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1. Introduction 

There are several techniques to control of an 
uncertain nonlinear system. A typical 
approach is sliding mode control technique 
[14]. In the sliding mode technique, the 
proper transformation of tracking errors to 
generalize errors is introduced, so that 
n order tracking problem can be transformed 
into an equivalent first order stabilization 
problem [16]. The sliding-mode control 
employs a discontinuous control to derive the 
system state to reach and maintain its motion 
on sliding surface. The discontinuity in the 
control action provides the chattering and the 
un-modeled frequencies may be activated, 
which are undesirable in application. To 
avoid these drawbacks, the boundary layer 
technique is exploited [14]. For achieving the 
better tracking performance a varying 
boundary layer is considered. In [9], the self-
tuning laws based on the bounded modeling 
error, for adjusting the boundary layer width 
and the other parameters have also been 
proposed. Furthermore, for calculating the 
control gain parameter, the difference 
functions f  and g  must be obtained, that 
is a drawback. The auto-tuning neurons 
computation for designing the sliding-mode 
control [3] and the fuzzy adjusting method 
for finding the suitable boundary layer width 
[12] are used. Most practical systems are 
non-linear and complex in nature with  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uncertain dynamics that may not be easily 
modeled mathematically. For this purpose, 
the identification methods are usually 
exploited [1], [2], [11], [17]. A direct 
adaptive fuzzy sliding mode control for 
uncertain nonlinear systems was presented in  
[13]. The GA-based fuzzy sliding mode 
controller with modified adaptive laws for 
robust control of an uncertain nonlinear plant 
has also been presented [4]. Recently, 
wavelets have led to advanced tools in many 
scientific and application research areas [5]. 
Multiscale analysis, synthesis properties and 
the learning abilities of neural wavelet 
networks, for approximation of nonlinear 
functions are well established [6], [15], [18]. 
In the literature only time-invariant sliding 
surface has been studied extensively. Here for 
the first time, a new case of time-variant 
sliding equation is presented. For this 
purpose, the rejection regulator based on a 
parameter that is called "rejection parameter" 
is defined. For objectively choosing the 
coefficients of error states in sliding equation 
rejection regulator is used. By tuning the 
rejection parameter, we can adjust the break 
frequency bandwidth and also the coefficients 
of error states in sliding equation. Such 
sliding equation, as a chain of )1( n  
adaptive first-order low-pass filters, rejects 
all un-modeled frequencies. The tracking 
precision is not guaranteed by using the 
saturation function. Therefore, instead of 
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saturation function, a hyperbolic tangent 
function is used. Also, a fuzzy system, that 
adopts absolute value of sliding surface as 
input and the boundary layer parameter as 
output, is defined. This fuzzy system tunes 
the boundary layer width. Control system 
stability is guaranteed by using the Lyapunov 
method. For facilitating the design of the 
proposed controller, three theorems and one 
lemma are proved. This paper is organized as 
follows. Problem formulation is presented in 
section 2. In section 3, sliding mode control 
with new terminologies as rejection 
parameter and rejection regulator is 
presented. Two theorems and one lemma 
complete this section. Section 4 has two 
subsections. In the first subsection a wavelet 
network system is described briefly and a 
theorem for presenting the tuning laws is 
explained. This theorem adjusts the wavelet 
network coefficients, rejection parameter and 
control gain parameter. In the last subsection 
of the section 4, structure of a fuzzy system, 
to design a fuzzy boundary layer, is 
presented. An example to illustrate the 
effectiveness of the proposed method is 
presented in section 5. Finally, the paper is 
concluded in section 6. 

2. Problem Formulation 

Consider the thn   order nonlinear 
dynamical system defined by the following 
state equation  

duxxxgxxxfx nnn   ),...,,(),...,,(= 1)(1)()(   (1) 

where f and g  are unknown bounded 

nonlinear functions, and Ru  is control 
input of the system and d  is the external 
bounded disturbance. Let 

nnn
nn Rxxxxxxxx  

 ],,,...,[=],,,...,[ 1)()2(
121 x

 and ,],...,[ 1)( nn
dddd Rxxx  x  where x  

and dx  are state vector and desired 
trajectory of the system, respectively. 
Assume that x  is available. The control 
objective is to find a controller so that the 
state x  can track the desired trajectory dx . 

Thus we define ,],...,,[xx 1)(e  n
d eee   

such that .= Rxxe d   For achieving the 
control objective, the tracking error 

dxxe =  must be attenuated to an arbitrary 

small residual tracking error independent of 
the uncertainties of the system. The sliding-
mode control is a method based on defining 
a sliding surface in the error space passing. 

Consider a sliding function as, e.k Ts =  In 

particular, nT
n Rkkk  ],...,,[= 110k  is 

chosen such that all roots of the 
characteristic polynomial: 

1
2)(

1
1)(

0 ...=)( 
  n

nn kkkP   (2) 

corresponding to the sliding equation: 

0=... 1
2)(

1
1)(

0 ekekek n
nn


   (3) 

lie in the open left-half plane. By choosing 
the Lyapunov function candidate  

2

2

1
= sV  (4) 

With 0=(0)V   a controller u  is given such 
that each state Lyapunov condition holds for 
system stability (sliding condition) [14]:  

0>|,|
2

1
= 2  ss

dt

d
V   (5) 

The other equivalent relation of the reaching 
condition is:  

.0>,)(|,|   ssgnsorsss   (6) 

An alternative definition of the sliding 
function is [14]: 

e
dt

d
s n 1)(=    (7) 

Two steps for designing the sliding-mode 
control exist. The first step is the selection of 
parameter   such that all un-modeled 
frequencies of the system are rejected. The 
other step is to find a control law such that 
the reaching condition (6) is satisfied. 

3.  Sliding-mode Control and 
Rejection Regulator 

By using the Laplace transformation, the 
linear differential equation (7) can be 
considered as a chain of )1( n  first-order 
low-pass filters with break frequency 
bandwidth. Such that the scalars s  and e  are 
input and output of the filters, respectively. 
Figure 1 shows pictorially this filter. 
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Figure 1. Sliding equation as chain of               
low-pass filters. 

So that p is Laplace operator. The parameter 

  should be selected such that all un-
modeled frequencies of the system are 
rejected. Let )/(1)( ppG    be a first order 
low-pass filter corresponding to Eq (7). In 
order to reject all un-modeled frequencies, 
the inequalities p  or    must be 

satisfied, where   is defined as 

inf{ : }uf uf are unmodeled frequencies      (8) 

In the following, a theorem for objectively 
choosing the coefficients of error states in 
sliding equation is presented. 

Theorem 1: If i  are roots of the polynomial 

(2),   is the same notation as defined in (8). 

1}1,2,...=0,<0,=)(:|{|=* niPmax iii 
 and   is an arbitarary real positive number 
(rejection parameter) such that  <  then by 

choosing  =*  and 

,10,...,=,)(
1

= * 






 
njfor

j

n
k j

j   

we have ,   i.e., the first-order low filters 
with break frequency bandwidth ,  as 
defined in Eq. (7) reject all un-modeled 
frequencies of the system. 

Proof. Let 0 ek Ts  be sliding equation in 
the error space passing, such that .10 k  

Else the sliding equation is divided by 0k . 

The coefficients ,jk  for ,11,2,...,= nj  

must be chosen such that all roots of the 
characteristic polynomial of the sliding 
equation (7): 

1
2)(

1
1)( ...=)( 

  n
nn kkP   (9) 

lie in the open left-half plane. By using the 
well known relationship between coefficients 
and roots of the polynomials [7], we have.  

i

n

i
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

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i
n

i
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1)(
1 1)(= 
   (12) 

since

,1}1,2,...=0,<0,=)(:|{|=* niPmax iii 
 therefore  

*
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

n
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and finally  

1*
1 )( 
  n

nk   (15) 

On the other hand, the sliding surface can be 
considered as a chain of 1)( n  first-order 
low-pass filters. Therefore,  

ek T=)(= 1e
dt

d
s n   (16) 

or equivalently: 

=)(
1

=)(= 1)(
1

0=

1 










 
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n

j

n e
j

n
e

dt

d
s 

ekeke n
nn

1
)2(

1
)1( ... 
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where  

1.1,...,=)(
1

= 






 
njfor

j

n
k j

j   (18) 

Equations (13-15) and (18) yield: 

jj

j

n

j

n
)(

1
)(

1 * 






 





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

 
 (19) 

Therefore, we can write 

.*   (20) 

Since  =*  such that   is a positive 
real number ,)<(   we have 

   (21) 

and this completes the proof. 

Definition: Define the rejection regulator in 
the following form: 



Studies in Informatics and Control, Vol. 19, No. 2, June 2010 116 








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





 

0,11

1,...,1,0,2)(
1

=)(

jnif

njnif
j

n
R

j
n
j

  (22) 

where   and   are rejection parameter and the 
same notations as defined in (8), respectivelly. 

Now, according to the Eq. (22), consider the 
sliding function in the following form: 







1

0

1)()(=
n

j

jnn
j eRs   (23) 

In most practical systems the nonlinear 

functions f  and g  are unknown. Now let f̂  
and ĝ  be estimates of functions f  and g , 
respectively. In order to design a controller, 
that establishe the sliding condition, we need 
the following assumption. 

Assumption I: The upper bounds F , G , D  
and functions ),( xM  and LG , are known, 
such that: 

)()(<0,|<|,|<|,|<| xx gGDdGgFf L 

|)(=|),( )(
1

1=

jnn
j

n

j

n
d eRxM 


 x  (24) 

where )ˆ(= fff   and .)ˆ(= ggg   

Theorem 2 Consider the plant (1) and the 
sliding surface (23). If the values ,F  ,G  D  
and M  as defined in assumption I, then the 
sliding control law 

)]()(ˆ[ˆ= )(
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1=

1 sTsgneRxfgu jnn
j

n

j

n
d  


    (25) 

where, 
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x
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guarantees the sliding condition, 
)(ssgns . 

Proof. Consider the sliding surface  
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 thus we have: 
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Or 
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Therefore we have: 
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(26) and (30) yield 
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On the other hand, from assumption I, we have: 

11 ˆ|1ˆ|1,>   gGgg
G

g

L
 (32) 

By using the inequality of (31) and the 
relations of (32), we have: 
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and this completes the proof. 

Lemma 2: If   and )(n
jR  are rejection 

parameter and rejection regulator, 
respectively, then 
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Proof. This lemma is proved by induction 
method. Let ,1=k  thus: 
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Therefore Eq. (34) is satisfied for .1=k  
Assuming this relation is established for 

,= pk  i.e: 
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Now, let .1= pk  By using Eq (36) we have  
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and this completes the proof. □ 

If we consider the sliding equation in the 
following form  

1)(
1

0=
))((= 


 jnn

j

n

j
etRs   (38) 

where )(t  is the time-variant rejection 
parameter, then this equation defines a time-
variant sliding equation. In the next sections 
the sliding equation is assumed to be time-
variant as defined in (38). Since in practical 
systems there are always uncertainties in the 
dynamical equations, the free models and 
identification methods are used in sliding 
mode control approach for improving the 
performance and avoiding the effects of 
perturbation and uncertainties in 
mathematical models. Wavelet networks, for 
approximation of nonlinear functions are well 
established [5], [6]. 

4. Analysis 

4.1 Wavelet networks 

Wavelets are especial kinds of functions 
which exhibit oscillatory behavior for a short 
period of time and then die out. They are 
obtained by using shift-invariance and dyadic 
dilation of a mother wavelet function 

V and extended by the basic properties of 

Multi-Resolution Analysis [5]. Let   be a 
mother wavelet function, that has a unit 
length. All the functions kj ,  are defined as 

Zkjkxx jj
kj  ,),(22)( 2/

,   (39) 

where kj,  have unit length also. If the 

family }{ ,kj  is an orthogonal basis of 

V then we can define a wavelet series 
expansion that is uniformly convergent to 

,)( Vxf   in )(2 RL  [6]. That is 

0=||)()(|| 2,
==

xdxf kjjk
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







  (40) 

where 

dxxxffd kjkjjk )()(>=,=< ,,  

  (41) 

wavelet network is a class of neural network 
consisting of wavelets. We can use the 
wavelet network for approximation of 
nonlinear functions. Let 

ZKJxxxf ii
T

kjkj

K

Kk

J

Jj

 ,),(=)(=),( ,,

2

1=

2
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Wθθ   (42) 

Where 
NT

KJKJKJKJ R ),...,,...,,...,(
2,21,22,11,1

θ

1)1)((= 1212  KKJJNas  and  

T
KJKJKJKJx .),...,,...,,...,()(

2,21,22,11,1
W

The wavelet network ),( θxf  can be used to 
approximate )(xf  to any desired accuracy 
[6], [18]. By using the tuning laws and 
learning algorithms, the best values of 

kj, for Zkj ,  may be estimated such that 

desired accuracy is obtained. There are a 
number of methods for constructing 
multidimensional wavelets, in both single 
scaling and multiscaling forms. In the single 
scaling multidimensional wavelet, a single 
dilation parameter in all dimensions is used. 
In the multiscaling multidimensional wavelet, 
an independent dilation parameter in each 
dimension is used. A multidimensional 
wavelet can be built by tensor product of one 
dimensional wavelet function. i.e.: 

)..,.,.()()...()(=)( 121 nm xxforxxx xx   (43) 

We have selected Mexican Hat wavelet 
function, as wavelet network basis functions. 
Accordingly, based on data set, the dilation 



Studies in Informatics and Control, Vol. 19, No. 2, June 2010 118 

value is chosen. Some wavelet candidates 
corresponding to various translation 
parameters are often redundant for 
constructing wavelet network approximator. 
So the OLS algorithm for purifying the 
wavelet candidate and estimating initial 
values of the wavelet network coefficients is 
used [18]. Translation parameters are 
considered as learning parameters of the 
network. In this paper, the EKF (Extended 
Kalman Filter) algorithm for incremental 
training the learning parameters is used. The 
tuning laws for adjusting the coefficients of 
wavelet expansion are presented in the next 
theorem. For designing the neural wavelet 
control, ,nwu wavelet approximations of the 

functions f  and g  are implemented. Also 
for adjusting the adaptive filters, rejection 
regulator are tuned by using the next 
theorem. Such away that the effects of the all 
un-modeled frequencies of the systems are 
reduced considerably, while preserving the 
stability and robustness of the systems. 
Consider the following sliding surface 
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According to the lemma 2 , we can write  
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therefore: 
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Substituting (1) into (46) 
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Now we define 
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In this paper, hyperbolic tangent function is 
used instead of saturation function, i.e.: 

)(tanh=),( ss   (49) 

such that ,nwu  Wθ .= T
fnwf  and Wθ .= T

gnwg  

are wavelet approximations of the ideal 

controller, f and g  respectively. Also define 

the parameters N
f R*θ  and N

g R*θ  of the 

best function approximation as 


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 (51) 

where 

 ffff M ||||: θθ  and 

 gggg M ||||: θθ  are constraint sets of 

suitable bounds on fθ  and ,gθ  respectively, 

such that fM  and gM  are specified by 

designer. If fθ  and gθ  are estimates of *
fθ  

and ,*
gθ  respectively, that are obtained by 

wavelet network approximator then we define 

W(x)θx .)(=)( ** T
fnwf  and W(x)θx .)(=)( ** T

gnwg  (52)
 

Thus (47) can be rewritten as 
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where, ,nwuu   *= nwf ff   and 
*= nwg gg  . If we define fff θθθ *~ =  and 

ggg θθθ *~ =  then ,~
ff θθ    gg ~θθ    and 

also 
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so that, .)( dut gf    

Theorem 3: Consider a nonlinear system and 
the sliding surface described by Eqs (1) and 
(44), respectivelly. If the wavelet robust 
sliding-mode controller is designed as 
equation (48) and (49), in which the 
following tuning laws 
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where fP  and gP  are projection operators, 

that is defined as  
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and also 
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and 

.0>),.(= 44  stanhsT  (60) 

are defined, then tracking error will converge 
to zero asymptotically. 

Proof: Consider the Lyapunov function in 
the following form 
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Differentiating equation (61), with respect to 
time, yields  
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Since 
ff ~θθ    and gg ~θθ    therefore by 

implementing the equations (55)-(60) in 
equation (63), we have 
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If (0)e  is bounded then according to the 
theorem 1, the sliding function (44) with 
Hurwitz characteristic polynomial is 

bounded. So )(te  and 
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real positive number ,M  such that 
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Relation (64) can be rewritten as: 

|)(|||.|| 2 tsMsV    (66) 

By integrating both sides of (66) and by some 
manipulation, we have  
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According to the universal approximation 
theorem and the assumption of bounded 
external disturbances, x  is bounded and 

1L . If 1L  then from (67) we have 

1Ls . Moreover, the adaptive laws in (55) 

and (56) guarantee that ff θ  and 

gg θ . This implies that all variables on 

the right hand side of (46) are bounded, 
therefore Ls . By using the corollary of 
Barbalat's Lemma [14], we have ,0|| s as 

.t  From (66), if 0= , it is clear that 

0<.|| 2
MsV   else, the fact that 0|| s  

implies that .0V  From (66) and (44) only 

possible condition for 0=V  when ,0|| s  

is 0=e . In this case, the tracking error is or 
approach to zero and this completes the proof. 

4.2 Fuzzy boundary layer 

In the sliding-mode control, the abrupt 
change of sign of the term Tsgn(s) produces 
chattering. To avoid this drawback, the 
boundary layer from both sides of the sliding 
surface s=0 is introduced. If the state of 
system is out of the boundary layer, then by 
using the reaching condition the state reaches 
to the inside of the boundary layer. The fixed 
boundary layer usually does not guarantee the 
precise tracking. So, in this paper, a varying 
boundary layer is considered. It is clear that, 
absolute value of the control signal is 
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dependent to distance d  between the actual 
state and the line perpendicular to the 
switching surface 0=s . Such that, || u  

should increase as d  grows [10]. According 
to (44), let  

||))(),...,(),((||

))(),...,(),((
=

110

110




n
n

nn
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a  (68) 

be the unit normal vector of the sliding 
surface in the 1)(n dimentional phase 
plane. Therefore we have: 

ea .||))(),...,(),((=|| 110 N
n
n

nn RRRs    (69) 

According to the Eq. (69), s  is a multiple of 
the projection of the state vector e  on the 
direction of the vector Na , which is the 
directional distance from e  to the sliding 
surface. Therefor the shortest Euclidean 
distance d  between e  and the direction of 

Na  is:  

22||||=),( sd ee  (70) 

Thus, the distance d  is dependent to 
rejection parameter,  and the error state 
vector. By using the tuning law in (59),   is 
tuned subject to the tracking error be 
decreased. Therefore s  and d  are adjusted so 
that d  be decreased. Now by using the 
following fuzzy system the proper variable 
boundary layer parameter   is estimated.  

varLingisTHENvarLingissIF fuzzyfuzzy ..   (71) 

Where fuzzys  and fuzzy  are fuzzified values 

of s  and ,  respectively, that have any 
linguistic variables (Ling.var), as is shown in 
the following rule base table: 

Table 1.  Fuzzy rule base. 

fuzzys
 ZE SM ME BI 

fuzzy
 BI ME SM ZE

Where the sets of fuzzy quantities are ZE: 
zero, SM: small, ME: medium and BI: big. 
This fuzzy system adopts absolute value of 
sliding surface ,|| s  as input and the boundary 

layer parameter ,  as output. This fuzzy 

system tunes the boundary layer width in the 
control law. Figure 2 shows the effect of 

variation of   on the boundary layer width. 
As   gets larger the width of boundary 
layer becomes narrower. Figure 3 shows the 
configuration of the wavelet robust control 
by fuzzy boundary layer via time-variant 
sliding surface. 

 

Figure 2. Variation of the boundary               
layer. parameter 

 

Figure 3. Configuration of the wavelet robust 
control by fuzzy boundary layer via time-variant 

sliding surface. 

5. Example 

The inverted pendulum is a classic problem 
in dynamics and control theory. It is widely 
used as benchmark for testing control 
algorithms. In this section an example in 
inverted pendulum plant is presented. We 
compare WRCFBL method and the methods 
presented in [4] and [8]. Without loss of 
generality, we consider .20=  

5.1 Formulation 

The dynamic equation of the inverted 
pendulum system, is stated in the following: 
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where ,/8.9 2smg   M  and m  are the 
acceleration of gravity, the mass of the cart and 
the mass of the pole, respectively, and L  is 
half-length of the pole. To demonstrate the 
performance of the presented method, the 

Mexican Hat function 2/2 2

)1()( xexx   as 
our wavelet basis function is selected. 
Accordingly, based on data set ,dx  dilation and 
translation parameters are assigned as 

 5,4.,..,4,5 j  and  ,10.,..,10k  
respectively. After implementing the OLS and 
EKF algorithms for purifying and training the 
wavelet network parameters, the WRCFBL 
tuning laws for tuning the network coefficients, 
are implemented. The performance index is the 
integral of absolute error: 

.|)(|
0
 dtteIAE  (73) 

 

 

 

 

 

 

Let the desired trajectory be .0dx  For the 
convenience of simulation, the external 
disturbance d  is assumed to be a square wave 
with amplitude 05.0  and period 2 . Let, 

0.5 0.3sin(30 )L t  , 1 0.05sin(30 )M t   

5.2 Results 

The initial parameter values are selected as 
,18/7)0( x  ,0)0( x  ,3)0(   ,10  

,3)0(  and .4.36)0( T  Also, let 30fM  

and .20gM The dilation value, j, and the 

number of translation parameters for each 
dilation, presented by OLS method, are given 
in Table 2. 

Table 2. Dilation value and number of translations. 

Dilation parameter, j 0 1 2 3 4 

Number of translation 1 2 4 8 10 

For designing the fuzzy boundary layer rule 
base, the membership function for |s|  and   
are given in Figures 4 and 5, respectivelly. 
The simulation results are shown in Figures 
6-12. Figures 6 and 7 show that the state of 
system tracks the desired trajectory quicker 
than in [4] and [8] while, the absolute value 
of the control signal is less than in [4] and [8] 
(see Table 3). The proposed controller is 
robust to the time-variant mass of the cart and 
length of the pole. Figure 8 shows the 
variation of rejection parameter ,  for tuning 
the chain of the 1)( n  adaptive first-order 
low- pass filters in (44). Figure 9 shows the 
variation of sliding function. Figure 10 
indicates the variation of the fuzzy boundary 
layer parameter, .  Figures 11 and 12 
indicate the variation of the control gain 
parameter and the performance index, IAE. 
To illustrate the effectiveness of the proposed 
method, the results of this example are 
compered with those of other methodologies 
in Table 3. 

 

 

 

 

 

 

 

 

Figure 4. The membership function for .|| s  

 

 

Table 3 Benchmarks for controller performance. 

Criterion GA_MAFSMC[4] AFSMC [8] The proposed method 

Number of fuzzy rules _ 36 4 

Control signal, u  3962.13  u 701.15120  u  4255.124425.109  u  

IAE 0.4753 0.37201 0.3414 
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Figure 5. The memberships function for boundary 
layer parameter. 

 

 

Figure 6. Tracking state. 

 

Figure 7. Control signal. 

 

 

Figure 8. Rejection parameter.  

 

Figure 9. Sliding surface. 

 

Figure 10. Boundary layer parameter. 

 

Figure 11. Control gain parameter. 

 

Figure 12. The integral of absolute error. 
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6. Conclusion 

In this paper, a wavelet robust control by 
fuzzy boundary layer via time-variant sliding 
surface for a class of uncertain nonlinear 
systems is proposed. New terminologies, 
rejection parameter and rejection regulator, 
those are adjustable, for defining the time-
variant sliding surface are introduced. 
Wavelet network based on the multiscale 
analysis, synthesis properties and the learning 
abilities presents the well approximation of 
nonlinear functions. The wavelet network 
coefficients, control gain parameter and 
rejection regulator are tuned independent of a 
priori knowledge of the system. Since, the 
tracking precision is not guaranteed by using 
the saturation function, so, instead of the 
saturation function a hyperbolic tangent 
function is used. A fuzzy system that adopts 
absolute value of sliding surface as input and 
the boundary layer parameter as output is 
defined. Control system stability is 
guaranteed using the Lyapunov method. By 
using the proposed controller, based on the 
time-variant sliding equation and varying 
boundary layer, all un-modeled frequencies 
are adaptively filtered. Also the effects of the 
wavelet approximation errors and the external 
disturbance on tracking performances are 
attenuated efficiently. The control input 
chattering does not occur. Simulation 
example illustrates the superior performance 
and the advantages of the proposed method.  
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