm problem is to find the integer 
0 1k k n      such that Q k P    

Elliptic curve cryptography is particularly 
useful in applications where the memory, the 
bandwidth and/or the computational power is 
limited (e.g., smartcards, wireless 
communications). 

2.3 Shao’s signature scheme 

We shortly describe Shao’s signature scheme 
[20]. The parameters of this scheme are as 
follows. Let p and q be large prime numbers 
such that q|(p-1). Let H and H’ be ideal hash 

functions where     * 2*: 0,1 0,1
q

pH Z  , 

 * *: 0,1 pF Z . 

The key generation algorithm: Picks a 
random *

qx Z  as the private key. The 

corresponding public key is y=gx. 

The signing algorithm: Picks a random 
*
qk Z  and computes f=F(m), r=gkf, 

h=H(m,r) and s=k-hx, where m∈{0,1}*. The 
signature of the message m is sigma=(h,s). 

The verification algorithm: The inputs are the 
public key y and the message m and the 
signature sigma=(h,s). Computes f=F(m), 
r’=fyhgs and h’=H(m,r’). If h=h’, the 
verification algorithm outputs valid, 
otherwise it outputs invalid. 

3. Proposed Signature Schemes 

3.1 Parameters of our signature schemes 

Let p and q be large prime numbers such that 
q|(p-1). Let H and H’ be collision-resistant 
hash functions where: 

   * 2*: 0,1 0,1
q

pH Z   (3) 

and 

 * *: 0,1 pH Z  . (4) 

Choose an elliptic curve E defined over a 
finite field Fp of characteristic greater than 
three and calculate the order of the elliptic 
curve #E(Fp). Let P be a point of order q on 
the elliptic curve E, where q|#E(Fp). Let 
m∈{0,1}* be a message. 

3.2 Blind signature version of Shao’s 
signature scheme  

In this subsection we construct a blind signature 
scheme from the Shao’s signature scheme. 

Key Generation: Picks a random *
2 qx Z  as 

the private key. The corresponding public key 
is 2

2 modxy g p . 

Signature Generation (Blind Protocol 1): 
In order to get the signature of a secret 
message m, the user asks the signer to initiate 
a communication: 

 The signer selects [2, 1]k q  , 

computes modkr g p  and sends r  to 
the user.   

 The user randomly selects two blinding 
factors , [2, 1]q     and computes:  

 2 = modr g r H m p   . 

The user also computes  2 2,h H m r  
1

2= modm h q   and sends the value m  to 
the signer.  

 The signer computes:  

 2= mods k mx q  (5) 

and sends it to the user.   

 The user computes:  

 2 = mods s q  . (6) 

The blind signature of the message m is 

 2 2 2,S h s . 

Signature Verification: Computes 

 2 2
2 2 modh sr y g H m p   and  2 2,h H m r  . 

If 2 2h h , the blind signature  2 2 2,S h s  of 

the message m  is valid, otherwise it is invalid. 

3.3 Elliptic curve version of Shao’s 
signature scheme 

In this subsection we propose the elliptic 
curve version of Shao’s signature scheme. 

Key Generation: Picks a random *
3 qx Z  as 

the private key. The corresponding public key 
is the point 3Q , where 3 3Q x P . 
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Signature Generation: Picks a random 
*

3 qk Z  and computes  3 3R k PH m , 

 
33 , Rh H m x  and  3 3 3 3 mods k h x q  , 

where  *
0,1m  and 

3Rx  is x -coordinate of 

the point 3R .  The signature of the message 

m  is  3 3 3,S h s . 

Signature Verification: The inputs are the 
public key 3Q  and the message m  and the 

signature  3 3 3,S h s . Computes 

   3 3 3 3R h Q s P H m    and  
33 , Rh H m x   , 

where 
3Rx   is x -coordinate of the point 3R . If 

3 3h h , the verification algorithm outputs 
valid, otherwise it outputs invalid. 

3.4 Elliptic Curve Blind Signature Scheme  

In this subsection we describe an elliptic 
curve version of the blind signature scheme 
from subsection 3.2. 

Key Generation: Picks a random *
4 qx Z  as 

the private key. The corresponding public key 
is the point 4Q , where 4 4Q x P . 

In order to get the signature of a secret 
message m, the user asks the signer to initiate 
a communication. 

Signature Generation (Blind Protocol 2): 
In order to get a blind signature of a secret 
message m, the user asks the signer to initiate 
a communication: 

 The signer selects 4 [2, 1]k q  , 

computes the point 4 4=R k P  and sends 

4R  to the user.   

 The user randomly selects two blinding 
factors , [2, 1]q     and computes:  

4 4=R P R    and 
44 = ( , )Rh H m x , 

where 
4Rx  is x -coordinate of the point 4R . 

The user also computes 1
4= modm h q   

and sends the value m  to the signer.  

 The signer computes   

 4 4 4= mods k m x q   and sends it to the 

user.   

 The user computes:  

 4 4= mods s q   . (7) 

The elliptic curve blind signature of the 
message m  is  4 4 4,S h s . 

Signature Verification: Computes 

4 4 4 4=R h Q s P   and 
44 = ( , )Rh H m x  , where 

4Rx   is x -coordinate of the point 4R . If 

4 4h h , the elliptic curve blind signature 

 4 4 4,S h s  of the message  m  is valid, 

otherwise it is invalid. 

4. Security Analysis 

In this section we discuss aspects of security 
of our signature schemes.  

4.1 Blindness 

Theorem 1. The both protocols Blind 
Protocol 1 and Blind Protocol 2 are two 
blind signature schemes.  

Proof. Our protocols used the blinding 
factors , [2, 1]q     and these values are 
selected at random. Also, the user sends only 
the values m  and m  to the signer.  

Since H  is a collision-resistant hash 
function, the signer can’t recover the original 
message m  from the following two equations 

44 = ( , )Rh H m x  and  2 2,h H m r . If the 

signature  2 2 2,S h s  is valid with the 

values k , modkr g p , m  and 

 2= mods k mx q , then he following 

equations must hold for   and  : 

1
2= modm h q   

 2 = mods s q   

 2 = modr g r H m p   . 

We have that the blinding factors  and β are 
uniquely computed by the above equations: 

1
2= modh m q   

 1
2 2= mods sh m q  . 

We obtain: 

1 1
2 2 2modk kh m q s sh m         

 2 2 2 mods h x q . 
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So, we have: 

   kg r H m g g H m       

=    2 2 2s h xkg H m g H m     = 

=  2 2
2 2
h sy g H m r  , which implies the equality 

2 2r r . Therefore, the Blind Protocol 1 is a 
blind signature scheme. 

We follow the same steps for the Blind 
Protocol 2 in order to show that the Blind 
Protocol 2 is a blind signature scheme. □ 

4.2.  The correctness of the signatures  

We have to prove that the signatures S2=(h2,s2), 
S3=(h3,s3), S4=(h4,s4) are correct (valid). 

Theorem 2. The signature S2=(h2,s2) is a 
valid blind signature of the message m. 

Proof. The verification equation for 
S2=(h2,s2) is 2 2h h , which is equivalent with 

2 2r r . Obviously, the relation follows from: 

 2 2
2 2 modh sr y g H m p  = 

 2 2x h sg g H m   mod p  
   2 2 2x h k mx

g H m
     mod p  

 2 2 2x h k mxg H m      mod p  

 1
2 2 2 2x h k h xg H m       mod p  

 kg H m   mod p  

 kg g H m   mod p  

 kg g H m   mod p  

 = modg r H m p    

2r .  

Theorem 3. The signature  3 3 3,S h s  is a 

valid signature of the message m. 

Proof. The verification equation for S3=(h3,s3) 
is 3 3h h , which is equivalent with 3 3R R . 

The derivation of the verification is described 
as follows: 

   3 3 3 3R h Q s P H m   = 

   3 3 3 3 3h x P k h x PH m    

   3 3 3 3 3h x P k P h x P H m    

 3k PH m  

3R . 

Theorem 4. The signature S3=(h3,s3) is a 
valid blind signature of the message m. 

Proof. The verification equation for the 
signature  4 4 4,S h s  is 4 4h h , which is 

equivalent with 4 4R R . The validity of the 

signature  4 4 4,S h s  for the message m 

follows from: 

4 4 4 4=R h Q s P   

 4 4 4= h x P s P    

 4 4 4 4= h x P k m x P P     

4 4 4 4= h x P k P m x P P      
1

4 4 4 4 4= h x P k P h x P P       

4= k P P   

4= P k P   

4= P R    

4R . 

4.3. Non-forgeability of the signatures 

The hardness of forgery in our signature 
schemes is determined by security parameters 
p  and q . We let p  be at least 512 bits and 

q  be 160 bits. The security of our proposed 
signature schemes is based on the difficulty 
of solving the elliptic curve discrete 
logarithm problem. 

Theorem 5. The proposed signatures 

 2 2 2,S h s ,  3 3 3,S h s  and  4 4 4,S h s  

of the message m are secure against 
existential forgery. 

Proof. Because the signature scheme [20] is 
secure against existential forgery, this allows 
only the legal signer to generate the signature 
for the message m. Also, the hash function H 
has the feature that it is infeasible to generate 
two distinct inputs with matching outputs. So, 
the user cannot find a value m’m with 
H(m,r2)=H(m’,r2) and 

4 4
( , ) ( , )R RH m x H m x , 

where 
4Rx  is x-coordinate of the point R4. If 

an adversary has the points 3 4, ,R P R  and 
H’(m) he cannot determine k3 and k4 from the 
equationsR3=k3PH’(m) and 4 4=R k P , 
because he must solve the elliptic curve 
discrete logarithm problem. 

5. Conclusions 

In this paper we proposed a digital signature 
scheme and two blind signature schemes 
based on the elliptic curve discrete logarithm 
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problem. We proved that our signature 
schemes meet the security requirements such 
as blindness, correctness and non-forgeability 
of the signatures. 
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