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1. Introduction 

The phenomena of time delays are frequently 
encountered in engineering dynamic systems, 
for instance in chemical process, in network 
control systems, in long transmission and so 
on. It is well known that the existence of time 
delays in a system may be a major source of 
instability, oscillations and poor performance. 
In view of this, considerable attention has 
been devoted to the problem of stability and 
robustness of time delays systems for several 
decades, see for example [1-27], and the 
references therein. The developed stability 
results can be classified into two types: delay 
dependent stability results, which are 
concerned with the size of the delay and 
usually give the maximum delay bounds for 
making the system stable, and the delay 
independent stability results, which can be 
applied with arbitrary delay’s size. Generally, 
delay dependent stability conditions are less 
conservative than delay independent ones, 
especially when the time delays are small. 

In general, dynamical time delays systems 
models can be described as two types of 
functional differential equations. The first 
one concerns the retarded type which 
contains delays only in its states, whereas the 
second concerns the neutral system, being a 
special case of time delay system, which 
involved time delay in both state and state 
derivative simultaneously.  Such system can 
be found in such places as population ecology 
[18], distributed networks containing lossless 
transmission lines [17], heat exchangers,  

 

 

 

 

 

 

 

 

 

 

 

 

robots in contact with rigid environments, 
etc. In recent years, stability issue in various 
neutral time delay systems have been widely 
investigated in many reports [8, 11, 13, 14, 
16, 26]. Moreover, the stability for the 
systems with time varying delays will be an 
important focus that described systems more 
physical than the constant time delays cases 
[1, 3, 4, 6, 8, 14, 19, 20, 27]. It is well known 
that in practice, systems almost present some 
uncertainties and nonlinear perturbations. 
Thus, many methods have been proposed to 
deal with uncertainties and nonlinear 
perturbations in the literature, and much 
attention has been paid on robust stability 
analysis by using the Lyapunov–Krasovskii 
functional approach [1, 4, 6, 8, 11, 14, 15, 19-
22, 26]. 

In [21], a parameterized neutral model 
transformation was utilized. Based on a 
model transformation technique, [6] presents 
delay dependent stability criteria by using a 
Lyapunov-Krasovskii functional approach. In 
[13], stability conditions for uncertain 
systems with time varying delay and 
nonlinear perturbations was developed by 
applying a descriptor model transformation 
and a decomposition technique of the delay 
term matrix. The estimation approaches for 
bounding the cross terms show in [14] may 
bring some conservatism. Furthermore, free 
weighting matrices have been employed in a 
lot of papers, such as [9], because they can 
increase the freedoms to search the Lyapunov 
matrices and reduce the conservatisms. 
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On another hand, the problem of exponential 
stability has also been considered by some 
researchers [1-4, 7-9, 11, 15, 16, 20, 23] 
because it is also important indices to get the 
convergence rates of prescribed time       
delay systems. 

In these contexts, the issue of exponential 
stability for uncertain neutral systems with time 
varying delays and nonlinear perturbations 
remains open, which motivates [8] and this 
paper but by adding norm-bounded 
uncertainties to system under consideration. 

The purpose of this paper is to investigate the 
problems of delay dependent robustly 
exponential stability for uncertain neutral 
system with time varying delays and 
nonlinear perturbations. We present a new 
sufficient condition based on a combination 
of Lyapunov-Krasovskii functional and 
Linear Matrix Inequalities LMIs which can 
be efficiently solved by standard convex 
optimization algorithms [5]. Neither model 
transformation, nor estimating techniques for 
cross terms, nor free weighting matrices are 
involved in this work. Some numerical 
examples are included to show the 
effectiveness of our approach and to illustrate 
the applicability of the developed results. 

Notations 

TA  : Transpose of matrix A  
0S   : S  symmetric positive definite 

matrix 
 Max A

 min ( )A

 

: Maximum (minimum) 
eigenvalue of a symmetric 
matrix A  

.  : Euclidean vector norm 

I  : Identity matrix 
*  : Symmetric terms in a 

symmetric matrix 

2.  System Description               
and Preliminaries 

Consider the following neutral system with 
time varying delays and nonlinear 
perturbations [6]: 

 

( ) ( ) ( ( )) ( ( ))

( , ( )) ( , ( ( )))

( ) ( ), ( ) ( ), , 0

hx t A x t A x t h t Cx t h t

f t x t g t x t h t

x t t x t t t h 

    

  

    

 


 (1) 

where ( ) nx t   is the state vector, and A , 

hA , C , are known real constant matrices 
with appropriate dimensions, the time delay, 

( )h t , is a time varying continuous function 
that satisfies: 

0 ( ) , ( )h t h h t d    (2) 

(.) , (.)  are the initial condition functions 
that are continuously differentiable on 
 ,0h . The time varying nonlinear functions 

( , ( ))f t x t  and ( , ( ( )))g t x t h t  are unknown 
and represent the nonlinear perturbations with 
respect to the current state ( )x t  and delayed 

state ( ( ))x t h t . These functions satisfy 

( ,0) 0f t  , ( ,0) 0g t  , and: 

2( , ( )) ( , ( )) ( ) ( )T Tf t x t f t x t x t x t  (3) 

2( , ( ( ))) ( , ( ( ))) ( ( )) ( ( ))T Tg t x t h t g t x t h t x t h t x t h t     (4) 

where   and   are positive scalars. For 

simplicity, we note : ( , ( ))f f t x t  and 

: ( , ( ( )))g g t x t h t  . 

The following lemmas and definition will be 
essential for the development of our results. 

Definition 1 [8] 

The system (1) is exponentially stable, if 
there exist positive constants   and  , 1   
such that for all ( )x t , the following 
inequality holds: 

( ) t
h

x t e   , 0t           (5) 

where   is the decay rate and 
2 2

0
s u p ( ) ( )

h
h 

    
  

 
. 

Lemma 1 

Consider the function: 

( )

( ) ( )
t t

t h t s

V t f d ds 


    (6) 

The first derivative ( )V t  is given by: 

( )

( ) ( ) ( ) (1 ( )) ( )
t

t h t

V t h t f t h t f s ds



     (7) 
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Lemma 2 [5] 

Let M , N  and K  be given n n  real 

matrices such that 0K   and TK K . Then: 

10 0T
T

M N
M NK N

N K
 

    
  

 (8) 

Lemma 3 [25] 

For any constant matrix 0TR R   and 
scalar 0h  , such that the following integral 
is defined, then: 

( ) ( ) ( ) ( )
t t t

T T

t h t h t h

h x s Rx s ds x s dsR x s ds

  

    (9) 

Lemma 4 [10] 

Let  , H , F  and G  real matrices of 
appropriate dimensions such that 

( ) ( )TF t F t I , then for any scalar 0  , the 
following inequality holds: 

1( ) ( )T T T T THF t G G F t H HH G G     (10) 

Lemma 5 [25] 

Let ( )f x , 1( )y x , ... , ( )ky x  be some non-
negative functional or functions, and define 
the following conditions: 

(a) ( ) 0f x   

(b) 1 0,..., 0,k    such that 
1

( ) ( ) 0
k

j j
j

f x y x


   

Then (b) implies (a). 

3. Robust Exponential Stability 
for Neutral Time Varying 
Delay Systems with Nonlinear 
Perturbations 

Formulation of a practically computable 
criterion is proposed in this section to check 
the exponential stability of the nonlinear 
perturbed neutral system (1). The following 
theorem provides a robustly delay dependent 
exponential stability criterion in terms of 
LMIs optimization approaches. 

 

 

Theorem 1 

For given scalars 0   and 0h  , the 
nonlinear neutral system described by (1) is 
robustly exponentially stable with a decay 
rate   if there exist positive definite 
symmetric n n  matrices P , 1w , 3w , 1Q , 3Q , 

1H , 2H  and any n n  matrices 2w , 2Q  such 
that the following LMIs hold: 

2
11 12 13 2 15 16 3 3

2
22 23 2 25 26 3 3

33 35 36 3 3
2

1

55 56

66

3

3

*

* * 0

* * * 0 0 0 0 0
* * * * 0 0

* * * * * 0 0

* * * * * * 0

* * * * * * *

h T T T

h T T T
h h
T T

h

e w hA w A Q

e w hA w A Q

hC w C Q

e w

w

Q













      
 
    
 
   
 

  
   
 
 

 
  

(11) 

1 2

2 3

0
T

w w

w w

 
 

  
, 

1 2

2 3

0
T

Q Q

Q Q

 
 

  
 (12) 

with: 

2 2 2
11 1 2 2

2 2
2 2 1 3 1

2 T T T

T T h

P PA A P h w h A w h w A

Q A A Q Q e w H





      

    
 

2 2
12 2 2 3

h
h h hPA h w A Q A e w      

2
13 2 2PC h w C Q C     

2 2
15 16 2 2 3 3

T TP Q h w h A w A Q         

2 2 2
22 1 3 2(1 ) h hd e Q e w H          

2
23 2(1 ) hd e Q     

2
25 26 3 3

T T
h hh A w A Q      

2
33 3(1 ) hd e Q     

2
35 36 3 3

T Th C w C Q      

2
55 3 3 1h w Q H     

2
56 3 3h w Q    

2
66 3 3 2h w Q H     

Proof of Theorem 1 

Let consider the Lyapunov–Krasovskii 
functional in the following form: 

1 2 3( , ( )) ( , ( )) ( , ( )) ( , ( ))V t x t V t x t V t x t V t x t   (13) 
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with: 

2
1( , ( )) ( ) ( )t TV t x t e x t Px t  (14) 

2
2( , ( )) ( ) ( )

t t
s T

t h s

V t x t h e W d ds     


    15) 

2
3

( )

( , ( )) ( ) ( )
t

T

t h t

V t x t e Q d    


   (16) 

( ) ( ) ( )T T Tx x      
 , 

and 0P  , 
1 2

2 3

0
T

w w
W

w w

 
  
  

, 
1 2

2 3

0
T

Q Q
Q

Q Q

 
  
  

 

The time derivative of 1V  leads to: 

2
1( , ( )) { ( ) 2 ( )t T TV t x t e x t P PA A P x t     
  

( ( )) ( ) ( ( )) ( )

( ) ( ) ( ) ( ( ))

( ) ( ( )) ( ) ( ) }

T T T T
h

T T T
h

T T T

x t h t A Px t x t h t C Px t

f Px t g Px t x t PA x t h t

x t PCx t h t x t Pf x t Pg

   

   

   





 (17) 

Taking the time derivative of 2V  gives that: 

2 2 2
2( , ( )) ( ) ( ) ( ) ( )

t
t T s T

t h

V t x t h e t W t h e s W s ds    


    

Obviously, for any scalar  ,s t h t  : 

2 ( ) 2 2t h s te e e      (18) 

So, it follows: 

2 2 ( )

2 ( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )

t t
s T t h T

t h t h

t
t h T

t h t

h e s W s ds h e s W s ds

h t e s W s ds

 



   

 



 





 



 


(19) 

2 2
2

2

( )

( , ( )) { ( ) ( )

( ) ( ) ( ) }

t T

t
h T

t h t

V t x t e h t W t

h t e s W s ds





 

 





 



 

According to lemma 3, the following 
inequality holds: 

2

( )

2

( ) ( )

( ) ( ) ( )

( ) ( )

t
h T

t h t

t t
h T

t h t t h t

h t e s W s ds

e s ds W s ds





 

 







 







 
 (20) 

Then, an upper bound for 2V  is obtained as: 

2 2
2

2

( ) ( )

( , ( )) { ( ) ( )

( ) ( ) }

t T

t t
h T

t h t t h t

V t x t e h t W t

e s ds W s ds





 

 

 



  



 

   

2 2 2
1 2

2
3

2
3

{ ( ) ( ) 2 ( )

( ) ( ( )) ( ( ))

( ) ( ( )) ( ( ))

( ) ( ( )) ( ( ))

( ) ( ( )) ( ) ( ( ))

t T T

h

T
h

h

Th

e h x t w x t h x t w

Ax t A x t h t Cx t h t f g

h Ax t A x t h t Cx t h t f g w

Ax t A x t h t Cx t h t f g

e x t x t h t w x t x t h t





 

       

        
       

    







 

 2
2

( )

( ) ( ( )) ( )
t

Th T

t h t

e x t x t h t w x s ds



     

 2
2

( )

( ) ( ) ( ( ))
t

h T

t h t

e x s ds w x t x t h t



    

2
1

( ) ( )

( ) ( ) }
t t

h T

t h t t h t

e x s ds w x s ds

 

    (21) 

The time derivatives of 3V  is: 

2 2 ( )
3 [ ( ) ( ) (1 ( )) ( ( )) ( ( ))]t T h t TV e t Q t h t e t h t Q t h t        

2 2[ ( ) ( ) (1 ) ( ( )) ( ( ))]t T h Te t Q t d e t h t Q t h t        
2 2[ ( ) ( ) (1 ) ( ( )) ( ( ))]t T h Te t Q t d e t h t Q t h t        
2

1 2

3

{ ( ) ( ) 2 ( )

[ ( ) ( ( )) ( ( )) ]

[ ( ) ( ( )) ( ( )) ]

[ ( ) ( ( )) ( ( )) ]

t T T

h

T
h

h

e x t Q x t x t Q

Ax t A x t h t Cx t h t f g

Ax t A x t h t Cx t h t f g

Q Ax t A x t h t Cx t h t f g

 
     

      

     






 

2
1

2
2

2
3

(1 ) ( ( )) ( ( ))

2(1 ) ( ( )) ( ( ))

(1 ) ( ( )) ( ( ))}

h T

h T

h T

d e x t h t Q x t h t

d e x t h t Q x t h t

d e x t h t Q x t h t













   

   

   



 

 (22) 

From equations (3) and (4), since the 
following two inequalities hold: 

2 ( ) ( ) 0T Tx t x t f f    (23.a) 

2 ( ( )) ( ( )) 0T Tx t h t x t h t g g      (23.b) 

Therefore, there exist positive definite 
matrices 1R  and 2R  satisfying the 
inequalities: 

2
1 1( ) ( ) 0T Tx t R x t f R f    (24.a) 

2
2 2( ( )) ( ( )) 0T Tx t h t R x t h t g R g     (24.b) 
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From equations (13-24), and based on the S-
procedure, given in lemma 5, there exist 
nonnegative scalars 1 0   and 2 0         
such that: 

1 2 3

2 2 2
1 1 1 1

2 2 2
2 2 2 2

( , ( )) ( , ( )) ( , ( )) ( , ( ))

( ) ( )

( ( )) ( ( ))

t T t T

t T t T

V t x t V t x t V t x t V t x t

e x t R x t e f R f

e x t h t R x t h t e g R g

 

 

  

  

  

 

   

   

 

By setting 0i i iH R   for 1, 2i  , the time 

derivative V  is upper bounded as: 

2( , ( )) ( ) ( )t TV t x t e t t     (25) 

with: 

( )

( ) [ ( ) ( ( )) ( ( )) ( ) ]
t

T T T T T T T

t h t

t x t x t h t x t h t x s ds f g


     

2 2
11 3 3 12 3 3

2
22 3 3*

* *

* *

* *

* *

T T T T
h h

T T
h h h h

h A w A A Q A h A w A A Q A

h A w A A Q A

     

   







 
2 2

13 3 3 2 15 16
2 2

23 3 3 2 25 26
2

33 3 3 35 36
2

1

55 56

66

0

* 0 0

* *

* * *

T T h T

T T h T
h h

h

h A w C A Q C e w

h A w C A Q C e w

h Cw C CQ C

e w













     

    

    


 
  
 

 

where , , 1, ,6ij ij i j     , are the same as 

defined in the Theorem 1. 

Using Shur’s complement (lemma 2), 0   
is equivalent to 0  , hence, that implies 

( , ( )) 0V t x t   which ensures system (1) is 
robustly asymptotically stable for all 
nonlinear uncertainties (3) and (4) by 
Lyapunov-Krasovskii theory. This result 
leads to ( , ( )) ( , (0))V t x t V t x . Then: 

0 0
2

0
2

(0)

( , (0)) (0) (0) ( ) ( )

( ) ( )

T s T

h s

T

h

V t x x P x h e W d ds

e Q d





    

    





 



 



 

   

 

0 0
2 2

0
2

(0)

( ) ( )

( ) ( )

s T
Max Maxh

h s

T
Max

h

P h W e d ds

Q e d





       

     





 



 


 

       23
Max Max Max h

P h W h Q       

2
h

   (26) 

with: 

     3
Max Max MaxP h W h Q      . 

Furthermore, one can see that: 

1( , ( )) ( , ( ))V t x t V t x t  (27) 

Then, the following inequality is obtained: 

  22
min( , ( )) ( )tV t x t e P x t   (28) 

It follows from equations (25-27) that: 

  2 22
min ( ) ( , ( ))t

h
e P x t V t x t      

which leads to: 

 min
( ) t t

h h
x t e e

P
    


    (29) 

with 
 min

1
P




  . Thus, by definition 1, 

the system (1) is robust exponentially stable 
with exponential convergence rate  . This 
completes the proof of Theorem 1. 

Remark 1 

The proposed exponential stability conditions 
(11) and (12) are Linear Matrix Inequality 
LMIs. Hence, by iteratively solving the LMIs 
given in Theorem 1, with respect to h  for 
fixed d ,  ,  ,  , it is easy to compute the 
maximum upper bound of the allowable 
delay h  guaranteeing the robustly 
exponential stability of the system (1) using 
efficient convex optimization algorithms [5]. 

Remark 2 

For the case of C 0 , which is studied in [6, 
11, 13, 19, 25, 26], the system (1) can be 
rewritten as: 
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 
( ) ( ) ( ( )) ( , ( )) ( , ( ( )))

( ) ( ) ,0

hx t Ax t A x t h t f t x t g t x t h t

x t t t h

     

   


(30) 

Most of the existing delay dependent stability 
conditions require a constraint with the delay 
derivative 1d  , and this constraint may 
cause conservativeness. Using similar method 
as in Theorem 1, we obtain a robust 
exponential stability criterion of the system 
(26) independently of d  that can be 
arbitrarily large. This result is shown in the 
following corollary. 

Corollary 1 

For given scalars 0   and 0h  , the time 
delay system described by (30) is robustly 
exponentially stable with a decay rate   if there 
exist positive definite symmetric n n  matrices 
P , 1w , 3w , 1Q , 1H , 2H  and any n n  matrix 

2w  such that the following LMIs hold: 

2 2 2
11 12 2 2 3

2 2
22 2 3

2
1

2
3 1

*

* * 0

* * *

* * * *

* * * *

h T T

h T T
h

h

e w P h w h A w

e w h A w

e w

h w H













    

 

   






 

2 2
2 3 3

2
3 3

2
3

2
3 2

3

0 0
0

0

0

*

T T

T T
h h

P h w h A w hA w

h A w hA w

h w

h w H

w

 



 

 
 

(31) 

1 2

2 3

0
T

w w

w w

 
 

  
 (32) 

with: 

2 2 2
11 1 2 2 1

2 2
3 1

2 T T T

h

P PA A P h w h A w h w A Q

e w H





       

 
2 2

12 2 3
h

h hPA h w A e w     

2 2 2
22 1 3 2(1 ) h hd e Q e w H          

Proof of Corollary 1 

Choose a Lyapunov-Krasovskii functional as: 

1 2 3( , ( )) ( , ( )) ( , ( )) ( , ( ))V t x t V t x t V t x t V t x t    

where 1V , 2V , 3V  are defined in equation 
(14), and in order to remove the term 

( ( ))x t h t , the matrices 2Q  and 3Q  are set to 
be zero. The proof is completed. 

In practice, the systems almost present some 
uncertainties because it is very difficult to 
obtain an exact mathematical model due to 
environmental noise, uncertain or slowly 
varying parameters, etc. Therefore, it will be 
interesting to study the case of a neutral 
system which presents nonlinear 
perturbations and time varying uncertain 
matrices with appropriate dimensions subject 
to the norm-bounded forms. This system is 
shown in the following section. 

4. Robust Exponential Stability 
for Neutral Time Varying 
Delay Systems with Nonlinear 
Perturbations and Norm-
bounded Uncertainties 

The robust stability for the perturbed and 
uncertain systems with time varying delays 
presents an important focus that described 
systems more physical than other ones. 

Thus, this section handles the case that 
system (1) is with norm-bounded 
uncertainties. The nonlinear uncertain neutral 
delay system (1) is now described by the 
following state equation: 

   

 

( ) ( ) ( ) ( ) ( ( ))

( ( )) ( , ( )) ( , ( ( )))

( ) ( ), ( ) ( ), ,0

h hx t A A t x t A A t x t h t

Cx t h t f t x t g t x t h t

x t t x t t t h 

    

    

    





(33) 

where ( )A t  and ( )hA t  denote the 
parameter uncertainties vector described by: 

   ( ) ( ) ( )h hA t A t D F t E E    (34) 

where D , E , hE  are constant real matrices 
with appropriate dimensions, and 

( ) n mF t   is a time varying matrix 

function satisfying  ( ) ( )TF t F t I ,  0t  . 

Theorem 2 

For given scalars 0   and 0h  , the 
uncertain nonlinear neutral system described 
by (33) is robustly exponentially stable with a 
decay rate   if there exist positive definite 
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symmetric n n  matrices P , 1w , 3w , 1Q , 3Q , 

1H , 2H , any n n  matrices 2w , 2Q  and 

positive scalar   such that the following 
LMIs hold: 

2
11 12 13 2 15 16

2
22 23 2 25 26

33 35 36
2

1

55 56

66

*

* * 0

* * * 0 0

* * * *

* * * * *

* * * * * *

* * * * * *

* * * * * *

* * * * * *

h T

h T

h

e w

e w

e w













     

    


  
 
    









 

2
3 3 2 2

3 3

3 3

2
3 3

2
3 3

3 3

3 3

0

0 0

0 0 0 0

0 0 0 0

0 0 0

0 0

* 0

* * 0

* * *

T T T

T T T
h h h
T T

hA w A Q PD h w D Q D E

hA w A Q E

hC w C Q

h w D Q D

h w D Q D

w hw D

Q Q D

I

I








 






 
 

 
 



 

(35) 

1 2

2 3

0
T

w w

w w

 
 

  
, 

1 2

2 3

0
T

Q Q

Q Q

 
 

  
 (36) 

where , , 1, ,6ij ij i j     , are the same as 

defined in the Theorem 1. 

Proof of Theorem 2 

The proof follows from the proof of Theorem 
1. Let us reconsider the matrix inequality 

0   defined in theorem 1. We shall replace 
A  and hA  with ( ) ( )A t A DF t E   and 

( ) ( )h hA t A DF t E  , respectively in 0   
and rewrite the resulting inequality as: 

( ) ( ) 0T T THF t G G F t H     (37) 

2 2 2 2
2 2 3 3 3 3 3 3[ 0 0 0 ]T T T TH D P h w Q h w Q h w Q h w Q    

0 0 0 0 0 0hG E E   

It follows from Lemma 4, that there exist a 
scalar   such that the inequality (37) is 
equivalent to: 

1( ) ( )T T T T THF t G G F t H HH G G     (38) 

Applying Schur complements, we obtain the 
linear inequality given in (35). Thus, 0   is 
equivalent to 0   which ensures system 
(33) is robustly exponentially stable in the 
sense of the argument given in the proof of 
Theorem 1.This completes the proof. 

Remark 3 

The main results developed in this paper are 
delay dependent exponential stability 
conditions for perturbed systems (1), (30) and 
(33). The main improvement is that the 
proposed Theorems 1 and 2 and Corollary 1 
are obtained without using model 
transformation techniques, bounding 
techniques for cross terms and free weighting 
matrices. Hence, it will be shown in the 
following section that the obtained results are 
less conservative than those in the literature. 

5. Illustrative Examples 

In this section, numerical examples are 
illustrated in order to demonstrate the 
application of the theorems given in this 
paper in order to show the effectiveness of 
our new stability criteria via making some 
comparison analysis with the existing results 
from the literature. 

Example 1 

Consider the nonlinear neutral system (1) 
with the following system matrices: 

2 0

0 0.9
A

 
   

, 
1 0

1 1hA
 

    
,

0.1 0

0 0.1
C

 
  
 

,  

0.05  , 0.1   

By applying Theorem 1 to the above system, 
one can obtain the maximum upper bounds of 
the time delay h  under different values of 
d and   as shown in Table 1. 

Clearly, one can see from the Table 1 that the 
proposed method provides less conservative 
results than previous method investigated in 
[8] and [11]. 

Example 2 

Consider the nonlinear time delay system 
(30) with: 
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1.2 0.1

0.1 1
A

 
   

,
0.6 0.7

1 0.8hA
 

   
, 0  , 0  , 0    

Applying the methods in [6, 8, 11, 13, 19, 26, 
27] and Corollary 1, the maximum values of  
h  for the asymptotic stability of system 
under consideration is listed in the following 
Table 2. It is easy to see that the stability 
criterion in this paper gives less conservative 
result than those obtained in [8, 11, 19]. If 
d 1 , the maximum allowable delay h  
obtained is the same as in [19]. When d 1 , 
the method [19] becomes infeasible; however 
our approach has succeeded to give a better 
result than [8] and [11] which present also an 
improved result than those developed in [6, 
16, 23, 27].   

Example 3 

Time delay and nonlinear perturbations (33) with: 
0.9 0.2

0.1 0.9
A

 
  

,
1.1 0.2

0.1 1.1hA
  

    
,

0.2 0

0.2 0.1
C

 
  

 

0.05  , 0.1     ( ) ( ) ( )h hA t A t DF t E E   ,    

( ) ( )TF t F t I ,     0 05D . * I ,    hE E I   

 

Table 3 gives out the maximal allowable 
delay h  for the robust exponential stability 
of system (33) by application of the new 
Theorem 2. 

6. Conclusion 

In this paper, a new delay dependent robust 
exponential stability criterion for neutral 
systems with time varying delays and 
nonlinear perturbations is established. By 
deriving the stability criterion in terms of 
LMI and using of Lyapunov-krasovskii 
parameter dependent functional, the upper 
bound of the time delays can be calculated 
easily. The main improvement from the 
proposed method is that the results have been 
obtained without using model transformation 
techniques and bounding techniques for cross 
terms, and without introducing free weighting 
matrices. Numerical examples have clearly 
shown that the criteria derived herein are 
considerably less conservative than those in 
the literature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Upper bounds of time delays in Example 1 

  0.1 0.3 0.5 
[11] 1.2987 0.8651 0.6823 
[8] 1.2999 0.8781 0.6917  0h d   
Theorem 1. 1.4856 0.9413 0.7179 
[11] 0.9386 0.7135 0.6091 
[8] 0.9442 0.7275 0.6096  0.5h d   
Theorem 1. 1.3330 0.8094 0.6503 
[11] 0.5326 0.5124 0.4725 
[8] 0.5471 0.5015 0.4650  0.9h d   
Theorem 1. 0.7256 0.5752 0.4812 

Table 2. Upper bounds of time delays in Example 2 for different conditions 

0  , 0.1   0.1  , 0.1    

d 0  d 0.5  d 1  d 0  d 0.5  d 1  
[19] 2.7758  1.1461       __ 1.8959  1.0143       __ 
[8] 2.7423  1.1425  0.7355  1.8753  1.0097  0.7147  
[11] 2.7433  1.1439  0.7355  1.8762  1.0108  0.7147  
Corollary 1. 2.7758  1.1461  0.7368  1.8959  1.0143  0.7163  

Table 3. Upper bounds of time delays in Example 3 for different conditions 

  0 0.1 0.3 0.5 0.7 0.9 

 h d 0  1.3838 1.0550 0.7668 0.6199 0.5252 0.4528 

 h d 0.5  1.0126 0.8457 0.6642 0.5599 0.4852 0.4199 

 h d 0.9  0.5304 0.4662 0.3763 0.3134 0.2634 0.2145 
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