
Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 271

1. Introduction

The need for continuing adaptation and
evolution is intrinsic to any software
application. It is due to the fact that software
systems, during their life cycle, are faced
with new requirements. These new
requirements imply updates in the software
systems structure, which have to be done
quickly, due to tight schedules which appear
in real life software development process.
Evolution is achieved in a feedback driven
and controlled maintenance process. If the
consequent pressure for evolution to adapt to
the new situation is resisted, the degree of
satisfaction provided by the system in
execution declines with time [13].

The structure of a software system has a
major impact on the maintainability of the
system. This structure is the subject of many
changes during the system lifecycle.
Improper implementations of these changes
imply structure degradation that leads to
costly maintenance. That is why continuous
restructurings of the code are needed,
otherwise the system becomes difficult to
understand and change, and therefore it is
often costly to maintain.

Refactoring is a solution adopted by most
modern software development methodologies
(extreme programming and other agile
methodologies), in order to keep the software
structure clean and easy to maintain.
Refactoring becomes an integral part of the
software development cycle: developers
alternate between adding new tests and

functionality and refactoring the code to
improve its internal consistency and clarity.

Fowler defines in [7] refactoring as “the
process of changing a software system in
such a way that it does not alter the external
behavior of the code yet improves its internal
structure. It is a disciplined way to clean up
code that minimizes the chances of
introducing bugs”. Refactoring is viewed as a
way to improve the design of the code after it
has been written. Software developers have to
identify parts of code having a negative
impact on the system's maintainability, and to
apply appropriate refactorings in order to
remove the so called “bad-smells” [2].

We have developed in [14] a clustering based
approach, named CARD (Clustering
Approach for Refactorings Determination) that
uses clustering for improving the class
structure of a software system. In this
direction, a partitional clustering algorithm,
kRED (k-means for REfactorings
Determination), was developed. The proposed
approach can be used to automatically identify
refactorings that would improve the software
system's internal structure.

Real applications evolve in time, and new
application classes are added in order to met
new requirements. Obviously, for
restructuring the extended software system,
kRED clustering algorithm can be applied
over and over again, by reassembling the
entire extended system, every time when the
application classes set change. But this
process can be inefficient, particularly for
large software systems. What we want is to

Incremental Refactoring Using Seeds

Gabriela Czibula, István Gergely Czibula

Babeş-Bolyai University, 1, M. Kogălniceanu Street, Cluj-Napoca, 400084, Romania,
gabis@cs.ubbcluj.ro; istvanc@cs.ubbcluj.ro

Abstract: Refactoring is one major issue to improve the design of software systems, increasing the internal software
quality. It is a disciplined technique for improving the structure of existing code without changing its observable
behaviour. We have previously introduced a clustering based approach for identifying refactorings in an object
oriented software system. Essentially, it takes the existing software system and restructure it using a k-means based
clustering algorithm (kRED), in order to obtain a better design. But, in time, the software system evolves and new
application classes are added for implementing new functional requirements. We propose in this paper a k-means
based incremental clustering method, Incremental Refactoring Using Seeds (IRUS), that is capable to re-partition the
existing software system, when new application classes are added to it. The method starts from the clusters obtained
by applying kRED before the software system's extension. The result is reached more efficiently than running kRED
again from the scratch on the extended software system. An experimental evaluation proving the method's efficiency
is also reported.

Keywords: Software engineering, incremental refactoring, clustering.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 272

extend the approach from [4] and to propose
a k-means based incremental clustering
method, named Incremental Refactoring
Using Seeds (IRUS), that is capable to
efficiently re-partition a software system,
when a new application class is added to it.
The method starts from the partition obtained
by applying kRED algorithm before the class
extension. The result is reached more
efficiently than running kRED again from the
scratch on the extended system.

The rest of the paper is structured as follows.
Section 2 briefly presents the main aspects
related to our previous approach for
clustering based refactorings identification
[4]. In Section 3 we motivate our work by
illustrating the need for incremental
refactoring. An incremental clustering
approach for adaptive refactorings
identification is introduced in Section 4. For
the incremental process, an Incremental
Refactoring Using Seeds algorithm (IRUS) is
proposed. Section 5 indicates several existing
approaches in the direction of automatic
refactorings identification. An example
illustrating how our approach works is
provided in Section 6. Some conclusions of
the paper and further research directions are
outlined in Section 7.

2. CARD Approach. Background.

Unsupervised classification, or clustering, as
it is more often referred as, is a data mining
activity that aims to differentiate groups
(classes or clusters) inside a given set of
objects. The inferring process is carried out
with respect to a set of relevant
characteristics or features of the analyzed
objects. The resulting groups are to be built
so that objects within a cluster to have high
similarity with each other and low similarity
with objects in other groups. Similarity and
dissimilarity between objects are calculated
using metric or semi-metric functions,
applied to the features values characterizing
the objects.

A large collection of clustering algorithms is
available in the literature. [9] and [12]
contain comprehensive overviews of
existing techniques.

A well-known class of clustering methods is
the one of the partitioning methods, with

representatives such as the k-means algorithm
or the k-medoids algorithm. Essentially,
given a set of n objects and a number

nkk , , such a method divides the object
set into k distinct and non-empty partitions.
The partitioning process is iterative and
heuristic; it stops when a “good” partitioning
is achieved. A partitioning is “good”, as we
said, when the intra-cluster similarities are
high and inter-cluster similarities are low.

We have introduced in [4] a clustering
approach CARD for identifying refactorings
that would improve the class structure of a
software system. CARD consists of three steps:

1. Data collection. The existing software
system is analyzed in order to extract
from it the relevant entities: classes,
methods, attributes and the existing
relationships between them: inheritance
relations, aggregation relations,
dependencies between the entities from
the software system. All these collected
data will be used in the Grouping step.

2. Grouping. The set of entities extracted at
the previous step are re-grouped in
clusters using a grouping algorithm. The
goal of this step is to obtain an improved
structure of the existing software system.

3. Refactorings extraction. The newly
obtained software structure is compared
with the original one in order to provide a
list of refactorings which transform the
original structure into an improved one.

In the following we will briefly review our
approach from [4] for clustering based
refactorings identification.

At the Grouping step we have proposed to re-
group entities from the software system using
a vector space model based clustering
algorithm, more specifically a variant of the
k-means clustering algorithm, named kRED
(k-means for REfactorings Determination).

The objects to be clustered are the elements
from the considered software system, i.e.

}...,,{ 21 neeeS  , where ,1, niei  can be
an application class, a method from a class or
an attribute from a class. An element Sei 
is considered to be an entity.

The feature set characterizing the entities is
considered to be the set of application classes

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 273

from the software system S ,
},...,,{ 21 lCCCA  , i.e. the cardinality of the

vector space model is the number l of
application classes from S .

For a given entity from the software system
S , the dissimilarity degree between the entity
and the application classes from S is
considered. So, each entity ,1, niei  from
the software system is characterized by a l-
dimensional vector:),...,,(21 ilii eee , where

)1,(ljjeij  is computed as follows [4]:













otherwise

Cpepif
Cpep

Cpep

e ji
ji

ji

ij
)()(

|)()(|

|)()(|
1 




 (1)

where, for a given entity Se ,)(ep defines
a set of relevant properties of e [4].

As in a vector space model based clustering
[11], the distance between two entities ie and

je from the software system S is expressed

as a measure of dissimilarity between their
corresponding vectors. In [4], the Euclidian
distance is used for discriminating the l-
dimensional entities from the software system.

The main idea of the kRED algorithm that is
applied in order to re-group entities from a
software system is the following. The number
of clusters is considered the number l of
application classes and the initial centroids
are chosen as the application classes from S .
Then, as in the classical k-means approach,
the clusters (centroids) are recalculated, i.e.,
each object is assigned to the closest cluster
(centroid) until convergence is achieved.

We mention that the partition obtained by
kRED algorithm represents a new and
improved structure of the software system,
which indicates the refactorings needed to
restructure it.

3. Motivation

Let us consider a software system S . As
presented in Section 2, kRED algorithm
provides a restructuring model that gives the
refactorings needed in S in order to improve
its design.

During the evolution and maintenance of S ,
new application classes are added to it in

order to met new functional requirements. Let

us denote by 'S the software system S after

extension. Consequently, restructuring of 'S
is needed to keep its structure clean and easy
to maintain. Obviously, for obtaining the
restructuring that fits the new applications
classes, the original restructuring scheme can
be applied from scratch, i.e. kRED algorithm
should be applied considering all entities

from the modified software system 'S .
However, this process can be inefficient,
particularly for large software systems.

That is why we extend the approach from [4]
and we propose an incremental method to
cope with the evolving application classes set.
Namely, we handle here the case when a new
application class is added to the software
system and the current restructuring model
must be accordingly adapted. The main idea is
that instead of applying kRED algorithm from

scratch on the modified system 'S , we adjust
the partition obtained by kRED algorithm for
the initial system S , considering the newly
added application class. We aim, this way, at
reducing the time needed for obtaining the
results, without altering the accuracy of the
restructuring process.

4. Our Proposal for Incremental
Refactoring

In this section we introduce our approach for
incremental refactoring, starting from the
approach introduced in [4].

4.1 Formal problem study

Let }...,,{ 21 neeeS  be the set of entities
from the analyzed software system. Each
entity is measured with respect to a set of l
features, },...,,{ 21 lCCCA  (the application

classes from S) and is therefore described by
a l-dimensional vector:),,...,,(21 ilii eee

.1,1, lknieik   By l we denote the

number of application classes from S .

Let },...,,{ 21 lKKKK  be the partition (set
of clusters) discovered by applying kRED
algorithm on the software system S . Each
cluster from the partition is a set of entities,

.1},,...,,{ 21 ljeeeK j
n

jj
j j

 The centroid

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 274

(cluster mean) of the cluster jK is denoted

by jf , where

























j

n

k

j
kl

j

n

k

j
k

j n

e

n

e

f

jj

11
1

,..., .

The measure used for discriminating two
entities from S is the Euclidian distance
between their corresponding l dimensional
vectors, denoted by d.

Let now consider that the software system S
is extended with a new application class, 1lC .

Let us denote by 'S the extended system.
Consequently, the feature set characterizing

the entities from 'S will be extended with a
new feature, corresponding to the newly added
application class. After extension, the
modified software system becomes

},..,,,...,,{ ''
1

''
2

'
1

'
mnnn eeeeeS  , where

- niiei  1,,' is the entity Sei  after
extension.

- mniniei  1,,' are the entities
(classes, methods and attributes) from the
newly added application class 1lC .

We mention than each entity from 'S is
characterized by a l+1 dimensional vector,

i.e.),,,...,,(1,21
'

 liiliii eeeee where ije is

computed as illustrated in (1),
mnii  1, .

We want to analyze the problem of grouping

the entities from 'S into clusters, after the
software system's extension and starting from
the partition K obtained by applying kRED
algorithm on the software system S (before
the application class extension). We aim to
obtain a performance gain with respect to the
partitioning from scratch process.

The partition 'K of the extended software

system 'S corresponds to its improved
structure. Following the idea from [4], the

number of clusters from 'K should be the

number of application classes from 'S , i.e. l+1.

We start from the fact that, at the end of the
initial kRED clustering process, all entities
from S are closer to the centroid of their

cluster than to any other centroid. So, for
each cluster KK j  and each entity

j
j

i Ke  , inequality below holds.

)2(,,1,,),,(),(jrlrjrjfedfed r
j

ij
j

i 

We denote by ljK j 1,' , the set

containing the same entities as jK , after the

extension. By ljf j 1,' , we denote the

mean (center) of the set '
jK . These sets

ljK j 1,' , will not necessarily represent

clusters after the feature set extension. The
newly arrived feature (application class) can
change the entities' arrangement into clusters,
formed so that the intra-cluster similarity to
be high and inter-cluster similarity to be low.
But there is a considerable chance that the old
arrangement in clusters to be close to the
actual one. The actual clusters could be
obtained by applying the kRED clustering
algorithm on the set of extended entities. But
we try to avoid this process and replace it
with one less expensive but not less accurate.
With these being said, we agree, however, to

continue to refer the sets '
jK as clusters.

Besides the clusters ''
2

'
1 ,...,, lKKK , the

partition 'K should also contain a cluster
corresponding to the newly added application
class 1lC . The initial centroid of this cluster
is considered to be the application class itself,

i.e. 1
'

1   ll Cf .

We therefore take as starting point the
previous partitioning K into clusters (as
explained above) and study in which

conditions an extended entity 'j
ie is still

correctly placed into its cluster '
jK .

First, we will introduce in Definition 1 some
auxiliary definitions.

Definition 1.

Assuming the theoretical model described
above, let us consider a cluster ljK j 1, ,

from the partition K of the software system S.

a. We denote by jOA and we call it the set

of over average extended entities, the set
of extended (l+1 dimensional) entities

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 275

'j
ie from cluster '

jK having the value for

the l+1-th feature greater than the average
value, i.e. as given in Equation (3).
































j

n

k

j
lk

j
lij

j
ij n

e

enieOA

j

1
1,

1,
' ,1| (3)

b. We denote by],1[jj naxm  the index of

the extended (l+1 dimensional) entity
from cluster jK having the larger value

for the l+1-th feature, i.e. satisfying
Equation (4).

],1[
1, }max{arg

jni

j
lij eaxm


 (4)

The entity 'j
axm j

e is called the highest

extended entity from the cluster '
jK .

Based on Definition 1, it can be easily proved
that the highest extended entity from a cluster

jK (ljj  1,) belongs to the set of over

average extended entities from '
jK , i.e

Lemma 1 holds.

Lemma 1. Let us consider a cluster jK ,

lj 1 , from the partition K of the

software system S . Within cluster '
jK

relation (5) holds.

j
j
axm OAe

j
' (5)

Proof

We prove below this statement.

Based on Definition 1, we have inequalities:

j
j

lk
j

laxm nkkee
j

  1,1,1, (6)

By summing inequalities (6) for all entities
from cluster jK we obtain:

j

n

k

j
lk

j
laxm n

e

e

j

j






  1
1,

1, (7)

Consequently, from (7) and based on
Definition 1, we can conclude that

j
j
axm OAe

j
' and Lemma 1 is proven.

In Theorem 1 we give sufficient conditions

for an extended entity 'j
ie in order to be

correctly placed in its cluster '
jK .

Theorem 1.

If an extended entity j
j

i OAe ' from the set

of over average extended entities from a

cluster '
jK satisfies inequality (8)

),(),(1
'''

 l
j

ij
j

i Cedfed (8)

then the entity 'j
ie is closer to the center '

jf

than to any other center

jrlrjf r  ,1,1,' , i.e it is correctly

placed in cluster '
jK .

Proof

We prove below this statement.

First, we will prove that the entity
'j

ie is

closer to the center
'
jf
 than to any other

center jrlrf r  ,1,' .

.),(

),(

),(),(

2

1,
1

1,
2

2

1,
1

1,
2

''2''2































































j
li

r

n

k

r
lk

r
j

i

j
li

j

n

k

j
lk

j
j

i

r
j

ij
j

i

e
n

e

fed

e
n

e

fed

fedfed

r

j

Using the inequality (2), we have:

























































 
2

1,
1

1,

2

1,
1

1,

''2''2),(),(

j
li

r

n

k

r
lk

j
li

j

n

k

j
lk

r
j

ij
j

i

e
n

e

e
n

e

fedfed

rj

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 276



































































j
li

r

n

k

r
lk

j

n

k

j
lk

r

n

k

r
lk

j

n

k

j
lk

r
j

ij
j

i

e
n

e

n

e

n

e

n

e

fedfed

rj

rj

1,
1

1,
1

1,

1
1,

1
1,

''2''2

2

),(),(

As j
j

i OAe ' , based on Equation (3), the

inequality above becomes:

.0),(),(

),(),(

''2''2

2

1
1,

1
1,

''2''2





































r
j

ij
j

i

r

n

k

r
lk

j

n

k

j
lk

r
j

ij
j

i

fedfed

n

e

n

e

fedfed

rj

Because all distances are non-negative
numbers, it follows that:

jrlrrfedfed r
j

ij
j

i  ,1,),,(),('''' (9)

So, we have proved that the entity 'j
ie is

closer to the center '
jf than to any other

center jrlrf r  ,1,' .

It is obvious that inequality (8) indicates that

the entity 'j
ie is closer to the center '

jf than

to the center '
1lf .

Consequently, from (8) and (9), we can

conclude that the entity 'j
ie is closer to the

center '
jf than to any other center

jrlrf r  ,11,' , and this ends the proof
of Theorem 1.

Remark 1.

We have to remark the following:

Inequality in (3) imposes only intra-cluster
conditions. An entity is compared only against its

own cluster in order to decide its new affiliation to
that cluster.
Theorem 1 gives only sufficient (not necessary)

conditions for an extended entity 'j
ie in order to

be correctly placed in its cluster '
jK .

When the software system S is extended with a
new application class, it is very likely that
inequality (8) holds, as it is very likely that the
entities from S are closer to other entities from S

than to the newly added application class 1lC .

As indicated in Lemma 1, j
j
axm OAe

j
' .

Consequently, considering the remark above, it is
very likely that at least one extended entity from

cluster '
jK , i.e. 'j

axm j
e , is correctly placed in its

cluster '
jK .

4.2 The incremental refactoring using
seeds algorithm

We will use the property enounced in
Theorem 1 in order to identify inside each

cluster ljK j 1,' , those entities that have a

considerable chance to remain stable in their
cluster, and not to move into another cluster
as a result of the software system's class
(feature set) extension.

In our view, these entities form the center of
their cluster. We will use these cluster
centers as seed for clustering.

As we have mentioned in Remark 1, it is very

likely that entity 'j
axm j

e satisfies inequality (8),

and, consequently, is correctly placed in its

cluster '
jK . That is why we will consider that

the center of cluster '
jK contains at least the

highest extended entity 'j
axm j

e from it. It is

also obvious that the extended entities from
'
jK that are closer to the extended centroid
'
jf of cluster j than to any other extended

centroid jrlrf r  ,11,' have also to

belong to the center of cluster '
jK .

Definition 2.

We denote by

),(,|{ ''''''
j

j
ij

j
i

j
i

j
axmj fedKeeeCenter

j


}.,11),,('' jrlrfed r
j

i  We denote by

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 277

CENTERS the set }1,{ ljCenterj  of all

clusters centers.

We mention that the initial number of
centroids (clusters) in the incremental
clustering algorithm is the number of
application classes after the extension of S ,
i.e. l+1.

The cluster centers, chosen as we described
above, will serve as seeds in the incremental
clustering process. All entities in Centerj will
surely remain together in the same group if
clusters do not change. This will not be the case
for all center entities, but for most of them.

We have presented above the idea for
choosing the initial l centroids and clusters.
Considering that a new application classes is
added to the software system S , the l+1-th
centroid is chosen as the newly added class,

i.e. 1
'

1   ll Cf .

The incremental algorithm starts by
calculating the old clusters' centers. These
centers will be the new initial clusters from
which the incremental process begins. Next,
the algorithm proceeds in the same manner as
kRED algorithm [4] does.

We mention that the algorithm stops when
the clusters from two consecutive iterations
remain unchanged or the number of
performed steps exceeds a maximum allowed
number of iterations.

We give next the Incremental Refactoring
Using Seeds algorithm.

Algorithm IRUS is

{Input:
- the software system }...,,{ 21 neeeS  of

 l-dimensional entities
- l, the number of classes from S

- the newly added class, 1lC

- the extended software system ,,.,,{ ''
2

'
1

'
neeeS 

},..,, ''
1 mnn ee  of l+1-dimensional extended entities

- the metric d between entities
- noMaxIter the maximum allowed number
of iterations.
- },...,,{ 21 lKKKK  the partition of entities in

S reported by kRED.
Output:
- the re-partitioning of the entities from

'S , },...,,{ '
1

'
2

'
1

'
 lKKKK in 'S }.

Remark 2.

We mention that the time complexity for
calculating the centers in the incremental
clustering process does not grow the global
complexity of IRUS algorithm.

5. Literature Review

In this section we present some approaches
existing in the literature in the fields of
software clustering and refactoring.

There are a lot of approaches in the literature
in the field of software clustering which deal
with the software decomposition problem.

One of the most active researches in the area
of software clustering were made by
Schwanke. The author addressed the

Begin
 // The old cluster centers are computed
 For lj ,1 do

@ Compute jCenter as in Definition 2

 // The centroid j is determined

'
jf the mean of objects in jCenter

 EndFor
 // The centroid corresponding to the newly
 // added application class is computed

 1
'

1   ll Cf

 // The incremental process starts with the initial
 // centers

 },...,,{ '
1

'
2

'
1

'
 lfffK

 While ('K changes) and (there were not
 performed noMaxIter iterations) do
 For 1,1  lj do

 // The clusters are recalculated

 j
j

i
j

ijj CentereeCenterK  ''' |{

)},(),(, '''''
k

j
ij

j
ik fedfedfand 

EndFor
 For 1,1  lj do

 If '
jK then

 @ remove element '
jK from 'K

 // the no. of clusters is decreased
 Else

 '
jf the mean of '

jK

 Endif
 EndFor
 EndWhile

 @ 'K is the output partition
End.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 278

problem of automatic clustering by
introducing the shared neighbors technique
[19], technique that was added to the low-
coupling and high-cohesion heuristics in
order to capture patterns that appear
commonly in software systems. In [20], a
partition of a software system is refined by
identifying components that belong to the
wrong subsystem, and by placing them in
the correct one. The paper describes a
program that attempts to reverse engineer
software in order to better provide software
modularity. Schwanke assumes that
procedures referencing the same name must
share design information on the named item,
and are thus “design coupled”. He uses this
concept as a clustering metric to identify
procedures that should be placed in the same
module. Even if the approaches from [19]
and [20] were not tested on large software
systems, they were promising.

Mancoridis et al. introduce in [15] a collection
of algorithms that facilitate the automatic
recovery of the modular structure of a software
system from its source code. Clustering is
treated as an optimization problem and genetic
algorithms are used in order to avoid the local
optima problem of hill-climbing algorithms.
The authors accomplish the software
modularization process by constructing a
module dependency graph and by maximizing
an objective function based on inter- and intra-
connectivity between the software
components. A clustering tool for the recovery
and the maintenance of software system
structures, named Bunch, is developed. In
[16], some extensions of Bunch are presented,
allowing user-directed clustering and
incremental software structure maintenance.

A variety of software clustering approaches has
been presented in the literature. Each of these
approaches looks at the software clustering
problem from a different angle, by either trying
to compute a measure of similarity between
software objects [19]; deducing clusters from
file and procedure names [1]; utilizing the
connectivity between software objects [3, 10,
18]; or looking at the problem at hand as an
optimization problem [15].

Another approach for software clustering was
presented in [1] by Anquetil and Lethbridge.
The authors use common patterns in file names
as a clustering criterion. The authors'

experiments produced promising results, but
their approach relies on the developers'
consistency with the naming of their resources.

The paper [25] also approaches the problem
of software clustering, by defining a metric
that can be used in evaluating the similarity
of two different decompositions of a software
system. The proposed metric calculates a
distance between two partitions of the same
set of software resources. For calculating the
distance, the minimum number of operations
(such as moving a resource from one cluster
to another, joining two clusters etc.) one
needs to perform in order to transform one
partition to the other is computed. In [26],
Tzerpos and Holt introduce a software
clustering algorithm in order to discover
clusters that follow patterns that are
commonly observed in decompositions of
large software systems that were prepared
manually by their architects.

All of these techniques seem to be successful
on a number of examples. However, not only
is there no approach that is widely recognized
as superior, but it is also hard to compare the
effectiveness of different approaches.

There were various approaches in the
literature in the field of refactoring, also.
But, only very limited support exists in the
literature for detecting refactorings.

Deursen et al. have approached the problem
of refactoring in [28]. The authors illustrate
the difference between refactoring test code
and refactoring production code, and they
describe a set of bad smells that indicate
trouble in test code, and a collection of test
refactorings to remove these smells.

Xing and Stroulia present in [29] an approach
for detecting refactorings by analyzing the
system evolution at the design level.

A search based approach for refactoring
software systems structure is proposed in
[21]. The authors use an evolutionary
algorithm for identifying refactorings that
improve the system structure. A weighted
multi-objective search is applied, in which
metrics are combined into a single objective
function. An heterogeneous weighed
approach is applied here, since the weight of
software entities in the overall system and
refactorings cost are studied.

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 279

An approach for restructuring programs
written in Java starting from a catalog of bad
smells is introduced in [6].

Based on some elementary metrics, the
approach in [24] aids the user in deciding
what kind of refactoring should be applied.

The paper [22] describes a software
vizualization tool which offers support to
the developers in judging which refactoring
to apply.

Clustering techniques have already been
applied for program restructuring. A clustering
based approach for program restructuring at
the functional level is presented in [30]. This
approach focuses on automated support for
identifying ill-structured or low cohesive
functions. The paper [14] presents a
quantitative approach based on clustering
techniques for software architecture
restructuring and reengineering as well for
software architecture recovery. It focuses on
system decomposition into subsystems.

A clustering based approach for identifying
the most appropriate refactorings in a
software system is introduced in [4].

Fatiregun et al. [5] applied genetic algorithms
to identify transformation sequences for a
simple source code, with 5 transformation
array, whilst we have applied 6 distinct
refactorings to 23 entities. Mens et al. [23]
propose the techniques to detect the implicit
dependencies between refactorings.

To our kowledge, there are no existing
approaches in the literature in the direction of
incremental refactoring, as it is approached in
this paper.

6. Experimental Evaluation

For experimentally validating IRUS
algorithm, we will consider two case studies:
a simple Java code example [22] and the
open source case study JHotDraw.

As a quality measure for the incremental
process, we take the movement degree of the
entities from the clusters centers. More stable
they are, better was the decision to choose
them as centers for the incremental clustering

process. Assuming that 'K is the output
partition provided by IRUS algorithm, we
express the centers stability as:





l

i
i KCentercs

l
CENTERSCS

1

'),(
1

)((10)

In Equation (10), ),('KCentercs i

||

||

||

i

iCenter

Center

Mj ji

ji

M

KCenter

KCenter


 


 (where 
iCenterM

},1|{  ji KCenterljj ) is the set of

clusters from 'K that contain elements
from the center iCenter) is the stability of

center iCenter .

In our view, CS defines the stability of
clusters centers after the incremental
clustering process. For a given cluster center

CENTERSCenteri  ,),('KCentercs i
defines the degree to which all entities from

iCenter were discovered in a single cluster.

Based on (10), it can be easily proved that
]1,0[)(CENTERSCS .)(CENTERSCS is

equal to 1 iff liKCentercs i ,...,1,1),('  ,

i.e. each cluster center was discovered in a single
cluster. In all other situations,

1)(CENTERSCS .

The worst case is when each entity in iCenter
ends in a different final cluster, and this
happens for every center from CENTERS .
The best case is when every iCenter remains
compact and it is found in a single final
cluster. It can be simply proved that the
higher the value of)(CENTERSCS is, better
was the centers choice, i.e. we aim at
maximizing CS measure.

6.1 Java code example

In this section we present an experimental
evaluation of IRUS algorithm on a simple
case study. We aim to provide the reader with
an easy to follow example of incremental
refactorings extraction. Let us consider the
software system S consisting of the Java
code example shown below. The code
example below is taken from [22].

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 280

Analyzing the code presented above, it is
obvious that the method methodB1() has to
belong to class_A, because it uses features of
class_A only. Thus, the refactoring Move
Method should be applied to this method.

We have applied kRED algorithm, and the
Move Method refactoring for methodB1()
was determined. A partition },{ 21 KKK 

was obtained, where {1 K Class_A,
methodA1(), methodA2(), methodA3(),
methodB1(), attributeA1, attributeA2}

and {2 K Class_B, methodB2(),

methodB3(), attributeB1, attributeB2} .

Cluster 1K corresponds to application class

Class_A and cluster 2K corresponds to
application class Class_B in the new
structure of the system. Consequently, kRED

proposes the refactoring Move Method
methodB1() from Class_B to Class_A.

Let now consider that the system S is
extended with another class, Class_C. Let us

denote by 'S the extended software system.

Analyzing the newly added application class
Class_C, it is obvious that the method
methodC1() has to belong to class_A,
because it uses features of class_A} only.
Thus, the refactoring Move Method should be
applied to this method.

Consequently, a partition },,{ '
3

'
2

'
1

' KKKK 

of the extended system has to be obtained,

with clusters '
1K , '

2K and '
3K corresponding

to the restructured classes class_A, class_B
and class_C respectively, i.e.

{'
1 K Class_A, methodA1(), methodA2(),

methodA3(), methodB1(), methodC1(),
attributeA1, attributeA2} ,

{'
2 K Class_B, methodB2(), methodB3(),

attributeB1, attributeB2} and

{'
3 K Class_C, methodC2(), methodC3(),

attributeC1, attributeC2} .

There are two possibilities to obtain the

restructured partition 'K of the extended

system 'S .

1. To apply kRED algorithm from scratch
on the extended system containing all the
entities from application classes class_A,
class_B and class_C.

public class Class_A {
 public static int attributeA1;
 public static int attributeA2;
 public static void methodA1(){
 attributeA1 = 0;
 methodA2();
 }
 public static void methodA2(){
 attributeA2 = 0;
 attributeA1 = 0;
 }
 public static void methodA3(){
 attributeA2 = 0;
 attributeA1 = 0;
 methodA1();
 methodA2();
 }
}
public class Class_B {
 private static int attributeB1;
 private static int attributeB2;
 public static void methodB1(){
 Class_A.attributeA1=0;
 Class_A.attributeA2=0;
 Class_A.methodA1();
 }
 public static void methodB2(){
 attributeB1=0;
 attributeB2=0;
 }
 public static void methodB3(){
 attributeB1=0;
 methodB1();
 methodB2();
 }
}

public class Class_C {
 private static int attributeC1;
 private static int attributeC2;
 public static void methodC1(){
 Class_A.attributeA1=0;
 Class_A.methodA2();
 }
 public static void methodC2(){
 attributeC1=0;
 attributeC2=0;
 }
 public static void methodC3(){
 attributeC1=0;
 methodC1();
 methodC2();
 }
}

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 281

2. To adapt, using IRUS algorithm, the

partition K obtained after applying kRED
algorithm before the system's extension.

We comparatively present in Table 1 the
results obtained after applying kRED and
IRUS algorithms for restructuring the extended

system 'S . We mention that both algorithms

have identified the partition 'K corresponding

to the improved structure of 'S .

Table 1. The results

No l of classes from S 2
No of entities from S 12

No of classes from 'S 3

No of entities from 'S 18

No of kRED iterations for l+1
application classes

3

No of IRUS iterations for l+1
application classes

2

CS(CENTERS) 1

From Table 1 we observe that IRUS
algorithm finds the solution in a smaller
number of iterations than kRED algorithm.
This confirms that the time needed by IRUS
to obtain the results is reduced, and this leads
to an increased efficiency of the incremental
process. For larger software systems, it is
very likely that the number of iterations
performed by IRUS will be significantly
reduced in comparison with the number of
iterations performed by kRED. We also
notice that the centers stability is 1, and this
leads to the conclusion that the choice of
clusters centers was very good.

6.2 JHotDraw case study

Our second evaluation is JHotDraw case
study [8]. It is a Java GUI framework for
technical and structured graphics, developed
by Erich Gamma and Thomas
Eggenschwiler, as a design exercise for using
design patterns. It consists of 173 classes,
1375 methods and 475 attributes. The reason
for choosing JHotDraw as a case study is that
it is well-known as a good example for the
use of design patterns and as a good design.

Let us consider JHotDraw system from which
we have removed one application class:
StorableInput. We denote the resulting
system by S . Therefore, S consists of 172
application classes, i.e l=172. After applying
kRED algorithm on S we have obtained a
partition K in which there were 2 misplaced
methods and 1 misplaced attribute. The
names of the methods that were proposed to
be moved is shown in the first column of
Table 2. The suggested target class is shown
in the second column.

Let now extend S with the application class
that was initially removed from JHotDraw,

StorableInput. We denote by 'S the extended
software system, which, in fact, is the entire
JHotDraw system. Consequently, the number

of application classes from 'S is 173.

There are two possibilities to obtain the

restructured partition 'K of the extended

system 'S (JHotDraw).

Table 2. The misplaced entities on S

Entity Type Target class
PertFigure.writeTasks Method StorableOutput

PolygonFigure.distanceFromLine Method Geom
ColorEntry.fName Attribute ColorMap

Table 3. The misplaced entities on 'S

Entity Type Target class
PertFigure.writeTasks Method StorableOutput
PertFigure.readTasks Method StorableInput

PolygonFigure.distanceFromLine Method Geom
StandardDrawingView.drawingInvalidated Method DrawingChangeEvent

ColorEntry.fName Attribute ColorMap
ColorEntry.fColor Attribute ColorMap

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 282

A. To apply kRED algorithm from scratch
on the extended JHotDraw system.

B. To adapt, using IRUS algorithm, the
partition K obtained after applying kRED
algorithm before the extension, i.e on S .

In the following we will detail variants A and B.

A. After applying kRED algorithm for

JHotDraw case study ('S), we have obtained

a partition 'K which contains 4 misplaced
methods and 2 misplaced attributes [4]. The
names of the elements (methods, attributes)
that were proposed to be moved is shown in
the first column of Table 3. The suggested
target class is shown in the second column.

B. We have adjusted, using IRUS algorithm,
the partition K obtained after applying
kRED algorithm before the system's

extension. The partition 'K obtained this
way coincides with the one reported by
applying kRED algorithm on JHotDraw, i.e it
contains 4 missplaced methods and 2
missplaced attributes as shown in Table 3.

From our perspective, all the proposed
refactorings can be justified. Consider, for
example, the PertFigure.writeTasks method
presented below [8].

As we can observe from the source code
above, the method writeTasks writes a list of
Storable elements, without directly using
attributes or methods from PertFigure class.
The responsibility of StorableOutput class is
to manage the storage of different storable
objects. So, in our opinion, the best place for
writeTasks method would be the class
StorableOutput.

The need for refactoring Move Method
PertFigure.readTasks to StorableInput
class can be similarly justified. Another
proposed refactoring is Move Method
PolygonFigure.distanceFromLine to
Geom class.

This method computes the distance from a
given point to a line. It does not directly uses
attributes and methods from PolygonFigure
class. The class Geom consists of a set of
utility methods, so, in our opinion, the move
of method PolygonFigure.distanceFrom
Line to Geom class is justifiable.

In the partition 'K there are two misplaced
attributes: ColorEntry.fName and
ColorEntry.fColor which are placed in
ColorMap. From our perspective, these
refactoring can be justified. ColorMap and
ColorEntry are two classes defined in the
same source file. ColorMap is an utility class
which manages the default colors used in the
application. ColorEntry is a simple class
used only by ColorMap, that is why, in our
view, fColor and fName attributes can be
placed in either of the two classes.

We comparatively present in Table 4 the
results obtained after applying kRED and
IRUS algorithms for restructuring the

extended system 'S .

Table 4. Comparative results on JHotDraw case study

Quality
measure

kRED for
173 classes

IRUS for
173 classes

No. of
iterations

6 4

CS - 0.9021

From Table 4 we observe the following:

- IRUS algorithm finds the solution in a
smaller number of iterations than kRED
algorithm. This confirms that the time

public void writeTasks(StorableOutput dw,
 Vector v)
{
 dw.writeInt(v.size());
 Enumeration i = v.elements();
 while (i.hasMoreElements())
 dw.writeStorable((Storable) i.nextElement());
}

public static double distanceFromLine(int xa,
 int ya, int xb, int yb, int xc, int yc)

{
 int xdiff = xb - xa;
 int ydiff = yb - ya;
 long l2 = xdiff * xdiff + ydiff * ydiff;
 if (l2 == 0)
 return Geom.length(xa, ya, xc, yc);
 double rnum = (ya - yc) * (ya - yb) -
 (xa - xc) * (xb - xa);
 double r = rnum / l2;
 if (r < 0.0 || r > 1.0)
 return Double.MAX_VALUE;
 double xi = xa + r * xdiff;
 double yi = ya + r * ydiff;
 double xd = xc - xi;
 double yd = yc - yi;
 return Math.sqrt(xd * xd + yd * yd);

}

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 283

needed by IRUS to obtain the results is
reduced, and this leads to an increased
efficiency of the incremental process.

- The accuracy of the results provided by
IRUS are preserved (the additional
refactorings identified by IRUS were
justified above).

- The choice of the clusters centers in the
incremental process was good enough
(the centers stability is close to 1).

7. Conclusions and Future Work

We have proposed in this paper an incremental
method for adjusting a restructuring model of
a software system when a new application
class is added to it. The considered
experiments prove that the result is reached
more efficiently by using IRUS method rather
than running kRED again from the scratch on
the extended software system.

Further work will be done in order to isolate
conditions to decide when it is more effective
to adapt (using IRUS) the partitioning of the
extended software system than to recalculate
it from scratch using kRED algorithm. We
aim at extending the experimental evaluation
of the proposed approach by applying IRUS
algorithm on other real software system. We
will also study the appropriateness of
adaptive fuzzy [17, 27] clustering algorithms
for refactorings identification and also
incremental extensions of these methods.

Acknowledgements

This work was supported by CNCSIS -
UEFISCSU, project number PNII - IDEI
2286/2008.

REFERENCES

1. ANQUETIL, N., T. LETHBRIDGE,
Extracting Concepts from File Names;
a New File Clustering Criterion, In
20th Intl. Conf. Software Engineering,
1998, pp. 84-93.

2. BROWN, W. J., R. C. MALVEAU, III H.
W. MCCORMICK, T. J. MOWBRAY,
AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis,

John Wiley & Sons, Inc., New York, NY,
USA, 1998.

3. CHOI, S. C., W. SCACCHI, Extracting and
Restructuring the Design of Large
Systems, IEEE Softw., 7(1), 1990, pp. 66-71.

4. CZIBULA, I.G., G. SERBAN,
Improving Systems Design using a
Clustering Approach, Intl. Journal of
Computer Science and Network Security
(IJCSNS)}, 6(12), 2006, pp. 40-49.

5. HARMAN, M., D. FATIREGUN, R.
HIERONS, Evolving Transformation
Sequences using Genetic Algorithms, In
Proc. of the 4th Intl. Workshop on Source
Code Analysis and Manipulation (SCAM
04), Los Alamitos, California, USA, 2004,
IEEE Computer Society, pp. 65-74.

6. DUDZIKAN, T., J. WLODKA, Tool-
supported Dicovery and Refactoring of
Structural Weakness, Master's thesis,
TU Berlin, Germany, 2002.

7. FOWLER, M., Refactoring: Improving
the Design of Existing Code, Addison-
Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

8. GAMMA, E., JHotDraw Project,
http://sourceforge.net/projects/jhotdraw.

9. HAN, J., Data Mining: Concepts and
Techniques, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2005.

10. HUTCHENS, D. H., V. R. BASILI,
System Structure Analysis: Clustering
with Data Bindings, IEEE Trans. Softw.
Eng., 11(8), 1985, pp. 749-757.

11. JAIN, A. K., M. N. MURTY, P. J.
FLYNN, Data Clustering: a Review,
ACM Computing Surveys, 31(3), 1999,
pp. 264-323.

12. JAIN, A. K., R. C. DUBES, Algorithms
for Clustering Data, Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1988.

13. LEHMAN, M. M., Laws of Software
Evolution Revisited, In LNCS 1149 -
EWSPT96, Springer Verlag, 1997,
pp. 108-124.

14. LUNG, C.-H., Software Architecture
Recovery and Restructuring through
Clustering Techniques, In Proc. of the
3rd Intl. Workshop on Software

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 284

Architecture (ISAW '98), New York, NY,
USA, 1998, ACM Press, pp. 101-104.

15. MANCORIDIS, S., B. S. MITCHELL,
C. RORRES, Y. CHEN, E. R.
GANSNER, Using Automatic
Clustering to Produce High-level
System Organizations of Source Code,
In IEEE Proc. of the 1998 Intl. Workshop
on Program Understanding ({IWPC}'98),
Piscataway, NY, 1998, IEEE Press, p. 45.

16. MANCORIDIS, S., B. S. MITCHELL,
Y.-F. CHEN, E. R. GANSNER, Bunch:
A Clustering Tool for the Recovery
and Maintenance of Software System
Structures, In ICSM, 1999, pp. 50-59.

17. MOISE, G., Applying Fuzzy Control in the
Online Learning Systems, Studies in
Informatics and Control, 18(2), 2009, p. 165.

18. NEIGHBORS, J. M., Finding Reusable
Software Components in Large
Systems, In Working Conference on
Reverse Engineering, 1996, pp. 2-10.

19. SCHWANKE, R. W., M. A. PLATOFF,
Cross References are Features, In Proc.
of the 2nd Intl. Workshop on Software
configuration management, New York,
NY, USA, 1989, ACM Press, pp. 86-95.

20. SCHWANKE, R. W., An Intelligent
Tool for Re-engineering Software
Modularity, In ICSE '91: Proc. of the
13th Intl. Conf. on Software Engineering,
Los Alamitos, CA, USA, 1991, IEEE
Computer Society Press, pp. 83-92.

21. SENG, O., J. STAMMEL, D, BURKHART,
Search-based Determination of
Refactorings for Improving the Class
Structure of Object-Oriented Systems,
In Proc. of the 8th Ann. Conf. on Genetic
and Evolutionary Computation (GECCO
'06), New York, NY, USA, 2006, ACM
Press, pp. 1909-1916.

22. SIMON, F., F. STEINBRUCKNER,
CLAUS LEWERENTZ, Metrics Based
Refactoring, In Proc. of the 5th
European Conf. on Software
Maintenance and Reengineering (CSMR
'01), Washington, DC, USA, 2001, IEEE
Computer Society, pp. 30-38.

23. TAENTZER, G., T. MENS, O. RUNGE,
Analysing Refactoring Dependencies
using Graph Transformation, Software
and System Modeling, 6(3), 2007,
pp. 269-285.

24. TAHVILDARI, L., K. KONTOGIANNIS,
A Metric-based Approach to Enhance
Design Quality Through Meta-pattern
Transformations, In Proc. of the 7th
European Conf. on Software Maintenance
and Reengineering (CSMR '03),
Washington, DC, USA, 2003, IEEE
Computer Society, pp. 183-192.

25. TZERPOS, V., R. C. HOLT, Mojo: A
Distance Metric for Software
Clusterings, In Working Conf. on
Reverse Engineering, 1999, pp. 187-193.

26. TZERPOS, V., R. C. HOLT, ACDC: An
Algorithm for Comprehension-driven
Clustering, In Working Conf. on
Reverse Engineering, 2000, pp. 258-267.

27. SANKARANARAYANASAMY, K., V.
DHANALAKSHMI, S.
ARUNACHALAM, T. PAGE, A Fuzzy
Analysis Approach to Part Family
Formation in Cellular Manufacturing
Systems, Studies in Informatics and
Control, 17(4), 2008, p. 433.

28. VAN DEURSEN, A., L. MOONEN, A.
VAN DEN BERGH, G. KOK,
Refactoring test code, 2001, pp. 92-95.

29. XING, Z., E. STROULIA, Refactoring
Detection Based on UMLdiff Change-
facts Queries, WCRE, 2006, pp. 263-274.

30. XU, X., C.-H. LUNG, M. ZAMAN, A.
SRINIVASAN, Program Restructuring
through Clustering Techniques, In
Proc. of the 4th IEEE Intl. Workshop on
Source Code Analysis and Manipulation
(SCAM'04), Washington, DC, USA,
2004, IEEE Computer Society, pp. 75-84.

