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1. Introduction 

Throughout this paper G=(V,E) is a simple 
(i.e. finite, undirected, without loops and 

multiple edges) graph [2]. Let co- GG   
denote the complement graph of G. For 
UV let G(U) denote the subgraph of G 
induced by U. By G-X we mean the graph 
G(V-X), whenever XV, but we often denote 
it simply by G-v (  v V) when there is no 
ambiguity. If vV is a vertex in G, the 
neighborhood NG()denotes the vertices of G-
v that are adjacent to v. We write N(v) when 
the graph G appears clearly from the context. 
The neighborhood of the vertex v in the 
complement of the graph G is denoted by 

)(vN . For any subset S of vertices in the 
graph G the neighborhood of S is 

SvNSN Sv   )()(  and N[S]=SN(S). 

A clique is a subset of V with the property 
that all the vertices are pairwise adjacent. The 
clique number (density) of G, denoted by 
 (G) is the cardinal of the maximum clique. 
A clique cover is a partition of the vertices set 
such that each part is a clique.  (G) is the 
cardinal of a smallest possible clique cover of 
G; it is called the clique cover number of G. 
A stable (or independent) set is a subset of V 
with the property that all the vertices are 
pairwise non-adjacent. The stability number 

of G is  (G)= )(G ; the chromatic number 

of G is  (G)= )(G . 

A dominating set for a graph G = (V, E) is a 
subset D of V such that every vertex not in D 
is joined to at least one member of D by some 
edge. The domination number γ(G) is the  

 

 

 

 

 

 

 

 

 

 

number of vertices in a smallest dominating 
set for G. 

By Pn, Cn, Kn we mean a chordless path on 

n 3 vertices, the chordless cycle on n 3 
vertices, and the complete graph on n 1 
vertices. If e=xyE, we also denote x~y; we 

also denote x≁y whenever x, y are not 
adjacent in G. A set A is totally adjacent (non 
adjacent) with a set B of vertices (A B= ) 
if ab is (is not) edge, for any a vertex in A 
and any b vertex in B; we note denote A~B 

(A≁B). A graph G is F-free if none of its 
induced subgraphs is in F.  

The subset AV is called a cutset if G-A is 
not connected. If, in addition, none of the 
proper subsets of A is a cutest, then A is 
called a minimal cutset .  

The paper is organized as follows. In Section 
2 we give preliminary results. In Section 3 we 
give a characterization of weak-bisplit graphs. 

2 Preliminary Results 

At first, we recall the notion of weak component. 

Definition 1. [10],[11],[12] A set AV(G) is 
called a weak set of the graph G if 

AGVANG  )()(  and G(A) are 

connected. If A is a weak set, maximal with 
respect to set inclusion, then G(A) is called a 
weak component. For simplicity, the weak 
component G(A) will be denoted by A. 

Definition 2. [10],[11],[12] Let G=(V,E) be a 
connected and non-complete graph. If A is a 
weak set, then the partition {A,N(A),V-
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AN(A)} is called a weak decomposition of 
G with respect to A. 

The name of "weak component" is justified 
by the following result. 

Theorem 1. [10],[11],[12] Every connected 
and non-complete graph G=(V,E) admits a 
weak component A such that  

))(()(()( ANGANGAVG  . 

Theorem 2. [10],[11],[12] Let G=(V,E) be a 
connected and non-complete graph and 
AV. Then A is a weak component of G if 
and only if G(A) is connected and 

)(~)( ANAN .  

The next result, based on Theorem 1, ensures 
the existence of a weak decomposition in a 
connected and non-complete graph. 

Theorem 3. If G=(V,E) is a connected and 
non-complete graph, then V admits a weak 
decomposition (A,B,C), such that G(A) is a 
weak component and G(V-A)=G(B)+G(C). 

Theorem 2 provides an O(n+m) algorithm for 
building a weak decomposition for a non-
complete and connected graph. 

Algorithm for the weak decomposition of a 
graph [10], [12]  

Input: A connected graph with at least two 
nonadjacent vertices, G=(V,E).  

Output: A partition V=(A,N,R) such that 

G(A) is connected, N=N(A),  A≁ )(ANR  .  

 

 

 

 

3 The Results Concerning Weak-
Bisplit Graphs  

3.1 Basic properties  

3.1.1 A new characterization of weak-
bisplit graphs 

Definition 3. A graph G is a weak bisplit 
graph if and only if it has an independent set 
S such that every connected component of G-
S is a biclique (i. e. a complete bipartite 
subgraph). 

A graph Star123 and the next graph 
({a,b,c,d,e,f,g},{ab,bc,cd,ce,ef,fg}) are isomorphic. 

In [3], Fouquet et al. introduced the notion of 
K+S-decomposition: a partition (V1,V2) of the 
vertex set in a bipartite graph is a K+S-
decomposition when the black vertices of V1 
are all adjacent to the white vertices of V2 
while there is no edge connecting a white 
vertex of V1 to a black vertex of V2. For a 
bipartite graph G, canonical decomposition 
[3] recursively applies K+S-decomposition.  

The weak bisplit graphs are characterized 
(see [4]) by two excluded subgraphs P7 and 
Star123  as cographs are characterized by 
excluded P4. 

Weak bisplit graphs are designed in [3] to be 
completely decomposable with respect to 
canonical decomposition. 

In [14] it is mentioned that the problem 
concerning the determination of the 
domination number (see [7]) and of the 
stability number (see [8]) is NP-complete, 
that the problem of the cliquewidth (see [6]) 
is unbounded, and that of recognition (see 
[1]) is also NP-complete.  

In [5] it is given a linear algorithm to 
recognize weak-bisplit graphs is given and 
NP-complete optimization problems are 
efficiently resolved for this class of graphs. 

A graph is weak bisplit [14] if and only if it is 
}),2(,{ 123127 StarkCP k  -free. 

Theorem 4. Let G=(V,E) be a connected and 
incomplete graph and (A,N,R) a weak 
decomposition with G(A)the weak 
component. G is  weak-bisplit if and only if: 

i) G(R) is weak-bisplit; 

begin  

     A := any set of vertices such that AN(A) V 

    N:=N(A)  

    R:=V-AN(A)  

    while ( nN,   rR such that nrE ) do 

       begin  

          A:=A {n}  

          N:=(N-{n})  (N(n) R)  

          R:=R-(N(n)  R)  

       end 

end  
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ii) G(V-R) does not contain any of the graphs 
presented below: 

 
Figure 1. 

Proof. Let (A,N,R) be a weak decomposition 
with G(A) the weak component. 

Let G be a weak-bisplit graph. We prove that 
G(V-R) does not contain any of the graphs 
shown in Figure 1( 61 ).  

If G-R contains the graph in Figure1 (1), then 
G contains 7P , because N ~ R  and A≁R . 

If G-R contains the graph in Figure 1 (2), 
then G contains )2(12  kC k , because 

N ~ R  and A≁R . 

If G-R contains the graph in Figure 1 (either 
3 or 4 or 5 or 6), then G contains Star123, 

because N ~ R  and A≁R . 

Vice versa, we assume that G-R does not 
contain any of the graphs in Figure 1( 61 ) 
and that G(R) is weak-bisplit. We show that 
G is weak bisplit.  

Suppose G is not weak-bisplit. Then G would 
contain 7P  or )2(12  kC k  or 123Star  as an 

induced subgraph. 

If G contained 7P , then )(7 RGP   

or  APV )( 7  and  NPV )( 7  

and  RPV )( 7 . 

Because RN ,  and N ~ R , 

1)( 7  RPV  and 2)( 7  NPV . If 

1)( 7  NPV , then G-R contains the 

graph in Figure 1 (1). If 2)( 7  NPV , it 

contradicts the fact that )(ANN G  

because there would be a vertex in N that 
has no neighbor in A . If G contained 

)2(12  kC k , then )(12 RGC k   or 

 ACV k )( 12  and  NCV k )( 12  

and  RCV k )( 12 . Because RN ,  

and N ~ R , 1)( 12  RCV k  and 

2)( 12  NCV k . 

Since N ~ R , G-R contains the graph in 
Figure 1(2). If G contained 123Star , then 

)(123 RGStar  or  AStarV )( 123  and 

 NStarV )( 123  and 

 RStarV )( 123 . Because RN ,  

and N ~ R , 1)( 123  RStarV  and 

3)( 123  NStarV . 

Let 123Star  be the graph with 

},,.,,,{)( 123 gfedcbaStarV   and 

},,,,,{)( 123 fgefcecdbcabStarE  . If 

Ra , then G-R contains the graph in Figure 
1(5). If Rb , then Na  and a has no 
neighbor in A, which is impossible  because 

)(ANN G . If Rc , then Nd   and d 

has no neighbor in A, which is impossible 
because )(ANN G . If Rd  , then G-R 

contains the graph in Figure 1 (3). If Re  
then G-R contains the graph in Figure 1(4). 
If Rf  , then Ng   and g has no neighbor 
in A, which is impossible because 

)(ANN G . If Rg  , then G-R contains 

the graph in Figure 1(6). 

3.1.2 A new characterization of bi-cographs 

A minimal super-class [13] of the class of bi-
cographs is the class of weak-bisplit graphs. 

A graph 4Sun  and the next graph 

({a,b,c,d,e,f,g,h},{ae,bf,cg,dh,ef,fg,gh,he})  
are isomorphic. 

Definition 4. [13] A graph is a bi-cograph if 
it is a bipartite graph that can be reduced to 
isolated vertices by recursively bi-
complementing the edge set of all connected 
bipartite subgraphs, where the bi-
complement of (X,Y,E) is (X,Y, XY - E). 

 P2k 
(k≥2) 

A       N A              N A      N

A       N A       N A      N

1) 2) 3)

4) 5) 6)
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A graph is bi-cograph [13] if and only if it is 

},,{ 41237 SunStarP -free. 

Theorem 5. Let G=(V,E) be a connected and 
incomplete graph and (A,N,R) a weak 
decomposition with G(A) the weak 
component. G is  bi-cograph if and only if: 

i) G-R does not contain any of the graphs in 
the Figure 2: 

 

 
Figure 2. 

ii) G(R) is bi-cograph. 

Proof. Let (A,N,R) be a weak decomposition 
with G(A) the weak component. Let G be a 
bi-cograph.  

We show that G-R does not contain any of 
the graphs in Figure 2 ( 61 ). If G-R 
contains the graph in Figure 2 (1), then G 
contains 7P , ecause N ~ R  and A≁R . If G-

R contains the graph in Figure 2 (either 2 or 3 
or 4 or 5), then G contains 

123Star ,because N ~ R  and A≁R .   

If G-R contains the graph in Figure 2 (6), 
then G contains 4Sun ,because N ~ R  and 

A≁R .  

Vice versa, we assume that G-R does not 
contain any of the graphs in Figure 2( 61 ) 
and that G(R) is a bi-cograph and we show 
that G is a bi-cograph. We assume that G is 
not a bi-cograph. Then G should contain 7P  

or 123Star  or 4Sun . If G contains 7P , then 

)(7 RGP   or  APV )( 7  and 

 NPV )( 7  and  RPV )( 7 . 

Because RN ,  and N ~ R , 

1)( 7  RPV and  2)( 7  NPV . If 

1)( 7  NPV , then G-R contains the 

graph in Figure 2 (1). If 2)( 7  NPV , 

then the fact that )(ANN G  is 

contradicted because there would be a vertex 
from N that has no neighbor in A .  

If G contained 123Star , then )(123 RGStar   

or  AStarV )( 123  and 

 NStarV )( 123  and 

 RStarV )( 123 . Because RN ,  

and N ~ R , 1)( 123  RStarV  and 

3)( 123  NStarV . 

Let 123Star  be the graph with 

},,.,,,{)( 123 gfedcbaStarV   and 

},,,,,{)( 123 fgefcecdbcabStarE   .If 

Ra , then G-R contains the graph in Figure 
2(4). If Rb , then Na  and a has no 
neighbor in A, which is impossible because 

)(ANN G . If Rc , then Nd   and d 

has no neighbor in A, which is impossible 
because )(ANN G . If Rd  , then G-R 

contains the graph in Figure 2(2). If Re , 
then G-R contains the graph in Figure 2(3). 
If Rf  , then Ng   and g has no neighbor 
in A, which is impossible because 

)(ANN G . If Rg  , then G-R contains 

the graph in Figure 2(5). If G contained 

4Sun  then )(4 RGSun   or 

 ASunV )( 4  or  NSunV )( 4  

or  RSunV )( 4 . Because RN ,  

and N ~ R , 1)( 4  RSunV  and 

1)( 4  NSunV . If 1)( 4  NSunV , 

then G-R contains the graph in Figure 2(6). 

3.1.3 Proprieties of the weak-bisplit cographs 

In [9}) is considered the number of efficient 
points in criteria space of multiple objective 
combinatorial optimization problems. 
Experimental results with the shortest path 
problem, the Steiner tree problem on graphs 
and the traveling salesman problem show that 
the number of efficient points is much lower 
than a polynomial upper bound. 

A       N A              N A      N

A       N A       N A      N

1) 2) 3)

4) 5) 6)
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It is known that [14] a graph is weak-bisplit if 
and only if it is {P7,C2k+1(k2),Star123}-free. 

Because a 4P -free graph is 7P -free, any 

graph }),2(,{ 123124 StarkCP k  -free (still 

called weak bisplit cograph) is weak-bisplit. 

Theorem 6. Let G=(V,E) be a connected and 
incomplete graph and (A,N,R) be a weak 
decomposition with G(A) the weak 
component. G is weak-bisplit cograph if and 
only if: 

i) A ~ N ~ R  

ii) G(A),G(N),G(R) are weak-bisplit cographs. 

Proof. Let G be a weak-bisplit cograph and 
(A,N,R) be a weak decomposition with G(A) 
the weak component. Then N ~ R , because 
G(A) is the weak component. Because G is 

4P -free, A ~ N ~ R .  

Vice versa, we assume that G(A), G(N), G(R) 
are weak-bisplit cographs and A~N~R. From 
[11], because G(A), G(N), G(R) are weak-
bisplit cographs and A~N~R, G is 4P -free.  

)()2(12 RAGkC k  , because G(A), 

G(R) are weak-bisplit cographs and 
)( RAG   is not connected. 

)()2(12 NAGkC k  , because G(A), 

G(N) are weak-bisplit cographs and A ~ N .  

)()2(12 RNGkC k  , because G(N), 

G(R) are weak-bisplit cographs and N ~ R .  

)()2(12 RNAGkC k   with 

 ACV k )( 12 ,  NCV k )( 12 , 

 RCV k )( 12 , because G(A), G(N), 

G(R) are weak-bisplit cographs and 
A ~ N ~ R . 

)(123 RAGStar  , because G(A), G(R) 

are weak bisplit cographs and )( RAG   is 
not connected.  

)(123 NAGStar  , because G(A), G(N) 

are weak bisplit cographs and A ~ N . 
)(123 RNGStar  , because G(N), G(R) 

are weak-bisplit cographs and N ~ R . 
)(123 RNAGStar   with 

 AStarV )( 123 ,  NStarV )( 123 , 

 RStarV )( 123 , because G(A), G(N), 

G(R) are weak-bisplit cographs and 
A ~ N ~ R . So G is weak-bisplit cograph. 

Next, we present how to determine the stability 
number, the clique number and the domination 
number for the weak-bisplit cographs. 

Theorem 7. Let G=(V,E) be a weak-bisplit 
cograph and (A,N,R) be a weak decomposition 
with G(A) the weak component. If G is a weak-
bisplit cograph, then: 

i) (G)=max{(G(N)),(G(A))+(G(R))}; 

ii) (G)=(G(N))+max{(G(A)), (G(R))}; 

iii) NG )( . 

Proof. 

From [12] it follows  

)(G =max )),(({ NAG 
))}(())(( RGAG   . 

Because A ~ N , 
))}(()),((max{))(( NGAGNAG   . 

So ))}(())(()),((max{)( RGAGNGG   . 

Because A ~ N ~ R ,  

= ))}(()),((max{))(( RGAGNG   . 

Because A ~ N ~ R , N is cutest minimal, so 
a domination set of minimal cardinal is N that 

is NG )( . 

3.2 Algorithm for the determination of 
(G) in a weak-bisplit cograph G 

Input: A weak-bisplit cograph, G=(V,E). 

Output: The determination of (G). 

1. The determination of a weak 
decomposition (A,N,R) with G(A)  
the weak component. 

2. We denote by 
RQNQAQ RNA  ,, , a 

clique of maximum cardinal from 
RNA ,, .  

3. The determination of the degree of 
each vertex in G. 

4. The maximum degree in G is in AQ  

or NQ  or RQ . 
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5. Let v be a vertex of maximum degree 
in G. 

If v is in N, then 6 follows and then 9, 
so that, if v is in A, then 7 follows and 
then 9, otherwise 8 follows and then 9. 

6. Then NQ  is the set consisting of all 

the vertices in N with the same 

degree as v and NQNG ))(( .  

Let )( RAGNGH  . 

The degrees of the vertices in H 
verify: 

AaNadad GH  ,)()( ; 

RrNrdrd GH  ,)()( . 

Let w be the vertex of maximum 
degree in H. 

If w is from A then 6.1 otherwise 6.2. 

6.1. AQ  consists of the set of vertices in 
A of the same degree as w and 

AQAG ))(( . 

Let F=H-A=G(R). 

The degrees of the vertices in F 
verify: 

RrNrdrdrd GHF  ,)()()( . 

Let u be the vertex of maximum 
degree in F. 

We have RQ  consisting of the set of 
vertices in R of the same degree as u 

and RQRG ))(( . 

6.2. RQ  consists of the set of vertices in 
R of the same degree as w and 

RQRG ))(( . 

Let F=H-R=G(A). 

The degrees of the vertices in F 
verify: 

NaNadadad GHF  ,)()()( . 

Let u be the vertex of maximum 
degree in F. 

We have AQ  consisting of the set of 
vertices in A of the same degree as u 

and AQAG ))(( . 

7. Then AQ  is the set consisting of all 
the vertices in A of the same degree v 

and AQAG ))(( .  

Let )( RNGAGH  . 

The degrees of the vertices in H 
verify: 

NnAndnd GH  ,)()( ; 

Rrrdrd GH  ),()( . 

Let w be the vertex of maximum 
degree in H. 

If w is from N, then 7.1. otherwise 7.2. 

7.1. NQ  consists of the set of vertices in 

N of the same degree as w and 

NQNG ))(( . 

Let F=H-N=G(R) . 

The degrees of the vertices in F 
verify: 

RrNrdNrdrd GHF  ,)()()( . 

Let u be the vertex of maximum 
degree in F. 

We have RQ  containing of the set of 
vertices in R of the same degree as u 

and RQRG ))(( . 

7.2. RQ  contains of the set of vertices in 
R of the same degree as w and 

RQRG ))(( . 

Let F=H-R=G(N). 

The degrees of the vertices in F verify: 
( ) ( )

( ) ( ),

F H

G

d n d n R

d n A R n N

  

    
. 

Let u be the vertex of maximum degree 
in F. 

We have NQ  containing the set of 

vertices in N of the same degree as u and 

NQNG ))(( . 
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8. Then RQ  is the set containing all the 
vertices in R of the same degree as v 

and RQRG ))(( .  

Let )( NAGRGH  . 

The degrees of the vertices in H 
verify: 

Aaadad GH  ),()( ;

NnRndnd GH  ,)()( .  

Let w be the vertex of maximum 
degree in H. 

If w is from A then 8.1 otherwise 8.2. 

8.1. AQ  consists of the set of vertices in 
A of the same degree as w and 

AQAG ))(( . 

Let F=H-A=G(N). 

The degrees of the vertices in F 
verify: 

( ) ( )

( ) ( ),

F H

G

d n d n A

d n A R n N

  

    
. 

Let u be the vertex of maximum 
degree in F. 

We have NQ  consisting of the set of 

vertices in N of the same degree as u 

and NQNG ))(( . 

8.2. NQ  consists of the set of vertices in 

N of the same degree as w and 

NQNG ))(( . 

Let F=H-N=G(A). 

The degrees of the vertices in F 
verify:        

( ) ( )

( ) ,

F H

G

d a d a N

d a N a A

  

   
.  

Let u be the vertex of maximum 
degree in F. 

We have AQ  consisting of the set of 
vertices in A of the same degree as u 

and AQAG ))(( . 

9.  ( ) ( ( ))

max{ ( ( )), ( ( ))}

G G N

G A G R

 
 

 


. 

Remark 1. Because the block that requires 
the longest execution time, O(n+m), is the 
determination of the weak decomposition 
(A,N,R), we conclude that total execution 
time is O(n+m).  

4. Conclusions and Future Work 

In this paper, using weak decomposition, we 
characterize the weak-bisplit graphs, as well 
as some of their subclasses. Also, we give an 
O(n+m) of how to determine the density of a 
weak-bisplit graph and we directly calculate 
the domination number for this class of graphs. 

In the future papers we will establish the 
proprieties of geometric graphs. 
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