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1. Introduction 

The need for continuing adaptation and 
evolution is intrinsic to any software 
application. It is due to the fact that software 
systems, during their life cycle, are faced 
with new requirements. These new 
requirements imply updates in the software 
systems structure, which have to be done 
quickly, due to tight schedules which appear 
in real life software development process. 
Evolution is achieved in a feedback driven 
and controlled maintenance process. If the 
consequent pressure for evolution to adapt to 
the new situation is resisted, the degree of 
satisfaction provided by the system in 
execution declines with time [13]. 

The structure of a software system has a 
major impact on the maintainability of the 
system. This structure is the subject of many 
changes during the system lifecycle. 
Improper implementations of these changes 
imply structure degradation that leads to 
costly maintenance. That is why continuous 
restructurings of the code are needed, 
otherwise the system becomes difficult to 
understand and change, and therefore it is 
often costly to maintain.  

Refactoring is a solution adopted by most 
modern software development methodologies 
(extreme programming and other agile 
methodologies), in order to keep the software 
structure clean and easy to maintain. 
Refactoring becomes an integral part of the 
software development cycle: developers 
alternate between adding new tests and  

 

 

 

 

 

 

 

 

 

 

 

 

functionality and refactoring the code to 
improve its internal consistency and clarity. 

Fowler defines in [7] refactoring as “the 
process of changing a software system in 
such a way that it does not alter the external 
behavior of the code yet improves its internal 
structure. It is a disciplined way to clean up 
code that minimizes the chances of 
introducing bugs”. Refactoring is viewed as a 
way to improve the design of the code after it 
has been written. Software developers have to 
identify parts of code having a negative 
impact on the system's maintainability, and to 
apply appropriate refactorings in order to 
remove the so called “bad-smells” [2]. 

We have developed in [14] a clustering based 
approach, named CARD (Clustering 
Approach for Refactorings Determination) that 
uses clustering for improving the class 
structure of a software system. In this 
direction, a partitional clustering algorithm, 
kRED (k-means for REfactorings 
Determination), was developed. The proposed 
approach can be used to automatically identify 
refactorings that would improve the software 
system's internal structure. 

Real applications evolve in time, and new 
application classes are added in order to met 
new requirements. Obviously, for 
restructuring the extended software system, 
kRED clustering algorithm can be applied 
over and over again, by reassembling the 
entire extended system, every time when the 
application classes set change. But this 
process can be inefficient, particularly for 
large software systems. What we want is to 
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extend the approach from [4] and to propose 
a k-means based incremental clustering 
method, named Incremental Refactoring 
Using Seeds (IRUS), that is capable to 
efficiently re-partition a software system, 
when a new application class is added to it. 
The method starts from the partition obtained 
by applying kRED algorithm before the class 
extension. The result is reached more 
efficiently than running kRED again from the 
scratch on the extended system. 

The rest of the paper is structured as follows. 
Section 2 briefly presents the main aspects 
related to our previous approach for 
clustering based refactorings identification 
[4]. In Section 3 we motivate our work by 
illustrating the need for incremental 
refactoring. An incremental clustering 
approach for adaptive refactorings 
identification is introduced in Section 4. For 
the incremental process, an Incremental 
Refactoring Using Seeds algorithm (IRUS) is 
proposed. Section 5 indicates several existing 
approaches in the direction of automatic 
refactorings identification. An example 
illustrating how our approach works is 
provided in Section 6. Some conclusions of 
the paper and further research directions are 
outlined in Section 7. 

2. CARD Approach. Background. 

Unsupervised classification, or clustering, as 
it is more often referred as, is a data mining 
activity that aims to differentiate groups 
(classes or clusters) inside a given set of 
objects. The inferring process is carried out 
with respect to a set of relevant 
characteristics or features of the analyzed 
objects. The resulting groups are to be built 
so that objects within a cluster to have high 
similarity with each other and low similarity 
with objects in other groups. Similarity and 
dissimilarity between objects are calculated 
using metric or semi-metric functions, 
applied to the features values characterizing 
the objects. 

A large collection of clustering algorithms is 
available in the literature. [9] and [12] 
contain comprehensive overviews of 
existing techniques. 

A well-known class of clustering methods is 
the one of the partitioning methods, with 

representatives such as the k-means algorithm 
or the k-medoids algorithm. Essentially, 
given a set of n objects and a number 

nkk , , such a method divides the object 
set into k distinct and non-empty partitions. 
The partitioning process is iterative and 
heuristic; it stops when a “good” partitioning 
is achieved. A partitioning is “good”, as we 
said, when the intra-cluster similarities are 
high and inter-cluster similarities are low. 

We have introduced in [4] a clustering  
approach CARD for identifying refactorings 
that would improve the class structure of a 
software system. CARD consists of three steps: 

1. Data collection. The existing software 
system is analyzed in order to extract 
from it the relevant entities: classes, 
methods, attributes and the existing 
relationships between them: inheritance 
relations, aggregation relations, 
dependencies between the entities from 
the software system. All these collected 
data will be used in the Grouping step. 

2. Grouping. The set of entities extracted at 
the previous step are re-grouped in 
clusters using a grouping algorithm. The 
goal of this step is to obtain an improved 
structure of the existing software system. 

3. Refactorings extraction. The newly 
obtained software structure is compared 
with the original one in order to provide a 
list of refactorings which transform the 
original structure into an improved one. 

In the following we will briefly review our 
approach from [4] for clustering based 
refactorings identification. 

At the Grouping step we have proposed to re-
group entities from the software system using 
a vector space model based clustering 
algorithm, more specifically a variant of the 
k-means clustering algorithm, named kRED 
(k-means for REfactorings Determination). 

The objects to be clustered are the elements 
from the considered software system, i.e. 

}...,,{ 21 neeeS  , where ,1, niei   can be 
an application class, a method from a class or 
an attribute from a class. An element Sei   
is considered to be an entity. 

The feature set characterizing the entities is 
considered to be the set of application classes 
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from the software system S , 
},...,,{ 21 lCCCA  , i.e. the cardinality of the 

vector space model is the number l of 
application classes from S . 

For a given entity from the software system 
S , the dissimilarity degree between the entity 
and the application classes from S  is 
considered. So, each entity ,1, niei   from 
the software system is characterized by a l-
dimensional vector: ),...,,( 21 ilii eee , where 

)1,( ljjeij   is computed as follows [4]:  
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where, for a given entity Se , )(ep  defines 
a set of relevant properties of e [4].  

As in a vector space model based clustering 
[11], the distance between two entities ie  and 

je  from the software system S  is expressed 

as a measure of dissimilarity between their 
corresponding vectors. In [4], the Euclidian 
distance is used for discriminating the l-
dimensional entities from the software system. 

The main idea of the kRED algorithm that is 
applied in order to re-group entities from a 
software system is the following. The number 
of clusters is considered the number l of 
application classes and the initial centroids 
are chosen as the application classes from S . 
Then, as in the classical k-means approach, 
the clusters (centroids) are recalculated, i.e., 
each object is assigned to the closest cluster 
(centroid) until convergence is achieved. 

We mention that the partition obtained by 
kRED algorithm represents a new and 
improved structure of the software system, 
which indicates the refactorings needed to 
restructure it. 

3. Motivation 

Let us consider a software system S . As 
presented in Section 2, kRED algorithm 
provides a restructuring model that gives the 
refactorings needed in S  in order to improve 
its design.  

During the evolution and maintenance of S , 
new application classes are added to it in 

order to met new functional requirements. Let 

us denote by 'S  the software system S  after 

extension. Consequently, restructuring of 'S  
is needed to keep its structure clean and easy 
to maintain. Obviously, for obtaining the 
restructuring that fits the new applications 
classes, the original restructuring scheme can 
be applied from scratch, i.e. kRED algorithm 
should be applied considering all entities 

from the modified software system 'S . 
However, this process can be inefficient, 
particularly for large software systems.  

That is why we extend the approach from [4] 
and we propose an incremental method to 
cope with the evolving application classes set. 
Namely, we handle here the case when a new 
application class is added to the software 
system and the current restructuring model 
must be accordingly adapted. The main idea is 
that instead of applying kRED algorithm from 

scratch on the modified system 'S , we adjust 
the partition obtained by kRED algorithm for 
the initial system S , considering the newly 
added application class.  We aim, this way, at 
reducing the time needed for obtaining the 
results, without altering the accuracy of the 
restructuring process.  

4. Our Proposal for Incremental 
Refactoring 

In this section we introduce our approach for 
incremental refactoring, starting from the 
approach introduced in [4]. 

4.1 Formal problem study  

Let }...,,{ 21 neeeS   be the set of entities 
from the analyzed software system. Each 
entity is measured with respect to a set of l 
features, },...,,{ 21 lCCCA   (the application 

classes from S ) and is therefore described by 
a l-dimensional vector: ),,...,,( 21 ilii eee  

.1,1, lknieik    By l we denote the 

number of application classes from S . 

Let },...,,{ 21 lKKKK   be the partition (set 
of clusters) discovered by applying kRED 
algorithm on the software system S . Each 
cluster from the partition is a set of entities, 

.1},,...,,{ 21 ljeeeK j
n

jj
j j

  The centroid 
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(cluster mean) of the cluster jK  is denoted 

by jf , where 
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The measure used for discriminating two 
entities from S  is the Euclidian distance 
between their corresponding l dimensional 
vectors, denoted by d. 

Let now consider that the software system S  
is extended with a new application class, 1lC . 

Let us denote by 'S  the extended system. 
Consequently, the feature set characterizing 

the entities from 'S  will be extended with a 
new feature, corresponding to the newly added 
application class. After extension, the 
modified software system becomes 

},..,,,...,,{ ''
1

''
2

'
1

'
mnnn eeeeeS  , where  

- niiei  1,,'  is the entity Sei   after 
extension. 

- mniniei  1,,'  are the entities 
(classes, methods and attributes) from the 
newly added application class 1lC .  

We mention than each entity from 'S  is 
characterized by a l+1 dimensional vector, 

i.e. ),,,...,,( 1,21
'

 liiliii eeeee where ije  is 

computed as illustrated in (1), 
mnii  1, . 

We want to analyze the problem of grouping 

the entities from 'S  into clusters, after the 
software system's extension and starting from 
the partition K  obtained by applying kRED 
algorithm on the software system S  (before 
the application class extension). We aim to 
obtain a performance gain with respect to the 
partitioning from scratch process. 

The partition 'K  of the extended software 

system 'S  corresponds to its improved 
structure. Following the idea from [4], the 

number of clusters from 'K  should be the 

number of application classes from 'S , i.e. l+1.   

We start from the fact that, at the end of the 
initial kRED clustering process, all entities 
from S  are closer to the centroid of their 

cluster than to any other centroid. So, for 
each cluster KK j   and each entity 

j
j

i Ke  , inequality below holds. 

)2(,,1,,),,(),( jrlrjrjfedfed r
j

ij
j

i 

We denote by ljK j 1,' , the set 

containing the same entities as jK , after the 

extension. By ljf j 1,' , we denote the 

mean (center) of the set '
jK . These sets 

ljK j 1,' , will not necessarily represent 

clusters after the feature set extension. The 
newly arrived feature (application class) can 
change the entities' arrangement into clusters, 
formed so that the intra-cluster similarity to 
be high and inter-cluster similarity to be low. 
But there is a considerable chance that the old 
arrangement in clusters to be close to the 
actual one. The actual clusters could be 
obtained by applying the kRED clustering 
algorithm on the set of extended entities. But 
we try to avoid this process and replace it 
with one less expensive but not less accurate. 
With these being said, we agree, however, to 

continue to refer the sets '
jK  as clusters. 

Besides the clusters ''
2

'
1 ,...,, lKKK , the 

partition 'K  should also contain a cluster 
corresponding to the newly added application 
class 1lC . The initial centroid of this cluster 
is considered to be the application class itself, 

i.e. 1
'

1   ll Cf . 

We therefore take as starting point the 
previous partitioning K  into clusters (as 
explained above) and study in which 

conditions an extended entity 'j
ie  is still 

correctly placed into its cluster '
jK .  

First, we will introduce in Definition 1 some 
auxiliary definitions. 

Definition 1.  

Assuming the theoretical model described 
above, let us consider a cluster ljK j 1, , 

from the partition K of the software system S. 

a. We denote by jOA  and we call it the set 

of over average extended entities, the set 
of extended (l+1 dimensional) entities 
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'j
ie  from cluster '

jK  having the value for 

the l+1-th feature greater than the average 
value, i.e. as given in Equation (3). 
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b. We denote by ],1[ jj naxm   the index of 

the extended (l+1 dimensional) entity 
from cluster jK  having the larger value 

for the l+1-th feature, i.e. satisfying 
Equation (4). 

],1[
1, }max{arg

jni

j
lij eaxm


  (4) 

The entity 'j
axm j

e  is called the highest 

extended entity from the cluster '
jK . 

Based on Definition 1, it can be easily proved 
that the highest extended entity from a cluster 

jK  ( ljj  1, ) belongs to the set of over 

average extended entities from '
jK , i.e 

Lemma 1 holds. 

Lemma 1. Let us consider a cluster jK , 

lj 1 , from the partition K  of the 

software system S . Within cluster '
jK  

relation (5) holds. 

j
j
axm OAe

j
'  (5) 

Proof 

We prove below this statement. 

Based on Definition 1, we have inequalities: 

j
j

lk
j

laxm nkkee
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  1,1,1,  (6) 

By summing inequalities (6) for all entities 
from cluster jK  we obtain: 
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Consequently, from (7) and based on 
Definition 1, we can conclude that 

j
j
axm OAe

j
'  and Lemma 1 is proven. 

In Theorem 1 we give sufficient conditions 

for an extended entity 'j
ie  in order to be 

correctly placed in its cluster '
jK . 

Theorem 1.  

If an extended entity j
j

i OAe '  from the set 

of over average extended entities from a 

cluster '
jK  satisfies inequality (8)   
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then the entity 'j
ie  is closer to the center '

jf  

than to any other center 

jrlrjf r  ,1,1,' , i.e it is correctly 

placed in cluster '
jK . 

Proof 

We prove below this statement. 

First, we will prove that the entity 
'j

ie  is 

closer to the center 
'
jf
 than to any other 

center jrlrf r  ,1,' . 
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Using the inequality (2), we have: 
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As j
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i OAe ' , based on Equation (3), the 

inequality above becomes: 
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Because all distances are non-negative 
numbers, it follows that: 

jrlrrfedfed r
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i  ,1,),,(),( ''''  (9) 

So, we have proved that the entity 'j
ie  is 

closer to the center '
jf  than to any other 

center jrlrf r  ,1,' . 

It is obvious that inequality (8) indicates that 

the entity 'j
ie  is closer to the center '

jf  than 

to the center '
1lf . 

Consequently, from (8) and (9), we can 

conclude that the entity 'j
ie  is closer to the 

center '
jf  than to any other center 

jrlrf r  ,11,' , and this ends the proof 
of Theorem 1. 

Remark 1. 

We have to remark the following: 

Inequality in (3) imposes only intra-cluster 
conditions. An entity is compared only against its 

own cluster in order to decide its new affiliation to 
that cluster. 
Theorem 1 gives only sufficient (not necessary) 

conditions for an extended entity 'j
ie  in order to 

be correctly placed in its cluster '
jK . 

When the software system S  is extended with a 
new application class, it is very likely that 
inequality (8) holds, as it is very likely that the 
entities from S  are closer to other entities from S  

than to the newly added application class 1lC . 

As indicated in Lemma 1, j
j
axm OAe

j
' . 

Consequently, considering the remark above, it is 
very likely that at least one extended entity from 

cluster '
jK , i.e. 'j

axm j
e , is correctly placed in its 

cluster '
jK . 

4.2 The incremental refactoring using 
seeds algorithm  

We will use the property enounced in 
Theorem 1 in order to identify inside each 

cluster ljK j 1,' , those entities that have a 

considerable chance to remain stable in their 
cluster, and not to move into another cluster 
as a result of the software system's class 
(feature set) extension. 

In our view, these entities form the center of 
their cluster. We will use these cluster 
centers as seed for clustering.  

As we have mentioned in Remark 1, it is very 

likely that entity 'j
axm j

e  satisfies inequality (8), 

and, consequently, is correctly placed in its 

cluster '
jK . That is why we will consider that 

the center of cluster '
jK  contains at least the 

highest extended entity 'j
axm j

e  from it. It is 

also obvious that the extended entities from 
'
jK  that are closer to the extended centroid 
'
jf  of cluster j than to any other extended 

centroid jrlrf r  ,11,'  have also to 

belong to the center of cluster '
jK .  

Definition 2. 

We denote by  
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CENTERS the set }1,{ ljCenterj   of all 

clusters centers. 

We mention that the initial number of 
centroids (clusters) in the incremental 
clustering algorithm is the number of 
application classes after the extension of  S , 
i.e. l+1. 

The cluster centers, chosen as we described 
above, will serve as seeds in the incremental 
clustering process. All entities in Centerj will 
surely remain together in the same group if 
clusters do not change. This will not be the case 
for all center entities, but for most of them. 

We have presented above the idea for 
choosing the initial l centroids and clusters. 
Considering that a new application classes is 
added to the software system S , the l+1-th 
centroid is chosen as the newly added class, 

i.e. 1
'

1   ll Cf .    

The incremental algorithm starts by 
calculating the old clusters' centers. These 
centers will be the new initial clusters from 
which the incremental process begins. Next, 
the algorithm proceeds in the same manner as 
kRED algorithm [4] does. 

We mention that the algorithm stops when 
the clusters from two consecutive iterations 
remain unchanged or the number of 
performed steps exceeds a maximum allowed 
number of iterations. 

We give next the Incremental Refactoring 
Using Seeds algorithm. 

Algorithm IRUS is 

{Input:  
- the software system }...,,{ 21 neeeS   of  

   l-dimensional entities 
- l, the number of classes from S  

- the newly added class, 1lC  

- the extended software system ,,.,,{ ''
2

'
1

'
neeeS   

},..,, ''
1 mnn ee   of l+1-dimensional extended entities 

- the metric d between entities 
- noMaxIter the maximum allowed number           
of iterations. 
- },...,,{ 21 lKKKK   the partition of entities in 

S  reported by kRED. 
Output: 
- the re-partitioning of the entities from 

'S , },...,,{ '
1

'
2

'
1

'
 lKKKK  in 'S }. 

 

Remark 2. 

We mention that the time complexity for 
calculating the centers in the incremental 
clustering process does not grow the global 
complexity of IRUS algorithm. 

5. Literature Review 

In this section we present some approaches 
existing in the literature in the fields of 
software clustering and refactoring.  

There are a lot of approaches in the literature 
in the field of software clustering which deal 
with the software decomposition problem. 

One of the most active researches in the area 
of software clustering were made by 
Schwanke.  The author addressed the 

Begin 
   // The old cluster centers are computed 
   For lj ,1  do 

@ Compute jCenter  as in Definition 2 

 // The centroid j is determined 

'
jf the mean of objects in jCenter  

    EndFor 
    // The centroid corresponding to the newly  
    // added application class is computed 

    1
'

1   ll Cf  

    // The incremental process starts with the initial
    // centers 

    },...,,{ '
1

'
2

'
1

'
 lfffK  

    While ( 'K  changes) and (there were not  
                   performed noMaxIter iterations) do 
  For 1,1  lj  do 

        // The clusters are recalculated 

       j
j

i
j

ijj CentereeCenterK  ''' |{  

    )},(),(, '''''
k

j
ij

j
ik fedfedfand   

EndFor 
 For 1,1  lj  do 

     If '
jK  then 

          @ remove element '
jK  from 'K  

           // the no. of clusters is decreased 
      Else 

          '
jf  the mean of '

jK  

      Endif 
    EndFor 
   EndWhile 

   @ 'K  is the output partition 
End. 
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problem of automatic clustering by 
introducing the shared neighbors technique 
[19], technique that was added to the low-
coupling and high-cohesion heuristics in 
order to capture patterns that appear 
commonly in software systems. In [20], a 
partition of a software system is refined by 
identifying components that belong to the 
wrong subsystem, and by placing them in 
the correct one. The paper describes a 
program that attempts to reverse engineer 
software in order to better provide software 
modularity. Schwanke assumes that 
procedures referencing the same name must 
share design information on the named item, 
and are thus “design coupled”. He uses this 
concept as a clustering metric to identify 
procedures that should be placed in the same 
module. Even if the approaches from [19] 
and [20] were not tested on large software 
systems, they were promising. 

Mancoridis et al. introduce in [15] a collection 
of algorithms that  facilitate the automatic 
recovery of the modular structure of a software 
system from its source code. Clustering is 
treated as an optimization problem and genetic 
algorithms are used in order to avoid the local 
optima problem of hill-climbing algorithms. 
The authors accomplish the software 
modularization process by constructing a 
module dependency graph and by maximizing 
an objective function based on inter- and intra-
connectivity between the software 
components. A clustering tool for the recovery 
and the maintenance of software system 
structures, named Bunch, is developed. In 
[16], some extensions of  Bunch are presented, 
allowing user-directed clustering and 
incremental software structure maintenance. 

A variety of software clustering approaches has 
been presented in the literature. Each of these 
approaches looks at the software clustering 
problem from a different angle, by either trying 
to compute a measure of similarity between 
software objects [19]; deducing clusters from 
file and procedure names [1]; utilizing the 
connectivity between software objects [3, 10, 
18]; or looking at the problem at hand as an 
optimization problem [15]. 

Another approach for software clustering was 
presented in [1] by Anquetil and Lethbridge.  
The authors use common patterns in file names 
as a clustering criterion. The authors' 

experiments produced promising results, but 
their approach relies on the developers' 
consistency with the naming of their resources. 

The paper [25] also approaches the problem 
of software clustering, by defining a metric 
that can be used in evaluating the similarity 
of two different decompositions of a software 
system. The proposed metric calculates a 
distance between two partitions of the same 
set of software resources. For calculating the 
distance, the minimum number of operations 
(such as moving a resource from one cluster 
to another, joining two clusters etc.) one 
needs to perform in order to transform one 
partition to the other is computed. In [26], 
Tzerpos and Holt introduce a software 
clustering algorithm in order to discover 
clusters that follow patterns that are 
commonly observed in decompositions of 
large software systems that were prepared 
manually by their architects. 

All of these techniques seem to be successful 
on a number of examples.  However, not only 
is there no approach that is widely recognized 
as superior, but it is also hard to compare the 
effectiveness of different approaches.  

There were various approaches in the 
literature in the field of refactoring, also.  
But, only very limited support exists in the 
literature for detecting refactorings. 

Deursen et al. have approached the problem 
of refactoring in [28]. The authors illustrate 
the difference between refactoring test code 
and refactoring production code, and they 
describe a set of bad smells that indicate 
trouble in test code, and a collection of test 
refactorings to remove these smells. 

Xing and Stroulia present in [29] an approach 
for detecting refactorings by analyzing the 
system evolution at the design level. 

A search based approach for refactoring 
software systems structure is proposed in 
[21]. The authors use an evolutionary 
algorithm for identifying refactorings that 
improve the system structure. A weighted 
multi-objective search is applied, in which 
metrics are combined into a single objective 
function. An heterogeneous weighed 
approach is applied here, since the weight of 
software entities in the overall system and 
refactorings cost are studied. 
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An approach for restructuring programs 
written in Java starting from a catalog of bad 
smells is introduced in [6]. 

Based on some elementary metrics, the 
approach in [24] aids the user in deciding 
what kind of refactoring should  be applied. 

The paper [22] describes a software 
vizualization tool which offers support to 
the developers in judging which refactoring 
to apply. 

Clustering techniques have already been 
applied for program restructuring. A clustering 
based approach for program restructuring at 
the functional level is presented in [30]. This 
approach focuses on automated support for 
identifying ill-structured or low cohesive 
functions. The paper [14] presents a 
quantitative approach based on clustering 
techniques for software architecture 
restructuring and reengineering as well for 
software architecture recovery. It focuses on 
system decomposition into subsystems. 

A clustering based approach for identifying 
the most appropriate refactorings in a 
software system is introduced in [4].  

Fatiregun et al. [5] applied genetic algorithms 
to identify transformation sequences for a 
simple source code, with 5 transformation 
array, whilst we have applied 6 distinct 
refactorings to 23 entities. Mens et al. [23] 
propose the techniques to detect the implicit 
dependencies between refactorings. 

To our kowledge, there are no existing 
approaches in the literature in the direction of 
incremental refactoring, as it is approached in 
this paper.   

6. Experimental Evaluation 

For experimentally validating IRUS 
algorithm, we will consider two case studies: 
a simple Java code example [22] and the 
open source case study JHotDraw.   

As a quality measure for the incremental 
process, we take the movement degree of the 
entities from the clusters centers. More stable 
they are, better was the decision to choose 
them as centers for the incremental clustering 

process. Assuming that 'K  is the output 
partition provided by IRUS algorithm, we 
express the centers stability as: 





l

i
i KCentercs

l
CENTERSCS

1

' ),(
1

)(  (10) 

In Equation (10), ),( 'KCentercs i  

||

||

||

i

iCenter

Center

Mj ji

ji

M

KCenter

KCenter


 


 (where 
iCenterM  

},1|{  ji KCenterljj  ) is the set of 

clusters from 'K  that contain elements 
from the center iCenter ) is the stability of 

center iCenter . 

In our view, CS defines the stability of 
clusters centers after the incremental 
clustering process. For a given cluster center 

CENTERSCenteri  , ),( 'KCentercs i  
defines the degree to which all entities from 

iCenter  were discovered  in a single cluster. 

Based on (10), it can be easily proved that 
]1,0[)( CENTERSCS .  )(CENTERSCS  is 

equal to 1 iff liKCentercs i ,...,1,1),( '  , 

i.e. each cluster center was discovered in a single 
cluster. In all other situations,  

1)( CENTERSCS . 

The worst case is when each entity in iCenter  
ends in a different final cluster, and this 
happens for every center from CENTERS . 
The best case is when every iCenter  remains 
compact and it is found in a single final 
cluster. It can be simply proved that the 
higher the value of )(CENTERSCS  is, better 
was the centers choice, i.e. we aim at 
maximizing CS  measure. 

6.1 Java code example  

In this section we present an experimental 
evaluation of IRUS algorithm on a simple 
case study. We aim to provide the reader with 
an easy to follow example of incremental 
refactorings extraction. Let us consider the 
software system S  consisting of the Java 
code example shown below. The code 
example below is taken from [22]. 
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Analyzing the code presented above, it is 
obvious that the method methodB1() has to 
belong to class_A, because it uses features of 
class_A only. Thus, the refactoring Move 
Method should be applied to this method. 

We have applied kRED algorithm, and the 
Move Method refactoring for methodB1() 
was determined. A partition },{ 21 KKK    

was obtained, where {1 K Class_A, 
methodA1(), methodA2(), methodA3(), 
methodB1(), attributeA1, attributeA2}  

and {2 K Class_B, methodB2(), 

methodB3(), attributeB1, attributeB2} . 

Cluster 1K  corresponds to application class 

Class_A and cluster 2K  corresponds to 
application class Class_B in the new 
structure of the system. Consequently, kRED 

proposes the refactoring Move Method 
methodB1() from Class_B to Class_A. 

Let now consider that the system S  is 
extended with another class, Class_C. Let us 

denote by 'S  the extended software system. 

 

Analyzing the newly added application class 
Class_C, it is obvious that the method 
methodC1() has to belong to class_A, 
because it uses features of class_A} only. 
Thus, the refactoring Move Method should be 
applied to this method. 

Consequently, a partition },,{ '
3

'
2

'
1

' KKKK   

of the extended system has to be obtained, 

with clusters '
1K , '

2K  and '
3K  corresponding 

to the restructured classes class_A, class_B 
and class_C respectively, i.e. 

{'
1 K Class_A, methodA1(), methodA2(), 

methodA3(), methodB1(), methodC1(), 
attributeA1, attributeA2} , 

{'
2 K Class_B, methodB2(), methodB3(), 

attributeB1, attributeB2}  and 

{'
3 K Class_C, methodC2(), methodC3(), 

attributeC1, attributeC2} . 

There are two possibilities to obtain the 

restructured partition 'K  of the extended 

system 'S . 

1. To apply kRED algorithm from scratch 
on the extended system containing all the 
entities from application classes class_A, 
class_B and class_C. 

public class Class_A { 
  public static int attributeA1; 
  public static int attributeA2; 
  public static void methodA1(){ 
      attributeA1 = 0; 
      methodA2(); 
  } 
  public static void methodA2(){ 
          attributeA2 = 0; 
          attributeA1 = 0; 
    } 
  public static void methodA3(){ 
          attributeA2 = 0; 
          attributeA1 = 0; 
          methodA1(); 
          methodA2(); 
  } 
} 
public class Class_B { 
  private static int attributeB1; 
  private static int attributeB2; 
  public static void methodB1(){ 
          Class_A.attributeA1=0; 
          Class_A.attributeA2=0; 
          Class_A.methodA1(); 
    } 
  public static void methodB2(){ 
          attributeB1=0; 
          attributeB2=0; 
    } 
  public static void methodB3(){ 
          attributeB1=0; 
          methodB1(); 
          methodB2(); 
  } 
} 

public class Class_C { 
  private static int attributeC1; 
  private static int attributeC2; 
  public static void methodC1(){ 
          Class_A.attributeA1=0; 
          Class_A.methodA2(); 
    } 
  public static void methodC2(){ 
          attributeC1=0; 
          attributeC2=0; 
    } 
  public static void methodC3(){ 
          attributeC1=0; 
          methodC1(); 
          methodC2(); 
  } 
} 
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2. To adapt, using IRUS algorithm, the 

partition K  obtained after applying kRED 
algorithm before the system's extension.  

We comparatively present in Table 1 the 
results obtained after applying kRED and 
IRUS algorithms for restructuring the extended 

system 'S . We mention that both algorithms 

have identified the partition 'K  corresponding 

to the improved structure of 'S . 

Table 1. The results 

No l of classes from S  2 
No of entities from S  12

No of classes from  'S  3 

No of entities from 'S  18

No of kRED iterations for l+1 
application classes 

3 

No of IRUS iterations for l+1 
application classes 

2 

CS(CENTERS) 1 

From Table 1 we observe that IRUS 
algorithm finds the solution in a smaller 
number of iterations than kRED algorithm. 
This confirms that the time needed by IRUS 
to obtain the results is reduced, and this leads 
to an increased efficiency of the incremental 
process. For larger software systems, it is 
very likely that the number of iterations 
performed by IRUS will be significantly 
reduced in comparison with the number of 
iterations performed by kRED. We also 
notice that the centers stability is 1, and this 
leads to the conclusion that the choice of 
clusters centers was very good. 

 

6.2 JHotDraw case study  

Our second evaluation is JHotDraw case 
study [8]. It is a Java GUI framework for 
technical and structured graphics, developed 
by Erich Gamma and Thomas 
Eggenschwiler, as a design exercise for using 
design patterns. It consists of 173 classes, 
1375 methods and 475 attributes. The reason 
for choosing JHotDraw as a case study is that 
it is well-known as a good example for the 
use of design patterns and as a good design. 

Let us consider JHotDraw system from which 
we have removed one application class: 
StorableInput. We denote the resulting 
system by S . Therefore, S  consists of 172 
application classes, i.e l=172. After applying 
kRED algorithm on S  we have obtained a 
partition K  in which there were 2 misplaced 
methods and 1 misplaced attribute. The 
names of the methods that were proposed to 
be moved is shown in the first column of 
Table 2. The suggested target class is shown 
in the second column. 

Let now extend S  with the application class 
that was initially removed from JHotDraw, 

StorableInput. We denote by 'S  the extended 
software system, which, in fact, is the entire 
JHotDraw system. Consequently, the number 

of application classes from 'S  is 173. 

There are two possibilities to obtain the 

restructured partition 'K  of the extended 

system 'S (JHotDraw). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. The misplaced entities on S  

Entity Type Target class 
PertFigure.writeTasks Method StorableOutput 

PolygonFigure.distanceFromLine Method Geom 
ColorEntry.fName Attribute ColorMap 

Table 3. The misplaced entities on 'S  

Entity Type Target class 
PertFigure.writeTasks Method StorableOutput 
PertFigure.readTasks Method StorableInput 

PolygonFigure.distanceFromLine Method Geom 
StandardDrawingView.drawingInvalidated Method DrawingChangeEvent 

ColorEntry.fName Attribute ColorMap 
ColorEntry.fColor Attribute ColorMap 
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A. To apply kRED algorithm from scratch 
on the extended JHotDraw system. 

B.  To adapt, using IRUS algorithm, the 
partition K  obtained after applying kRED 
algorithm before the extension, i.e on S . 

In the following we will detail variants A and B. 

A. After applying kRED algorithm for 

JHotDraw case study ( 'S ), we have obtained 

a partition 'K  which contains 4 misplaced 
methods and 2 misplaced attributes [4]. The 
names of the elements (methods, attributes) 
that were proposed to be moved is shown in 
the first column of Table 3. The suggested 
target class is shown in the second column. 

B. We have adjusted, using IRUS algorithm, 
the partition K  obtained after applying 
kRED algorithm before the system's 

extension. The partition 'K  obtained this 
way coincides with the one reported by 
applying kRED algorithm on JHotDraw, i.e it 
contains 4 missplaced methods and 2 
missplaced attributes as shown in Table 3. 

From our perspective, all the proposed 
refactorings can be justified. Consider, for 
example, the PertFigure.writeTasks method 
presented below [8]. 

 

As we can observe from the source code 
above, the method writeTasks writes a list of 
Storable elements, without directly using 
attributes or methods from PertFigure class. 
The responsibility of StorableOutput class is 
to manage the storage of different storable 
objects. So, in our opinion, the best place for 
writeTasks method would be the class 
StorableOutput. 

The need for refactoring Move Method 
PertFigure.readTasks to StorableInput 
class can be similarly justified. Another 
proposed refactoring is Move Method 
PolygonFigure.distanceFromLine to 
Geom class. 

 

 

This method computes the distance from a 
given point to a line. It does not directly uses 
attributes and methods from PolygonFigure 
class. The class Geom consists of a set of 
utility methods, so, in our opinion, the move 
of method PolygonFigure.distanceFrom 
Line to Geom class is justifiable. 

In the partition 'K  there are two misplaced 
attributes: ColorEntry.fName and 
ColorEntry.fColor which are placed in 
ColorMap. From our perspective, these 
refactoring can be justified. ColorMap and 
ColorEntry are two classes defined in the 
same source file. ColorMap is an utility class 
which manages the default colors used in the 
application. ColorEntry is a simple class 
used only by ColorMap, that is why, in our 
view, fColor and fName attributes can be 
placed in either of the two classes. 

We comparatively present in Table 4 the 
results obtained after applying kRED and 
IRUS algorithms for restructuring the 

extended system 'S . 

Table 4. Comparative results on JHotDraw case study 

Quality 
measure 

kRED for  
173 classes 

IRUS for 
173 classes 

No. of 
iterations 

6 4 

CS - 0.9021 

From Table 4 we observe the following: 

- IRUS algorithm finds the solution in a 
smaller number of iterations than kRED 
algorithm. This confirms that the time 

public void writeTasks(StorableOutput dw,  
                                                               Vector v) 
{ 
     dw.writeInt(v.size()); 
     Enumeration i = v.elements(); 
     while (i.hasMoreElements()) 
 dw.writeStorable((Storable) i.nextElement()); 
} 

public static double distanceFromLine(int xa,  
      int ya, int xb, int yb, int xc, int yc)  

{ 
  int xdiff = xb - xa; 
  int ydiff = yb - ya; 
  long l2 = xdiff * xdiff + ydiff * ydiff; 
  if (l2 == 0) 
    return Geom.length(xa, ya, xc, yc); 
  double rnum = (ya - yc) * (ya - yb) -  
        (xa - xc) * (xb - xa); 
  double r = rnum / l2; 
  if (r < 0.0 || r > 1.0) 
    return Double.MAX_VALUE; 
  double xi = xa + r * xdiff; 
  double yi = ya + r * ydiff; 
  double xd = xc - xi; 
  double yd = yc - yi; 
    return Math.sqrt(xd * xd + yd * yd); 

} 
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needed by IRUS to obtain the results is 
reduced, and this leads to an increased 
efficiency of the incremental process. 

- The accuracy of the results provided by 
IRUS are preserved (the additional 
refactorings identified by IRUS were 
justified above). 

- The choice of the clusters centers in the 
incremental process was good enough 
(the centers stability is close to 1). 

7. Conclusions and Future Work 

We have proposed in this paper an incremental 
method for adjusting a restructuring model of 
a software system when a new application 
class is added to it. The considered 
experiments prove that the result is reached 
more efficiently by using IRUS method rather 
than running kRED again from the scratch on 
the extended software system. 

Further work will be done in order to isolate 
conditions to decide when it is more effective 
to adapt (using IRUS) the partitioning of the 
extended software system than to recalculate 
it from scratch using kRED algorithm. We 
aim at extending the experimental evaluation 
of the proposed approach by applying IRUS 
algorithm on other real software system. We 
will also study the appropriateness of 
adaptive fuzzy [17, 27] clustering algorithms 
for refactorings identification and also 
incremental extensions of these methods. 
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