
Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 295

1. Introduction

The number of Web services is increasing
fast. The large scale and dynamics of these
Web services hinders the understanding of
their semantics and hence their management.
To address this issue we propose the system
WSC. Compared with other approaches
which propose the ontologies for describing
Web services (DAML-S, WSMF, OWL-S etc
) the WSC system provides means for both
semantic description of Web services and
their organization into communities.

The system WSC is the result of sustained
research work on finding innovative and
effective technologies for modeling,
managing and accessing Web services.

To achieve this goal WSC system took into
consideration both existing industry standards
for modeling services (WSDL, SOAP, UDDI,
BPEL) as well as academic initiatives in the
area of semantic Web (DAML-S, WSMF etc).

The following requirements need to be
considered when designing the WSC system:

 organizing web services space in
semantic communities in order to
effectively discover services

 understanding the capabilities of
semantic web services

 discovering and accessing Web services
using semantic criteria

 simple and fast designation of the processes
used in invoking Web services methods

 using standard BPEL for composing Web
services and communities

To meet the requirements listed above, WSC
system provides the following features:

 Community [1][2] ontology, used as
templates for creating community
descriptions

 Service [2] ontology, used as templates
for creating service descriptions

 WSDL-S formalism, used to create
descriptions for communities and
services, according to the two ontology

 communities taxonomy management

 Web services registration with
communities taxonomy

 Web services discovery based on
semantic criteria

Management of Web Services Communities,
WSC System

Victor Popa1, Liliana Constantinescu1, Victoriana Popa2, Maria Moise3, Carmen Rotună1

1 National Institute for Research and Development in Informatics - ICI, Bucharest,
8-10 Averescu Avenue, Bucharest 1, România,
vpopa@ici.ro, lconst@ici.ro, karma_petcu28@yahoo.com

2 Reply, 25 Cenisio Avenue, Milano, Italy,
vpopa.Consultant@ubm.unicredit.it

3 Romanian-American University,
1B Expoziţiei Avenue, Bucharest 1, România,
maria.moise@rau.ro

Abstract: The paper presents the system WSC, designed to provide modeling, organization, management and
execution of Web services. The Service and Community ontologies are used for modeling of the Web services and
Web services communities. Web Services are organized in semantic communities, in order to be easily accessed.
Thus, the users of system navigate through the taxonomy of communities and invoke the target generic operations of
communities. If an invoked operation requires some pre-operations to be executed before it, the system builds process
diagram for these pre-operations. The user executes interactively each operation of diagram process using the
interface provided by the system.

Keywords: community ontology, service ontology, registration of services with communities, process diagrams,
invocation of community’s generic operations, execution of Web service’s methods.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 296

 mapping the generic operation
invocations to Web service method
invocations, based on quality attributes of
Web services (response time, cost,
reliability, confidentiality, etc.)

 automatic generation of process diagrams
used to invoke generic operations of Web
service communities

 interactive execution of process diagrams

 support for execution of generic
operations invoked from BPEL processes

Due to its facilities, WSC system can be used
in organizations and institutions that need to
organize their own services in semantic
communities, so that their business partners
may get easy access to these services.

2. Semantic Communities,
Communities Taxonomy

A community is specific for an interest
domain and is created by a consortium of
organizations (community provider) that
wants to standardize Web services used in
that domain. A community defines a generic
operation collection for an area of interest,
which Web services from that area have to
implement. Community providers create
descriptions of their communities using
WSDL-S format (WSDL format extended
with semantics) Semantic attributes used in
the WSDL-S representations are defined in
the Community ontology and they describe
domain, generic operations, input/output
messages, the eligibility requirements, order
for invoking operations, conditions for
chaining operations etc.

The descriptions of communities, in WSDL-S
format, are stored in the community register
(CR) that is modeled as a taxonomy of
communities based on specialization
relationship between community domains.
Web service providers describe their services
in WSDL-S format according to Service
ontology and transmit this description to
WSC system to be stored in the repository
service. Descriptions of communities and
Web services are used by the system or
administrator to register Web services with
the communities.

In order to access Web services registered
with a given community (C), the user invokes
a target operation (O) of C, using the graphic
interface of WSC system. The system will
generate, in a recursive way, the process
diagram attached to operation O. The process
diagram is a graphical tree having as root the
generic operation O. The level 1 of tree
contains the generic operations to be
performed before the operation O. The level
n of tree contains the generic operations to be
performed before operations on level n-1.

The user executes interactively process
diagram, starting with final nodes and
finishing with the root node of tree. To execute
a node operation, the user selects a Web
service registered with the community C and
then invokes the Web service method that
corresponds to node operation. Execution state
of each node of process diagram is stored in
variables defined in the community C.

Not only the user can access the Web
services registered with communities of
taxonomy, BPEL processes can also invoke
generic operations of a community C.

In this case, the system selects a Web service
registered with community C and invokes the
appropriate method of selected services.

Example

For example consider community C with the
domain "Sporting Competition" and generic
operations "RegisteringParticipant",
"GettingMedicalApproval",
"ParticipatingCompetition”.

To attend a sporting event, a user connects to
the WSC system, selects from communities
taxonomy the community C and then invokes
generic operation "ParticipatingCompetition"
of community C.

As a result of this invocation the system
generates the process diagram as below:

Then, the user interactively executes the
generated diagram as follows:

“ParticipatingCompetition”

“RegisteringParticipant” “GettingMedicalApproval”

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 297

1. user clicks on generic operation
"RegisteringParticipant" providing his
personal data in the input variable
“informatiiPersonale“; if the operation ends
successfully it will return the participant’s
ID in the output variable “userId”

2. user clicks on generic operation
"GettingMedicalApproval" in order to
obtain medical approval, input variable
“informatiiPersonale” already contains
the user's personal data; if operation ends
successfully it will return the medical
approval in the output variable
“avizMedical”

3. user clicks the generic operation
"ParticipatingCompetition" to obtain his
T-shirt number for participation at
competition; input variables “userId“ and
“avizMedical” already contain the
necessary information if the first
operations ended successfully. If
operation execution ends successfully it

will return the T-shirt number in output
variable “nrtricou”

Execution of each operation in the above
diagram involves checking the eligibility and
termination conditions of the operation.

Description of community C from given
example, using WSDL-S format, is illustrated
in the Figure 1.

The above description contains concepts
defined in Community ontology: function,
synonym, domain, relation, precondition,
predecessor, goal etc.

The element <function> and synonyms
included specify operation category, helping
user to understand the operation semantics.

The element <domain> and synonyms
included specify community domain, helping
users to understand the semantics of domain
of community.

<wsdl:operation name="RegisteringParticipant" >
 <function name="RegisteringParticipant">
 <synonyms>
 <synonym name="inscriere-in-competitie" />
 </synonyms>
 </function>
 <relations>
 </relations>
 </wsdl:operation>
--
 <wsdl:operation name="ParticipatingCompetition" goal=”yes”>
<function name="ParticipatingCompetition">
 <synonyms>
 <synonym name="obtinereNumarTricou" />
 </synonyms>
 </function>
<PreConditions> virsta > 60, localitate="Bucuresti" </PreConditions>
 <relations>
 <precedesor name="EliberareAvizMedical"> aviz.avizare = true </precedesor>
 <precedesor name="InregistrareParticipant"> UserId # empty </precedesor>
 </relations>
 </wsdl:operation>
--
 <wsdl:operation name="GettingMedicalApproval" >
<function name=" GettingMedicalApproval">
 <synonyms>
 <synonym name="aprobare medicala" />
 </synonyms>
 </function>
 <relations>
 </relations>
 </wsdl:operation>
--
<wsdl:service name="C" provider="municipiu Bucuresti" documentation="">
<domain name=Sporting Competition>
 <synonyms>
 <synoym name="recreare sportiva"/>
 </synonyms>
 </domain>

Figure 1. Description of Web services community for the given example

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 298

The element <preconditions> specifies the
eligibility conditions for an operation to be
invoked. Specified conditions include the
input variables of the operation or variables
defined in the user profile.

The element <relation> specifies for each
operation, the predecessor operations and their
termination conditions. The termination conditions
will include output variables of the operation.

The attribute goal specifies whether an
operation is a target operation or a helping
operation. In the given example only
operation “ParticipatingCompetition” is a
target operation; the other operations are
helping operations.

Description of input/output variable for the
generic operations from given example is
illustrated in the Figure 2.

Note that each input/output message is
composed of several parts (variables), each
part having attached a data type and a
businessRole specifying semantics of variable.

Input/output variable of generic operations
share the same memory area (global
variables) if they have the same identifier, the
same data type, and the same semantics. For
example variable “userId” defined in the
operation "RegisteringParticipant" and “userId”
variable defined in the operation
"ParticipatingCompetition" shares the same
memory area, because they have the same

identifier, the same data type and the
same businessRole.

Using global variables in describing
communities allows interconnection among
communities operations. The interactive
execution of generic operations involves
some editing of the input variable or viewing
of the output variables.

The system WCS uses data type of each
input/output variable to generate
automatically editing and viewing controls.

<wsdl:message name="RegisteringParticipant SoapIn">
 <wsdl:part name="infPersonale" type="tns:InformatiiPersonale" >
 <businessRole name="datePersonale"/>
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="RegisteringParticipant SoapOut">
 <wsdl:part name="userId" type="tns:UserId" >
 <businessRole name="identificareutilizator"/>
 </wsdl:part>
 </wsdl:message>
--
 <wsdl:message name="ParticipatingCompetition SoapIn">
 <wsdl:part name="userId" type="tns:UserId" >
 <businessRole name="identificareutilizator"/>
 </wsdl:part>
 <wsdl:part name="avizMedical" type="tns:AvizMedical" >
 <businessRole name="staresanatate"/>
 </wsdl:part>
 </wsdl:message>

 <wsdl:message name="ParticipatingCompetition SoapOut">
 <wsdl:part name="nrtricou" type="tns:Nrtricou" >
 <businessRole name="tricouparticipare"/>
 </wsdl:part>
 </wsdl:message>
--
 <wsdl:message name="GettingMedicalApproval SoapIn">
 <wsdl:part name="infPersonale" type="tns:InformatiiPersonale" >
 <businessRole name="datePersonale"/>
 </wsdl:part>
 </wsdl:message>
 <wsdl:message name="GettingMedicalApproval SoapIn">
 <wsdl:part name="avizMedical" type="tns:AvizMedical" >
 <businessRole name="staresanatate"/>
 </wsdl:part>
 </wsdl:message>

Figure 2. Description of input/output variables for generic operations

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 299

Data types for input/output variables used in
the given example are defined in the Figure 3,
using the XMLSchema formalism.

Note

Data types used in WSC are only user types.
If you want to use a system type, it must be
incorporated into a user type.

For example, if the user needs an array of
medical approval, then the system type "[]"
will be incorporated into class
“AvizMedicalArray” as below:

class AvizMedicalArray
{
 AvizMedical [] items;
}

Manual creation of the file containing
community description for given example is
difficult. To ease this task we can use the
following procedure:

1. create the appropriate class having the
same name as community’s domain and

the methods identical with community
operations – Figure 4.

2. create the WSDL file format for this class
using WSDL.exe instrument of
.Net platform

3. manually extend WSDL file format with
semantic attributes specified in
Community ontology (domain, function,
synonym, etc.)

4. modify variables name, created by the
WSL tool, if needed (only output
variables)

The value of “URL” attribute, from the
obtained file, has to refer the community site.
The community site allows execution of

<s:complexType name="InformatiiPersonale">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified" name="nume" type="s:string" />
 <s:element minOccurs="1" maxOccurs="1" form="unqualified" name="virsta" type="s:int" />
 <s:element minOccurs="0" maxOccurs="1" form="unqualified" name="localitate" type="s:string" />
 </s:sequence>
 </s:complexType>

<s:complexType name="UserId">
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" form="unqualified" name="userId" type="s:string" />
 </s:sequence>
 </s:complexType>
 --
 <s:complexType name="AvizMedical">
 <s:complexContent mixed="false">
 <s:extension base="tns:InformatiiPersonale">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" form="unqualified" name="avizare" type="s:boolean" />
 </s:sequence>
 </s:extension>
 </s:complexContent>
 </s:complexType>

<s:complexType name="Nrtricou">
 <s:sequence>
 <s:element minOccurs="1" maxOccurs="1" form="unqualified" name="nrTricou" type="s:int" />
 </s:sequence>
 </s:complexType>

Figure 3. Data types used in the given example

 [SoapRpcService()]
public class Sporting Competition : WebService
{
 [WebMethod]
 public UserId RegisteringParticipant (InformatiiPersonale infPersonale)

 [WebMethod]
 public Nrtricou ParticipatingCompetition (UserId userId, AvizMedical avizMedical)

 [WebMethod]
 public AvizMedical GettingMedicalApproval (InformatiiPersonale infPersonale)
 }

Figure 4.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 300

community operations when they are invoked
from BPEL processes.

The file, thus obtained, will be parsed by
WSC system to record the community
description in the taxonomy of communities.

1.1 User interface for
managing communities

WSC system provides communities
management tool for insertion, deletion,
navigation and display of community
descriptions. [6] [7]

To insert a community description into the
taxonomy, the user presses the button

InsertCommunity that displays the insertion
panel, as is illustrated in Figure 5.

The user specifies the place in taxonomy
where new description will be inserted, by
selecting from Parent list the parent
community, then enters the WSDL-S file
address in File box, which contains the
description of community to be inserted, or
uses Browser button to select the file
containing community description. Actual
insertion is done by pressing Insert button;
the system will parse the specified file, will
make a series of validations on the syntax and
semantics of information and will build data
structures necessary to record the new
community description.

Figure 5. Insertion of a new community description in taxonomy

Figure 6. Visualization of the community’s content

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 301

In order to view the content of a community
description, the user expands Communities
tree, then clicks the label of community to
select the community, then clicks Content
button to list the content. The Figure 6
visualizes the content of the community
given in the example.

Deleting a community from communities
taxonomy can be done only by its supplier.
To delete a community from the taxonomy,
the supplier marks it by clicking community
square, and then presses the
DeleteCommunity button.

3. Modeling and Registering
Web Services

Services implement generic operations
defined in one or more communities. Service
providers describe their services in WSDL-S
files according to Service ontology. Semantic
attributes defined in Service ontology are
similar to those defined by the Community
ontology with the following exceptions:

 Unlike Community ontology where all
generic operations inherited the
community domain, the Service ontology
requires as every method of a Web
service owns a domain, because a service
can implement generic operations for
several communities.

 The Service ontology does not define the
eligibility conditions, termination
conditions and sequence relationships
between methods, but defines quality
attributes for methods: cost, response
time, reliability, confidentiality.

Using Service ontology, service providers
create descriptions of services implemented
by them and then send them to register with
the appropriate communities. The registration
process of services with semantic
communities includes the following steps:

1. compare syntactic attributes of
community operations with syntactic
attributes of service methods (identifiers,
data types etc.)

2. compare semantic attributes of
community operations with semantic
attributes of the methods services

(domain, function, synonym,
businessRole etc.)

As a result of registration procedure, a
service (S) will be registered with a semantic
community (C) if for some generic
operations(O) belonging to community C,
was found some methods (M) belonging to
the service S, so that the description of M fits
the description of O.

A Web service can be registered with one or
several communities. [6] [7]

To illustrate the services modeling and
registration method, we consider a Web
service that implements all generic operations
of community given in the above example.
The WSDL-S file containing description of
service methods is listed in Figure 7.

The description of input/output variables for
each service method is done inside the
<element> tag, corresponding to the method,
not inside a message.

For example, input variables “userId” and
“avizMedical” of “ParticipatingCompetition”
method are defined in Figure 8.

For automating the WSDL-S file creation
containing the service description we can use
the following procedure:

1. create the appropriate service class
having same methods as the service
description – Figure 9.

2. create the WSDL file for this class, using
WSDL.exe tool provided by
.Net platform

3. extend the created WSDL file with the
semantic attributes specified in the
Service ontology (domain, function,
synonym etc.)

4. change the name of variables in the
created file, if it is necessary

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 302

<wsdl:operation name="RegisteringParticipant" >
 <domain name="Sporting Competition>
 <synonyms>
 <synoym name="recreare sportiva"/>
 </synonyms>
 </domain>

 <function name="RegisteringParticipant">
 <synonyms>
 <synonym name="inscriere-in-competitie" />
 </synonyms>
 </function>
 <ServiceQuality cost="0" responseTime="30" reliability="0.7" confidentiality="0" />
 </wsdl:operation>
--
 <wsdl:operation name="ParticipatingCompetition">
 <domain name="Sporting Competition">
 <synonyms>
 <synoym name="recreare sportiva"/>
 </synonyms>
 </domain>
 <function name="ParticipatingCompetition">
 <synonyms>
 <synonym name="obtinereNumarTricou" />
 </synonyms>
 </function>
 <ServiceQuality cost="0" responseTime="30" reliability="0.8" confidentiality="0" />
 </wsdl:operation>
--
 <wsdl:operation name="GettingMedicalApproval">
 <domain name="Sporting Competition">
 <synonyms>
 <synoym name="recreare sportiva"/>
 </synonyms>
 </domain>

 <function name="GettingMedicalApproval">
 <synonyms>
 <synonym name="aprobare medicala" />
 </synonyms>
 </function>
 <ServiceQuality cost="0" responseTime="20" reliability="0.9" confidentiality="0.7" />
 </wsdl:operation>
--
<wsdl:service name="Competition-1" provider="sector1" documentation="" />

Figure 7. Description of the service’s methods

<s:element name="ParticipatingCompetition">
 <s:complexType>
 <s:sequence>
 <s:element minOccurs="0" maxOccurs="1" name="userId"
 type="tns:UserId" businessRole=”identificator” />
 <s:element minOccurs="0" maxOccurs="1" name="avizMedical"
 type="tns:AvizMedical" businessRole=”aviz” />
 </s:sequence>
 </s:complexType>
 </s:element>

Figure 8. Description of service’s variables

[WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
public class Competition-1 : WebService
{
 [WebMethod]
 public UserId RegisteringParticipant (InformatiiPersonale infPersonale)

 [WebMethod]

public Nrtricou ParticipatingCompetition (UserId userId, AvizMedical avizMedical)

 [WebMethod]
 public AvizMedical GettingMedicalApproval (InformatiiPersonale infPersonale)
}

Figure 9.

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 303

The file thus obtained, will be parsed by the
WSC system to store the service description
in repository and register the service with
communities from taxonomy.

2.1 User interface for
services management

WSC system provides services management
tool for inserting, deleting and viewing
service descriptions. To display the insertion
panel, the user clicks the Insert Service
button. The user clicks the Browser button on
the panel for selecting the WSDL-S file
containing the description to be inserted.
Then, the user presses the Insert button in

order to parse, validate and insert the new
description. The system will assign a unique
identifier for each inserted description. Figure
10 shows the insertion panel.

To view attributes of a service description,
the user clicks Attributes button corresponding
to service description. Figure 11 shows
attributes of services Competition-4.

To delete a service description from
repository the user clicks the Delete button
corresponding to service description.

Once inserted in the repository, a service
description will be used to register it with the
communities from taxonomy. The

Figure 10. Insert a new Web service description

Figure 11. Visualization of service description attributes

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 304

administrator can manually register the
service with a community from taxonomy.
For this purpose the administrator presses the
Register Service button to display the
registration panel – Figure 12.

Then, the administrator selects from the list
Services the service (W) to be registered, and
from Communities list the community (C)
with which the service W will be registered.

Next activity consists in mapping each
generic operation of community C with the
corresponding service method of service W,
as follows:

 The administrator selects a generic
operation (O) from community C (doing

click on it). Box Operation will display
selected operation.

 The administrator selects a method (M)
fro the service W, that fits operation O
(doing click on it). Box Method will
display the selected method.

 The administrator clicks Register button
to create the pair (O, M) in registry.

The administrator can list or delete pairs from
registry by clicking the Management Registry
button. The grid containing existing entries
from registry is displayed. To remove a pairs
from registry the user clicks the Delete button
corresponding to that pair – Figure 13.

Figure 12. Registration of Web services with the communities

Figure 13. Visualization and deleting the registry

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 305

4. Web Service Execution

Execution of Web services registered with
semantic communities is done as follows:

 the user selects a community from taxonomy

 the user invokes one of the target operation
belonging to selected community

 the system recursively generates process
diagram attached to operation invoked;
the diagram includes all previous
operations to be performed before the
operation invoked

 the user interactively executes every node
of the process diagram, starting with final
nodes and finishing with the root node of
the diagram as follows:

o selects a Web service from the services
registered with the selected community,
taking in account quality attributes
of services

o initializes the input variables of the
generic operation contained in the
current node

o executes the service method
corresponding to the generic operation
contained in current node

o analyze output variables returned by the
execution of method.

4.1 User interface for Web
services execution

The user browses the taxonomy of
communities, analyzing their semantic
attributes for understanding semantic
capabilities of communities. In the end he
selects a community of interest and invokes a
target operation from selected community.
The system generates the process diagram
attached to the invoked operation, the
diagram is a tree having invoked operation
as root , on the first level diagram includes
all predecessors of invoked operation, on
second level the diagram includes the
predecessors of each operation belonging to
the first level, and so on. [3], [4], [5]

The WSC system provides a user interface
for navigation, selection and process diagram
generation as is illustrate in Figure 14.

The user selected the community “Sporting
Competition” as current community, clicking
its label in taxonomy, then he listed the content
of selected community by clicking the Content
button, then he selected the target operation
"ParticipatingCompetition" clicking its label in
the content; the text box SelectedOperation will
contain the selected operation.

Finally, the user clicked the Generate
Process Diagram button to generate process
diagram for invoked operation.

Figure 14. User interface for generating process diagram

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 306

As result, the system generated the process
diagram and displayed the execution panel, as
shown in Figure 15.

In our example, the generated process
diagram has the root the operation
"ParticipatingCompetition” and the first level
contain the operations "GettingMedicalApproval"
and "RegisteringParticipant".

To execute the generated process diagram,
the user will execute each operation in the
process diagram by: initializing the input
variables of operation, selecting a service
registered with the current community,
executing the appropriate method of selected
service, visualizing the output variables
returned by executed method.

So, to execute the process diagram for our
example, the user will perform:

1. Click on the operation
“RegisteringParticipant” from diagram to
select it; the box Operation will be filled
automatically by the system with the
selected operation.

2. Initialize the input variables of selected
operation; for this purpose, the user
selects from the list InputVariables the
variable infPersonale. If it doesn’t yet
exist in the list, the Update Variable List
button will be pushed. The user clicks
EditVariable button to display the editing
form. The editing form is automatically

built by,system according to the data type
of variable; for an uninitialized variable,
the editing form contains value –1 for all

 its fields. After the user enters personal
data in the fields of form, he clicks
Update button on form to initialize the
variable with entered values.

3. Select a service registered with the
current community by clicking the Select
button on the table “Selected Services“.
The table contains for each method of a
Web server registered with the current
community the quality attributes of
service.

4. Execute the appropriate method of
selected service; the user presses the
button Execute Method for executing the
method of selected Web service. The
system will perform the following steps:

 assessment of eligibility conditions
for operation “RegisteredParticipant”;

 invocation of service method;

 assessment of termination conditions,
at the end of method invocation;

 filling the output variables with
returned values

5. Visualize the output variables returned by
method invocation; the user selects the
output variable userId from
OutputVariable list, then click the Edit
Variable button to visualize it.

Figure 15. Execution panel for process diagrams

Studies in Informatics and Control, Vol. 19, No. 3, September 2010 http://www.sic.ici.ro 307

If the eligibility conditions or termination
conditions are not met, checkbox
ExecutionState will become unmarked and
diagram execution cannot continue.

After executing “RegisteredParticipant”
operation, the system will delete it from
process diagram and the user will go through
the same process for executing the rest of
diagram nodes.

5. Composition of Communities
Using the Language BPEL

The description of a community contains the
URL address for the website that implements
the generic operations of that community.

The website redirects the invocation of each
generic operation of community towards the
invocation of a method of service registered
with the community. The selection of a Web
service from the services registered with the
community, is done in accordance with
website policy (default is selected service
with lowest cost).

A website for a community also implements
following methods:

 register for registering a service with
the community

 selectService for selecting a service using
a selection criterion

BPEL processes can use the community
websites as partners, for this is necessary to
know the WSDL files of the community
websites. The order of invocation of generic
operations for a given community, within a
BPEL process, must comply with the order
relation defined in the given community.

6. Conclusions

The WSC system was developed for
organization, management and execution of
Web services. The Web services are
organized in semantic communities, all
services registered with a given community
have to implement all generic operations of
given community. To access Web services,

the users navigate through the taxonomy of
communities, visualize the content of
communities in order to understand the
capabilities of service registered with them,
and finally invoke the generic operations
of communities.

Invocation of a generic operation can require
execution of an entire process of pre-
operations, in this case the WSC system will
generate process diagram for invoked
operation and enable the interactive execution
of this diagram.

Due to its facilities, the WSC system could be
used to manage the Web services delivered
through e-Romania portal[8].

REFERENCES

1. BRAHIM, M., A Dynamic Foundational
Architecture for Semantic Web
Services, Distributed and Parallel
Databases, 17, 2005, pp. 179–206.

2. POPA, V., L. CONSTANTINESCU, C.
ROTUNĂ, Senior Citizen Service
Management using WebAging System,
Studies in Informatics and Control,
Volume 18, Issue 4, 2009.

3. RAN, S., A Model for Web Services
Discovery with QoS, SIGecom
Exchanges, vol. 4, no. 1, 2003.

4. MOISE, M., V. POPA, M. ZINGALE, L.
CONSTANTINESCU, AL. PÎRJAN,
WebAgeing - A Flexible System for
Personalized Accessing of Services for
Ageing Population, International Journal
of Computers, Communications &
Control, Supplementary Issue –
Proceedings of ICCCC 2008, Vol. III,
2008, www.journal.univagora.ro.

5. MOISE, M., V. POPA, E-learning
System Architecture for Personalized
Publication and Access of Learning
Resources, Using the Approach Based
on Semantic Metadata, in Metalurgia
International Journal Vol. XV, Special

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 19, No. 3, September 2010 308

Issue, nr. 3, 2010, ISSN 1582-2214,
pp. 207-210.

6. MEDJAHED, B., A. BOUGUETTAYA,
A. ELMAGARMID. Composing Web
Services on the Semantic Web. The
VLDB Journal, Special Issue on the
Semantic Web, September 2003.

7. OUZZANI, M., B. BOUGUETTAYA,
Efficient Access to Web Services. IEEE
Internet Computing, 37(3), March 2004.

8. SANDU, G., Achieving Modernization
through ICT and New Technologies,
Romanian IT&C Directory - The 10th
Edition, March 2010.

