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1. Introduction 

The study of fuzzy time series has attracted 
great interest and is expected to expand 
rapidly. Fuzzy time series have an inherent 
fuzzy and random nature. 

We consider an extension of the probability 
space ];;[ PA  by the dimension of 
fuzziness, i.e., by introducing a membership 
scale. This enables the consideration of 
imprecise observations as fuzzy realizations 

Xxxx n  )~,,~()(~
1   of each elementary 

event  . We will restrict attention to the 
class )(CF  of normal convex fuzzy sets on 
 , whose  -level sets are in the class 

)(CK  of nonempty compact real intervals. 

A fuzzy random variable X
~

 is the fuzzy 
result of the uncertain mapping 

)(:
~

 CX F , such that for each ]1,0[  

and  , the  -level intervals 
   ))(sup(,))(inf()( XXX  , generated 

by the mapping : ( )CX K    , are random 

sets. In other words, ( )X   are Borel-

measurable w.r.t. the Borel -field generated 
by the topology associated with a suitable 
metric on ( )CK  , usually the Hausdorff 

metric Hd . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A fuzzy random process TttX )
~

(  is defined as 

a family of fuzzy random variables tX
~

 over 

the space T  of the time coordinate t . A fuzzy 
time series Nttx ,...,2,1)~(   is a realization of a 

fuzzy random process TttX )
~

(  and consists 
of a temporally ordered sequence of fuzzy 
variables tx~ , each one assigned to each 
discrete observation time. 

For extending both the classical estimation 
theory and some computational intelligence 
techniques like wavelet analysis and wavelet 
networks to time series models with fuzzy 
data, appropriate assumptions should be stated 
and suitable methods should be developed.  

Square-integrable random variables are 
assumed, defined on a Hilbert space equipped 
with a suitable 2L -metric that allows the 
projection theorem to be still valid. However, 
it cannot be properly applied as usually onto a 
subspace, but rather onto cones (i.e., subject to 
some constraints), due to the lack of a general 
additive inverse in the space of fuzzy 
variables, which is only a semi-linear space. 
This may lead to distorted results such as 
obtaining fuzzy least squares estimates with 
negative spreads. Using Hukukara difference 
instead of fuzzy subtraction has been proposed 
to overcome the problem. Unfortunately, it 
does not always exist, and even if it exists, 
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some distortions may still appear when 
applying least square estimation. 

A criticism of the existing fuzzy estimation 
methods in the literature is first addressed and 
suitable new methods are then proposed, 
based upon a partial decoupling principle. It 
allows decomposing the monolithic fuzzy 
model into several crisp models, starting from 
that one corresponding to modal values 
( 1 ) in fuzzy data, and then proceeding in 
a decremental way  for left and right  -level 
bounds, with   progressively decreasing 
towards 0 .  The estimates of modal values 
are not subject to any constraints, thus being 
obtained by applying the Hilbert space 
projection theorem directly onto the 
corresponding subspace. However, the 
estimates for the left and right  -level 
bounds can only be obtained by applying the 
projection theorem onto cones, in such a way 
to obtain least squares estimates without 
negative spreads. This leads to constrained 
quadratic programs, conveniently defined. 

As an alternative to fuzzy estimation 
methods, computational intelligence 
techniques, based on wavelet decomposition 
and wavelet networks for nonlinear model 
fitting have been proposed to address fuzzy 
time series estimation and prediction. 

2. Parameter Estimation in 
Models with Fuzzy Data: A 
Critical View 

The problem of parameter estimation in 
models with fuzzy data has been previously 
treated in literature from different points of 
view. Inversion of addition and multiplication 
has been typically addressed as a problem of 
interest. The reason is that, in fuzzy 
arithmetic, the standard Minkovsky addition 
and multiplication are not invertible. 

Using generalized Hukuhara difference 
instead of fuzzy subtraction: 
rationales and limitations 

In contrast with the case of real numbers, for 
some set-defined quantities, such as intervals 
and fuzzy sets, the opposite of A  is not the 
inverse of A  in Minkovsky addition (unless 

}{aA   is a singleton). This implies that, in 
general, additive simplification is not valid, 

i.e., BACBCA  )(  or 

ABBA  )( . 

To partially overcome this situation, the 
Hukuhara difference has been introduced as a 
set C  for which C AH B  CBA  . 

This is important in regression analysis, where 
the estimates are obtained from the condition 
of minimizing the sum of squares residuals, 
expressed as a difference between the response 
of a system and its model based estimation.  

Let )( p
C K  be the class of the non-empty 

compact convex subsets of p . An important 
property of “H” is that AH A = }0{  

A )( p
C K  and )( BA  H B = A  

 BA, )( p
C K . The H-difference is 

unique, but it does not always exist. A 
necessary condition for AH B  to exist is 
that A  contains a translate Bc }{  of B . 

Several generalizations of Hukuhara 
difference have been proposed. The first and 
most notable in the context of fuzzy linear 
regression was that of Diamond [1], or 
Diamond and Körner [3], as the least squares 
solution of equation BXA  , i.e., 
C B H A ,  if and only if  ),( BCAd  

),(inf BXAd
X


Y

 in some 2L -type metric 

space ),( dY . When the usual Hukuhara 

difference B H A  exists, it coincides with 
the least squares solution defined above. 

The extension of Hukuhara difference to an 

2L -approximant is discussed in what follows. 

Let )( p
C F  denote the class of normal and 

convex upper semicontinuous fuzzy sets of 
p  with bounded closure of the support, 

that is, 


]1,0[

)(|]1,0[:)(







allfor

UU p
C

pp
C KF

where U  is the  -level set of U  if  

]1,0( , and  }0)(|{0  xUxclU p . 

Due to the lack of asymmetric element w.r.t. 

the addition,   ,),( p
CF  is not a linear 

space. Let 1pS   and  ,  be the unit 

sphere and the inner product in p . The 
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space )( p
C F  can be embedded onto a cone 

of the class of the square integrable functions 

 ]1,0[1 pSL  by means of the mapping 

 ]1,0[)(: 1  pp
Cs SLF  which 

associates each U )( p
C F   with its 

support functions Us  (where Us : 

]1,0[1 pS   is defined so that 

    vuus UwU ,sup,


  for any u 1pS  

and ]1,0[ ). The support function is 

semilinear, in the sense that VUVU sss    

and UU ss    if  0 . Furthermore, if 

U HV  exists, then sUHV = VU ss   for all 

VU , )( p
C K . 

We will restrict attention to LR-fuzzy 
intervals, defined as follows: 

 

],,[

)](),([

)(),(),,,(
11
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where 2/)( RL mmm   is the modal point, 

cmmL  , cmmR  , 2/)( LR mmc   
is the half-length of the flat region, 

)(1   LL  , )(1   RrR , for all 

)1,0[ . Note that for LR-fuzzy numbers 

0c . 

Taking into account that the unit sphere in 
1  consists of only two points  1,1u , 

the support function of ),,,( rcmM LR   is 
given by 
















1),()(

1),()(

),(,]1,0[}1,1{:

1

1

uRrcmmu

uLcmmu

uss

R

L

MM






  

The support function is the way of defining 
an 2L -metric on the space of normal compact 

convex fuzzy sets )( p
C F  using the 2L -

metric on the Hilbert space of square-

integrable functions  ]1,0[1
2 pL S . This 

space is equipped with the inner product 

 






]1,0[ 1

)()(),(),(

,

pS

NM dduususp

NM




 

where   is normalized Lebesgue measure on 
1pS  (i.e. 1)( 1 pS ) and   is normalized 

Lebesgue measure on ]1,0[ . 

The corresponding 2L -metric results of the form 

2/1

]1,0[

2

2
)(

2

1

)()(),(
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pS

NM

dduuWp

ssNM



 

 

where 22 |),(),(|),(  ususuW NM  . 

As mentioned above, the models 
XAY )(  and AbXY   differ from 

each other. More importantly, AB )1(  is 
not compatible with the difference in the 

function space  ]1,0[1
2 pL S , that is, it does 

not have the support function AB ss  . But 
the Hukuhara difference defined as a solution 
for X  in the equation BXA  , if it exists, 
does coincide with the difference in 

 ]1,0[1
2 pL S . This property justifies the 

application of this difference instead of the 
fuzzy number AB )1( . 

For fuzzy numbers A , B , if the Hukuhara 
difference B H A  exists, it is given by 

B[ H
]A =  ][}{][| BaAa d  , 
]1,0[  

In particular, the Hukuhara difference 
B H A  of two symmetric triangular fuzzy 

numbers 
LLAAmA ),(   and 

LLBBmB ),(   

is well-defined if B  A  and 

B H A = 
LLABAB mm ),(   . Since an exact 

solution of the equation BXA   is then 
impossible, one can find X  such that XA   
is the 2L -approximant to B . Write 

X B H A . For the space of symmetric 
triangular fuzzy numbers, 

B H A = 
LLAB mm )0,(   if B  A , which is 

actually a crisp number. 

The Hukuhara difference can now be 
extended to the 2L -approximant B H A  by 

B H A = C  iff   ),()(
2 BCA  

= ),(inf )(
2 BXA

X
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Another generalized Hukuhara difference has 
been proposed recently in [18], as follows: 

B gH A = C  








CBAii

CABi

)1()(

)(
 

The definition given above allows us to 
express the generalized Hukuhara difference 
of compact convex fuzzy sets 

BA, )( p
C F  by the use of the support 

functions. Consider  CBA ,, )( p
C F  with 

C = B gH A . Let CBA sss ,,  and Cs )1(  be the 

support functions of  ,,, CBA  and C)1( , 
respectively. In case (i), we have 

CAB sss   and in case (ii), we have 

CBA sss )1( . So,  
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icaseinusus
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i.e. 
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where for a fuzzy quantity C , the support 
functions are considered for each  cut and 

defined to characterize the compact  cuts C : 

:Cs ]1,0[1 pS   defined so that  

  


vuus
CwC ,sup,  ,  u 1pS  and 

]1,0[ . 

Despite the obvious advantages of using the 
generalized Hukuhara diference instead of 
fuzzy subtraction, its application for the 
parametric estimation of a monolithic fuzzy 
model is still rigid and practically unsuitable 
in some real-world cases, as it will be 
motivated next. This will lead us to propose a 
new estimation procedure based upon a 
partial decoupling principle. 

Rationales for avoiding the use of  
fuzzy multiplication 

In order to estimate the parameter vector b in 
the case of a classical regression model 

ebXy  , we have to take an orthogonal 
projection of y onto the subspace Im(X) 

generated by the columns of X, i.e. 

yPbXy  ˆˆ , with XXXXP  1)( . 

When we deal with regression models defined 
with respect to fuzzy input-output data, the 
projection subspaces are somewhat 
ambiguous. The major difficulty is to obtain 
an explicit form for the product XB , where 
B is a fuzzy coefficient and X is a fuzzy-valued 
explanatory variable. The extension principle 
of Zadeh is the basic result from which all 
fuzzy operations are derived. As long as B is 
unknown, we cannot directly obtain an ex-ante 
specification of the membership function of 
the product XB . According to Nguyen’s 
theorem, such a specification depends on the 
factor signs. Thus: 

   
   RRLLRL

RLRL

bxbxBXYY

bbBxxX

ˆ,ˆˆˆ,ˆ

0ˆ,ˆˆ,0,




 

   
   LRRLRL

RLRL

bxbxBXYY

bbBxxX

ˆ,ˆˆˆ,ˆ

0ˆ,ˆˆ,0,




 

   
   RLLRRL

RLRL

bxbxBXYY

bbBxxX

ˆ,ˆˆˆ,ˆ

0ˆ,ˆˆ,0,




 

   
   LLRRRL

RLRL

bxbxBXYY

bbBxxX

ˆ,ˆˆˆ,ˆ

0ˆ,ˆˆ,0,




 

Some other cases could be taken into account if 
we consider opposite signs for the left and right 
interval bounds. The general definition is: 

 


}ˆ,ˆ,ˆ,ˆ{max

},ˆ,ˆ,ˆ,ˆ{min

ˆˆ,ˆ

RRLRRLLL

RRLRRLLL

RL

bxbxbxbx

bxbxbxbx

BXYY







 

As opposite to the classical linear regression, 
where the parameters are obtained by 
projection onto a linear subspace, in the fuzzy 
linear model, however, there is no full linear 
structure and we also have to deal with the 
problem of negative spreads. Such a problem 
may occur because the multiplication of an 
LR-fuzzy number by a negative scalar 
reverses the spreads. This leads to imposing 
some constraints on the regression 
coefficients and results in a constrained 
optimization problem. Instead of a subspace 
of projection, we have cones of projections, 
according to the rules derived from the 
Nguyen’s theorem. 
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With a positive explanatory variable X and a 

fuzzy slope-coefficient   0ˆ,ˆˆ  RL bbB , the 

projection cone for LY  will be defined with 

respect to Lx  and the projection cone for  RY  

will be defined with respect to Rx .  

By contrary, if   0ˆ,ˆˆ  RL bbB , the projection 

cone for LY  will be defined with respect to 

Rx  and the projection cone for  RY  will be 

defined with respect to Lx . 

Now, let as consider one of the simplest 
models of fuzzy input-output data, with a 
non-fuzzy slope-coefficient XbAY   
where LRAAA rmA ),,(  , b ,   

LRXxx rmX ),,(  . Figures 3 and 4 show 
how to choose the two projection cones 
(instead of projection subspaces): 

For 0b :    Cyyy RL ˆ,ˆˆ , where  

 
0,;

|)(),( 11



 


xxx

xxxx

rm

RrmLmC



 
 

For 0b :    Cyyy RL ˆ,ˆˆ ,  where 

 
0,;

|)(),( 11



 


xxx
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rm

LmRrmC



 
 

In C , we must additionally consider 

)()( 11    RL  as a precondition for 

XbAY   to still  be an LR-fuzzy number. 

 

X

Y 

b>0


Ly  

0
Ly  

1
Ly  

0
Ry  

 
Ry  

)(1   Lmx xxL   

  

  

    

)(1   Rrmx xxR  

Figure 1. For b>0, we have: 
LL xby   and 


RR xby  .  

 

X

Y

b<0


Ly

0
Ly

1
Ly

0
Ry

Ry

)(1   Lmx xxL 





   

)(1   Rrmx xxR  

Figure 2. For b<0, we have: 
RL xby   and 


LR xby  .  

Remark: An additional condition is also active: 

bbb RL
ˆˆˆ   (which appears only in the 

particular case of a non-fuzzy slope-coefficient).  

Without prior information, an ex-ante 
specification of the model is not possible and 
we must take into account both projection 
cones C  and C  in order to check for 
admissible estimators, as solutions of the 
following two constrained quadratic programs: 

:*
QP    




 XbAXbA
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A

r

mb
ˆˆ,inf 2
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0,0

,0




; 

where  
]1,0[

,)(
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:*
QP    




 XbAXbA

AA

A

r

mb
ˆˆ,inf 2

2

0,0

,0




; 

where  
]1,0[

,)(
  


LR xxX , ..ei  
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For fuzzy models with multiple repressors, the 
number of projection cones to be tested becomes 
too large for being conveniently handled.  

Rationales for allowing coefficients 
with negative spreads 

Let us consider the following fuzzy linear 
regression model:  

),(),(),(),( 
RLRLRLRL xxbbaayy

XBAY




 

We are clearly restricted to interpret the left and 

right slope-coefficients 
Lb  and 

Rb  as an 
ordered pair denoting the two bounds of an 

interval (i.e. 
RL bb  ). For a process with 

diminishing oscillations, similar to that one 
depicted in figure 3 by the two left and right  -

level bounds ( )(tyL
  and )(tyR

 ), there is no 
solution within the fuzzy / interval arithmetic. 

As long as we have reasons to consider such 
cases of practical interest, we need not check 

for the inequalities 
RL aa   and  

RL bb   and 

thus the pairs  
RL aa ,  and  

RL bb ,  will not 
be necessarily interpreted as  -level intervals. 

 Yt 

t


Ra  


La  

0
Rb

0
Lb

t0 t1 

Region of interest 

)(tyR
  

)(tyL
  

 

Figure 3. For the region of interest we have 

)()( tyty RL
  , 

RL aa  , but 
RL bb  , so 

],[ 
RL bb  can’t be an -level interval  

Yt
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Ra


La

0
Rb

0
Lb

t0 t1 

Region of interest 

)(tyR
  

)(tyL
  

 

Figure 4. For the region of interest we have 

)()( tyty RL
  , 

RL bb  , but 
RL aa  , so 

],[ 
RL aa  can’t be an -level interval 

3. Estimating and Forecasting 
Fuzzy Time Series 

Non-stationary time series may be analyzed 
by means of the fuzzy component model, 
which decomposes the fuzzy time series into 
a trend component, a cyclical or seasonal 
component and a fuzzy random residual 
component. The estimation technique 
proposed in this paper is based upon a partial 
decoupling principle, first proposed in [6]. It 
allows decomposing the monolithic fuzzy 
model into several crisp models, starting from 
that one corresponding to modal values 
( 1 ) in fuzzy data, and then proceeding in 
a decremental way  for left and right  -level 
bounds, with   progressively decreasing 
towards 0 .  The estimates of modal values 
are not subjects to any constraints, thus being 
obtained by applying the Hilbert space 
projection theorem directly onto the 
corresponding subspace. However, the 
estimates for the left and right  -level 
bounds can only be obtained by applying the 
projection theorem onto cones, in such a way 
to obtain least squares estimates without 
negative spreads. This leads to constrained 
quadratic programs, conveniently defined. 

Fuzzy data: minimum, average and 
maximum daily temperatures 
registered at a local weather station 

In what follows, we will exemplify some 
suitable methods for modelling and 
forecasting non-stationary fuzzy time series, 
based on the fuzzy component model. The 
observed sequence consists of the minimum, 
average and maximum daily temperatures 
registered at a local weather station. The 
fuzzy time series is represented in figure 5 
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and the corresponding empirical fuzzy 
cumulative distribution function in figure 6. 

 
Figure 5.  Fuzzy daily temperatures over a period 

of two years (730 days) 

 
Figure 6. Empirical Fuzzy Cumulative 

Distribution Function (FCDF), showing the fuzzy 
probability of not exceeding a given temperature, 
or reversely, the fuzzy quantile corresponding to a 

given probability. 

If we restrict to the class of triangular fuzzy 
numbers, which are a special case of LR 
fuzzy numbers, we can decompose the fuzzy 
model into 3 crisp models: one model for the 
modal (average) values and two models for 
the minimum and maximum values, 
respectively. The former is estimated without 
any constrains, i.e., by orthogonal projection 
of the observed values onto the appropriate 
subspace. The latter are estimated subject to 
some non-negativity restrictions on spreads, 
corresponding to the time series components: 

trend ( 0ˆˆ  LC TT , 0ˆˆ  CR TT ), seasonal 

component ( 0ˆˆ  LC SS , 0
ˆ̂ˆ  CR TS ) and 

residuals ( 0ˆˆ 11  LC uu , 0ˆˆ 11  CR uu ). 
This leads to constrained quadratic programs, 
i.e., to the projection of the observed values 
onto some cones. 

The fuzzy time series model for daily 
temperatures, with fuzzy trend and 
fuzzy cyclical component 

The fuzzy component model attached to the 
fuzzy time series is defined below. 
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Due to the properties of minimum, mean and 
maximum, the following order relations hold 
(implying positive spreads for )(tY , )(tT , 

)(tC  and )(tu ): 

)()()( tYtYtY RCL  ; 

)()()( tTtTtT RCL  ; 

)()()( tCtCtC RCL  ; 

)()()( tututu RCL   

The regressors for the linear fuzzy trend are 
defined by the matrix: 





















N

T

1

21

11


;   730N  

The simplest way for representing )(tC  as a 

periodic function, with )()( ptCtC  , is to 
assume harmonic functions, such as the sine 
or cosine: )/2sin( pt  and )/2cos( pt , 

where p (=365 in our case) is called period, 

its inverse pf /1  is called frequency, and 

pf /22    is the angular frequency. 

Thus, the regressors for )(tC  are combined 
in the matrix: 

 


























/3652sin(N/3652cos(N

/3652sin(2/3652cos(2

/3652sin(1/3652cos(1







C  

Estimating the Fuzzy Trend (De-trending) 

Step1: First, we estimate the trend 
corresponding to the average daily 
temperature, without any constraints, i.e., as a 
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projection of  CY  onto the subspace )Im(T  
generated by the columns of matrix T : 

CC YPT ˆ ,   where   TTTTP  1'  

Step 2: Second, we estimate the trend 
corresponding to the minimum daily 
temperature, as a solution of a constrained 
quadratic program: 

   






 


 L

trend
LL

trend
L
trend

b
bTYbTTb

L
trend

2min  

subject to:  









CL

CL

uu

TT

11 ˆˆ

ˆˆ


 










LCCL
trend

CL
trend

YTYbT

TbT
ˆ

ˆ
 

CL TT ˆˆ   means that the left spread of the 
fuzzy trend must be non-negative, i.e., 

0ˆˆ  LC TT , with CT̂  already estimated at 
step 1. 

CL uu 11 ˆˆ    means that the left spread of the 
intermediary fuzzy residuals (after de-
trending) must be strictly positive, i.e., 

0ˆˆ 11  LC uu . The reason for this is that 
the intermediary fuzzy residuals will be 
further decomposed into a cyclical 
component and final residuals (those obtained 
after removing both trend and cyclical 
component). At this step, we recommend for 
  a value between 1.0  and 5.0 . 

Step 3: Third, we estimate the trend 
corresponding to the maximum daily 
temperature, as a solution of a constrained 
quadratic program: 

   






 


 R

trend
RR

trend
R
trend

b
bTYbTTb

R
trend

2min  

subject to: 










0ˆˆˆ

ˆˆˆ

11  CRRCCR
trend

CRCR
trend

uuYTYbT

TTTbT

 

CR TT ˆˆ   means that the right spread of the 
fuzzy trend must be non-negative, i.e., 

0ˆˆ  CR TT  

0ˆˆ 11  CR uu  means that the right spread of 
the intermediary fuzzy residuals (after de-
trending) must be strictly positive. 

 
Figure 7. Fuzzy linear trend. 

 
Figure 8. Intermediary fuzzy residuals after 

detrending (the residuals are fuzzy sets in a proper 
sense – with non-negative spreads). 

Estimating the fuzzy cyclical component 

The periodogram or sample spectrum shows 
the variation of the peak points of empirical 
daily temperature data. The maximum value 
of the periodogram is about 365 days. 

 
Figure 9. Periodogram with a maximum 

corresponding to about 365 days (one year) 

Step1: First, we estimate the cyclical 
component corresponding to the average 
daily temperature, without any constraints, 

i.e., as a projection of  Cu1ˆ = CC TY ˆ  (the 
intermediary residuals after de-trending) on 



Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 237

the subspace )Im(C  generated by the 

columns of matrix C : 

CC uPC 1ˆˆ  ;  where   CCCCP  1  

Step 2: Second, we estimate the cyclical 
component corresponding to the minimum 
daily temperature, as a solution of a 
constrained quadratic program: 
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CL CC ˆˆ   means that the left spread of the 
fuzzy cyclical component must be non-

negative, i.e., 0ˆˆ  LC CC  

0ˆˆ 22  LC uu  means that the left spread of 
the final fuzzy residuals (after removing both 
trend and cyclical component) must be 
strictly positive. The reason for this is that the 
final fuzzy residuals will be further 
decomposed as a multivariate auto-regressive 
process (VAR). At this step, we recommend 
for   a value of about 1.0 . 

Step 3: Third, we estimate the cyclical 
component corresponding to the maximum 
daily temperature, as a solution of a 
constrained quadratic program: 
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CR CC ˆˆ   means that the right spread of the 
fuzzy cyclical component must be non-

negative, i.e., 0ˆˆ  CR CC  

0ˆˆ 22  CR uu  means that the right spread 
of the final fuzzy residuals (after removing 
both trend and cyclical component) must be 
strictly positive.  

 

Figure 10,  Fuzzy cyclical component. 

 

Figure  11. Fuzzy residuals after removing both 
trend and cyclical component (the residuals are 

fuzzy sets in a proper sense                                    
– with non-negative spreads). 

Modeling and forecasting the fuzzy 
residuals as a VAR(4) process, 
after removing both trend and 
cyclical component 

The fuzzy residuals obtained after removing 
both trend and cyclical component can now 
be modeled as a multivariate auto-regressive 
process. A VAR(4) model has been chosen 
(among some other candidate models) based 
upon likelihood ratio tests and Akaike 
Information Criterion. This allows 
forecasting or simulating the residuals, 
starting from a sequence of the latest 10% 
observed historical temperatures.  

 
Figure 12. VAR(4) model-based 730 steps ahead 

extrapolation of fuzzy residuals: a single 
simulation (the residuals are fuzzy sets in a proper 

sense – with non-negative spreads). 
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Figure 13. Fuzzy residuals (left, central and right) 
and prediction of their mean with confidence 

interval (  ). 

 

Figure 14. VAR(4) model-based 730 steps ahead 
extrapolation of fuzzy residuals:                       

mean of 1000 simulations. 

Afterwards, based on the inversion property 
of the generalized Hukuhara difference, we 
can forecast the series of fuzzy daily 
temperatures by recomposing them from its 
components: trend component + cyclical 
component + the simulated residuals.   

 

Figure 15. Extrapolated mean and confidence 
interval of  0-level left / 1-level center / 0-level 
right fuzzy residuals, after 1000 simulations. 

 

Figure 16.  VAR(4) model-based 730 steps ahead 
extrapolation of fuzzy temperatures, additively 

recomposed from trend, cyclical component and 
simulated fuzzy residuals. 

4. Fuzzy Time Series Wavelet 
Decomposition and Nonlinear 
Model Fitting with Wavelet 
Networks 

Another alternative to removing disturbances 
from a time series is de-noising data by 
wavelet decomposition. 

The Discrete Wavelet Transform (DWT, 
[15]) uses scaled and shifted versions of a 
mother wavelet function, usually with 
compact support, to form either an 
orthonormal basis (Haar wavelet, 
Daubechies) or a bi-orthonormal basis 
(Symlets, Coiflets). Wavelets allow cutting 
up data into different frequency components 
(called approximations and details), and then 
studying each component with a resolution 
matched to its scale. They can help de-noise 
inherently noisy data through wavelet 
shrinkage and thresholding methods, 
developed by David Donoho ([4]). The idea 
is to set to zero all wavelet coefficients 
corresponding to details in the data set that 
are less than a particular threshold. These 
coefficients are used in an inverse wavelet 
transformation to reconstruct the data set. An 
important advantage is that the de-noising is 
carried out without smoothing out the sharp 
structures and thus can help to increase the 
predictive performance. 

We start with the de-trended fuzzy time series 
shown in figure 8. A level 5 decomposition 
with Sym8 wavelets and a fixed form soft 
thresholding is first performed (see figures 17 
and 18). 
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Figure 17. A level 5 decomposition of the 
average temperature time series using Sym8 
wavelets: approximations and details. The 

successive approximations appear less and less 
noisy; however, they also lose progressively more 

high-frequency information. 
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Figure 18. Approximation coefficients and detail 
coefficients with a global threshold. 

The initially de-trended average, minimum 
and maximum temperature time series are now 
de-noised in turn (see figures 19, 20 and 21). 
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Figure 19. De-trended vs. de-trended & de-noised 

average temperature time series 
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Figure 20. De-trended vs. de-trended & de-noised 
minimum temperature time series 
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Figure 21. De-trended vs. de-trended & de-noised 

maximum temperature time series 

However, the representations are not smooth 
enough, because of some weather turbulences 
that occur in certain time intervals. In order to 
produce smoothed representations, the time 
series obtained after de-noising can be further 
fitted to some nonlinear approximation functions 
by using wavelet networks to learn them.   

Wavelet networks attempt to combine the 
properties of the Wavelet decomposition 
previously described, along with the learning 
capabilities of feedforward neural networks. 
They employ wavelets instead of sigmoidal 
activations functions, are trained with a 
backpropagation-like algorithm and behave as 
universal approximators, being capable of 
estimating almost any computable function on 
a compact set arbitrarily closely. Their 
rigorous mathematical foundations and better 
localization and approximation properties 
allow hierarchical and multi-resolution 
learning as well as transparent design of the 
network. Wavelet networks can be easily 
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generalized to the case of multidimensional 
nonlinear function approximation in order to 

approximate functions in )(2
nL   and their 

representation can be extended with radial 
wavelets that are better suited for 
approximation problems of large dimensions. 
This results in the following network structure: 

bxctxddiagwxg
N

i
iii  

1

))()(()(   

where   is a radial wavelet function, 
n

id   are dilatation parameters, n
it   

are translation parameters, iw  are linear 

weights, N  is the number of wavelets, 
nc   is the additional direct linear 

combination parameters (direct connection 
parameters), and b  is the bias parameter. 

The input space is the set }365,,2,1{ T  
of discrete time values. We train the wavelet 
network three times, for each set of 
minimum, average and maximum daily 
temperatures in turn. Each time, the output 
space is the set of de-trended and de-noised 
minimum, average and maximum daily 
temperatures, i.e., minS , avgS  and  maxS , 

respectively. 10 wavelets in the hidden layer 
and 10 iterations (epochs) are used for 
training. Finally, the adjusted fuzzy cyclical 
component is obtained by mapping T  onto 

minS , avgS  and  maxS , i.e. minmin :)(ˆ STtS  , 

avgavg STtS :)(ˆ  and  maxmax :)(ˆ STtS  , 

respectively. 2D and 3D representations of 
the adjusted fuzzy cyclical component after 
training with wavelet network, starting from 
the de-trended and de-noised data, are shown 
in figures 22 and 23. 
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Figure 22. 2D representation of the adjusted 
fuzzy cyclical component after training with 

wavelet network 

 

Figure 23. 3D representation of the adjusted 
fuzzy cyclical component after training with 

wavelet network 

Finally, the fuzzy trend + fuzzy cyclical 
component can be re-compounded (figure 24). 

 
Figure 24. Fuzzy trend + fuzzy cyclical 

component (after de-noising and adjustment) 

5. A Fuzzy Generalization of Buys 
Ballot Decomposition Model 
for Trend and Seasonality 

The fuzzy component model attached to the fuzzy 
time series of monthly temperatures is defined 
below, where )(tS  is the seasonal component. 
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24N , period = 12 . 

The method is similar to that used in the case 
of daily temperatures, except for the seasonal 
component, for which we use the matrix S  
defined above, instead of matrix C . 

 
Figure 25. Fuzzy monthly temperatures 

 
Figure 26. Fuzzy linear trend 

 
Figure 27. Fuzzy residuals after de-trending (the 
residuals are fuzzy sets in a proper sense – with 

non-negative spreads). 

 

Figure 28. Fuzzy seasonal component. 

 
Figure 29. Fuzzy residuals after removing both 
trend and seasonal component (the residuals are 

fuzzy sets in a proper sense                                    
– with non-negative spreads) 

6. Conclusion 

This paper proposed suitable new methods 
for fuzzy time series estimation and 
prediction, using both the estimation theory 
and Computational Intelligence techniques.  

We combined a generalized Hukuhara 
difference, which allows the fuzzy estimation 
problem to be handled in some L2-type metric 
space, with a partial decoupling principle 
(first proposed in [6]), which allows the 
monolithic fuzzy model to be broken in 
several more tractable crisp estimation sub-
problems. This approach was proved to 
provide an efficient solution to the problem 
of non-invertibility of the standard 
Minkovsky addition and multiplication in a 
fuzzy feature space, while enabling to obtain 
fuzzy estimations in a proper sense (i.e., with 
non-negative spreads).  

Alternatively, wavelet decomposition, a 
Computational Intelligence based technique, 
has been also used to de-noising fuzzy time 
series. Finally, starting from the de-trended and 
de-noised time series, wavelet networks have 
been employed as universal approximators to 
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adjust the fuzzy cyclical component and thus to 
produce smoothed representations of the fuzzy 
time series components. 
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