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1. Introduction

One of the most interesting challenges in the latest 
years is to develop an autonomous car. There are 
five levels of car autonomy, ranging from only a 
simple assistance from the car regarding breaking, 
parking etc, up to the fifth level where the car could 
drive without any human assistance (even without 
a steering wheel or pedals, like the car developed 
by Google, Waymo). However, at this moment, 
only cars up to the third level of autonomy have 
been developed (Reyes, 2022). There are many 
problems that the research community must handle 
when designing an autonomous car. There are two 
different approaches for an autonomous car. The first 
one is an end-to-end approach, where ideally the 
network would take only driving images as input, 
along with some details regarding the acceleration, 
steering angle and other sensors, and give an 
immediate answer regarding the steering angle 
and the braking or acceleration level. However, 
given the complexity of this task, the preferred 
approach is the second one, with many different 
networks and components that work together and 
are supervised by the main algorithm. The system 
can be seen as a multi-layer architecture. The first 
layer, the perception layer, is responsible for scene 
understanding, considering the tasks of object 
detection and tracking, semantic and instance 
segmentation, lane detection, depth estimation. 
After the car has a complete representation of the 
environment, the next step is to decide the right 
actions that must be made - the decision layer. The 
software has to know the GPS coordinates of the 
car and the destination, and it makes a route based 
on this information. There is a global route planning 
and a local route planning and also a behaviour 

planning, regarding the manoeuvres hat have to be 
made. The process of following that route is called 
path following. The last component is responsible 
with the actual movement of the car ‒ giving the 
steering angle and the braking/ acceleration to the 
physical components of the car.

In the path following process, an important 
element is represented by the prediction of the 
trajectory for the surrounding cars. This task is 
especially important for two reasons – avoiding a 
collision with another car and also following the 
car in front of the vehicle. One of the simplest, yet 
efficient algorithms for path following is to follow 
the first vehicle that is in front of the autonomous 
car and has the same behaviour – for example, if 
the next vehicle is going to break, the autonomous 
car should also break (with only one exception, 
where the next vehicle is going to stop, in this 
case it should be overtaken). However, the task 
of trajectory prediction is not a simple one and 
currently has a lot of limitations (Bahari et al., 
2022). One of the biggest problems is that the 
annotation of the ground truth is very costly and 
implies the manual identification and annotation of 
the trajectories of the surrounding cars. As it can 
be seen in a recent study (Iancu et al., 2022), this 
limitation can be overcome if a video prediction 
model is used for finding the future positions 
of the cars, because a video prediction network 
can be trained using any existing driving video. 
However, the video prediction task is even harder 
than the task of trajectory prediction, therefore 
the results of a dedicated trajectory prediction 
network are better, for the moment. 
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In this work, an existing video generation model, 
PredNet (Lotter, Kreiman & Cox, 2016) is 
modified, taking into account the task of video 
generation, and the results are compared to those 
of the standard model in a trajectory prediction 
architecture composed of an object detection 
network, a semantic segmentation architecture 
for road detection and also a depth estimation 
network used in the evaluation process of the 
network performance.

The rest of the paper is organized as follows. In 
Section 2 presents the works from the specialized 
literature related to video prediction with a focus 
on the network used. Section 3 displays the 
material and methods. Discussions regarding the 
results of the present work are provided in Section 
4, while Section 5 presents the conclusion and 
prospects for the development of the proposed 
research in some future works.

2. Related Work

The most relevant architectures regarding the 
task of predicting new frames for a given video 
are described in this section. The first distinction 
that has to be made is that there are actually two 
different tasks regarding the video prediction ‒ the 
video generation and the video prediction. While 
the two tasks are related, there is an important 
distinction ‒ a video generation network will 
make videos based on a training data that could 
be considered real videos from an observer and 
a video prediction network will generate the 
next frame(s) based on a real video. Regarding 
autonomous driving, the useful task is the later 
one. This section analyzes architectures from 
both tasks, considering the fact that the tasks are 
relatable and share the same architectures. A good 
review regarding video prediction can be found 
in a recent article (Iancu et al., 2022) and also in 
(Oprea et al., 2020). 

The main video prediction architectures used in the 
present work are discussed in this section. Mainly, 
there are architectures based on Convolutional 
Neural Networks (CNN), Long Short-Term 
Memory networks (LSTM), a combination of 
LSTM with CNN, Recurrent Neural Networks 
(RNN), Variational Autoencoders (VAE), 
Generative Adversarial Networks (GAN) or even 
o combination of GAN with VAE. Regarding 
trajectory prediction, there are different approaches 
that can be used with this purpose, either by using 

traditional architectures (CNNs, RNNs, LSTMs), 
sometimes in combination with a generic encoder-
decoder architecture (Deo & Trivedi, 2018), or 
by using more recent architectures like GAN or 
VAE (Lee et al., 2022). Also, a common technique 
is to make only socially acceptable predictions 
(Kosaraju et al., 2019).

For reference, this work compares the results 
with TraPHic (Chandra et al., 2019), a 
convolutional LSTM architecture specialized 
in trajectory prediction.

2.1 Video Prediction using CNN

Even if the solely usage of convolutional neural 
networks (CNNs) is not common for video 
prediction, convolutional layers are widely used 
in combination with other architectures, especially 
in combination with LSTMs. However, there 
are some architectures that resemble the idea of 
CNNs. One relevant network is Dynamic Filter 
Network (De Brabandere et al., 2016). It is a 
new architecture which somehow resembles the 
transformer network ‒ a transformation is ap 
plied to a feature map, by conditioning it on the 
input image. Their architecture consists of two 
different modules: a filter-generating network and 
a dynamic filter layer. The first module generates 
filters, based on some input, that are then applied 
on the image. This module is implemented using 
a convolutional network architecture, hence the 
relationship with the CNNs. The second module 
takes images and the previously generated filter, 
which is different regarding the location (dynamic 
filter). The filter, also, is similar to a classical 
convolutional filter, but is dynamically generated 
using the first module. 

Another interesting work can be found in (Reda 
et al., 2018). The prediction is made using 
information from past frames and also past optical 
flows. Their method is called “spatially displaced 
convolution” and involves a convolution at a 
displaced location in the image. They use a fully 
convolutional neural network for the optical flow 
and for learning the parameters of the spatially 
displaced convolutions.

2.2 Video Prediction using LSTM

The Long Short-Term Memory Networks 
(LSTMs) are one of the favourite architectures 
for video prediction, due to their capacity of 
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incorporating time changes. One of the oldest 
models for frame prediction can be found in 
(Srivastava, Mansimov & Salakhutdinov, 2015). 
The authors used an encoder-decoder LSTM. 
The encoder makes a representation of the input, 
while the decoder will decode this representation 
in order to make future frame predictions. They 
also vary the decoder by being conditioned on 
the previous frames or not. However, most of 
the networks also use convolutions, besides an 
LSTM network, due to the fact that the CNNs can 
model space-related features and the LSTMs can 
model time-related features. In (Wang et al., 2019) 
it can be seen a spatiotemporal LSTM that has 
been modified to use 3d-convolutions. Another 
example is Video pixel networks (Kalchbrenner et 
al., 2017). The architecture is based on an encoder 
decoder structure. Some convolutional operators 
are used for the encoder, whose outputs go into a 
convolutional LSTM. For the decoder they use an 
architecture called PixelCNN, which uses masked 
convolutions. In (Finn, Goodfellow & Levine, 
2016) it can be seen an architecture for predicting 
future frames. They use different approaches 
for the video frame prediction, including spatial 
transformer predictions and also their own module 
called convolutional dynamic neural advection, 
which tries to output the locations in the next 
frame by using a distribution of the locations for 
the previous frame and also by using convolutions. 
They also used stacked convolutional LSTMs for 
their final model, which does action-conditioned 
prediction in videos. There are also more recent 
works that use convolutional LSTMs. For 
example, in (Desai et al., 2022) it can be found 
a model that uses an encoder decoder LSTM 
architecture for next frame prediction. The model 
used in the current experiments, PredNet (Lotter, 
Kreiman & Cox, 2016) is also a convolutional 
LSTM architecture with four components - a 
representation layer, which is a convolutional 
LSTM architecture, a convolutional target layer, 
a convolutional prediction layer and also an error 
layer. However, the architecture is discussed in 
detail in section 3, where the modifications made 
on the original architecture are also described.

2.3 Video Prediction using RNN

Another popular architecture used for video 
prediction is the recurrent neural network (RNN). 
One of the most cited architectures is the one from 
(Oliu, Selva & Escalera, 2017). The authors updated 
a traditional Gated Recurrent Unit, considering 

that the gate is, in fact, another recurrent unit. 
They applied this modification to recurrent 
auto-encoders (thus, they combined the RNN 
with the Autoencoders), making their modified 
GRU (Gated Recurrent Unit) as the shared state 
between the two components of the autoencoder 
(the encoder and the decoder), and claimed that 
the modification created a bijection between each 
input and output in a multi-layer architecture. They 
applied this architecture for video prediction on 
MNIST (Modified National Institute of Standards 
and Technology database) and KTH (KTH Royal 
Institute of Technology dataset).

Another interesting research work can be found 
in (Villegas et al., 2019). They questioned the 
traditional approaches for video prediction, which 
involved many components, such as segmentation, 
optical flow, etc, and proposed a stochastic 
approach, which considered that for some given 
past frames there are many possible future frames. 
They also added convolutional LSTM layers to an 
encoder-decoder architecture. 

2.4 Video Prediction using VAE

Even if there are RNN networks for the video 
prediction task, they usually pair up the recurrent 
units with an encoder-decoder or autoencoder 
architecture. A more suitable architecture for 
generation tasks is the Variational Autoencoder 
(VAE). An example is Seg2Vid (Pan et al., 2019), 
which, as opposed to the previous network, adds 
an intermediate step for the optical flow and use a 
conditional VAE architecture (Xue et al., 2016). 
The authors made a video prediction from a 
single frame only, which is a method that can 
lead to more errors than including more frames 
in the prediction.  

Another stochastic architecture is SAVP (Lee et al., 
2018), which combines a generative adversarial 
network (GAN) with VAE. The traditional GAN 
model, with a generator and a discriminator, is 
modified to have two discriminators - a proper 
GAN discriminator and also a discriminator that 
learns from an encoder in a VAE model. The 
authors predicted future frames given two initial 
frames, however their model is tested on very 
simple datasets, like KTH (Schuldt, Laptev & 
Caputo, 2004) and moving robot arm (Ebert et 
al., 2017).
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2.5 Video Prediction using GAN

One of the most popular architectures regarding 
different generation tasks is the generative 
adversarial network (GAN). The main issue 
regarding GANs is that there are usually 
used only for generation, not for predicting 
conditional frames given some past frames. 
There are many recent architectures that use 
this approach, for example Imaginator (Wang 
et al., 2020), which generates realistic videos 
given only a frame and a label. However, this 
approach is an improvement of two older models, 
VGAN (Vondrick, Pirsiavash & Torralba, 2016) 
and MoCoGan (Tulyakov et al., 2018). The first 
one, VGAN, is a very popular architecture for 
generating realistic videos. It uses a generator 
of two independent stacked up-sampled 
convolutional layers ‒ one for the foreground 
and the other stream for the background. At the 
end, the two streams are combined to obtain the 
generated frame. The discriminator is a five-
layer convolutional neural network. The layers 
generate small, realistic videos for different 
themes, for example a golf course or a train 
station. MoCoGan (Tulyakov et al., 2018) is a 
more recent architecture, which is cited by many 
research papers involving video prediction, due to 
its results. It involves a recurrent neural network, 
a generator used for the future frames, and two 
discriminators ‒ one for a single frame and one 
for the video itself. It also generates simple 
clips, like facial expressions or human actions. 
However, one of the oldest architectures is the 
one proposed in (Mathieu, Couprie & LeCun, 
2015). It is an influential work, by introducing 
the combination of a GAN with a multi-scale 
convolutional architecture for both the generator 
and the discriminator. Again, the network is 
tested on small clips. Even if the GAN could be 
considered the best architecture for generation, 
the current works obtains better results in real-
life driving application by using convolutional 
LSTMs, which is also the architecture involved 
in this study.

3. Material and Methods

The most relevant methods used for video 
prediction were described in the previous network. 
The preferred approach for video prediction is 
done via neural networks, with most of the models 

using either a combination of recurrent layers 
(generally LSTMs) with convolutional layers or 
more recent approaches, like the GANs or the 
VAE. In this work, the network used is PredNet, 
a convolutional LSTM network, being in the first 
category of the described approaches.  

For the trajectory prediction, this work also 
uses a popular convolutional neural network for 
object detection, YOLO v4 (Bochkovskiy, Wang 
& Liao, 2020), in order to detect the cars from 
the predicted frames. The detections are further 
improved with the help of the segmentation of 
another convolutional neural network, Fully 
Convolutional Networks (FCN) (Long, Shelhamer 
& Darrell, 2015).

The last network is used for depth estimation, 
namely it is used to compute some metrics 
regarding the predicted depth of the surrounding 
cars. The network used is Monodepth2 (Godard 
et al., 2018). For each model, the implementation 
was taken from its associated Github page. The 
training and the testing were made using an Nvidia 
DGX server.

4. Results

This section describes the results obtained 
regarding the new trajectory prediction model. 

The first subsection describes the proposed 
architectures used for the video prediction 
task, whose output is later used to predict the 
trajectories of the surrounding vehicles. For the 
video prediction task, the experiments use three 
modified versions of the PredNet architecture 
and a convolutional LSTM architecture for 
video prediction. After the description of the 
architecture, the workflow regarding the trajectory 
prediction task is briefly discussed. 

The second subsection describes the trajectory 
prediction workflow.

The third subsection describes the dataset used, 
the training and the experiments made for the 
trajectory prediction task.

The last subsection presents the experiments and 
also a qualitative analysis regarding the results.
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4.1 Main Architecture

On a higher level, PredNet can be seen as multiple 
recurrent convolutional layers, whose output goes 
through a rectified linear unit (ReLU) activation 
and a max-pooling layer with stride 2. Now, 
regarding the convolutional recurrent layers, they 
consist of four different layers of convolutions. 
The first one is a representation layer, which is 
a recurrent layer that makes a prediction based 
on the current representation input. The input 
and the prediction represent another two layers 
of convolutions. The last layer is an error layer 
which is computed based on the input and the 
prediction and it becomes the next input layer. 
The representation layer at a given step is based 
on the representation layer at the previous step, 
the error layer at the previous step and also on the 
representation layer at the next step (which can be 
obtained initially by using upsampling). The main 
network is made in order to predict only a single 
future frame given an input video. However, the 
network can also be fine-tuned in order to predict 
up to five frames into the future. For the current 
experiments, the architectures were also fine-
tuned to predict five future frames given only the 
initial video. 

This research proposes three different versions of 
the internal representation of the convolutional 
layers. The standard version uses a four layer 
model with 3x3 convolutions for the prediction 
of driving images, as it can be seen in the public 
repository of Lotter, Kreiman & Kox (2016). The 
proposed models are the following:

The P_5_5 simply replaces the 3x3 convolutions 
with 5x5 convolutions, without adding any 
additional layers.

The P_3_5 is a 6-layer model with two extra 3x3 
convolutional layers, considering the previous 
model, P_5_5. It also replaces the ReLU activation 
with PReLU, which instead of zeroing negative 
values it learns a parameter which is multiplied 
with the value for the response, acording to the 
following equation:

, 0
( )

* ,
x x

f x
a x otherwise

>= 
=  
                            

(1)

Finally, the P_full is also a 6-layer model 
consisting of only 3x3 convolutional layers and 
also using the PRELU activation function.

The modifications can be seen in Figure 1.

Figure 1. Proposed convolutional structures

4.2 Trajectory Prediction Workflow

The previous described architectures are used for 
the video generation task. The workflow for the 
trajectory prediction is presented in this subsection.

The input frames are going through one of 
the architectures described earlier after an 
additional pre-processing step, where the frame 
dimensions are adjusted to those required by 
the model. The output goes further through 
YOLO v4 (Bochkovskiy, Wang & Liao, 2020), 
to detect the objects in the frames.  Together 
with the information obtained by a segmentation 
network, Fully Convolutional Networks (FCN) 
(Long, Shelhamer & Darrell, 2015), there are 
made predictions regarding the positions of 
the cars in the future frames. These positions 
are compared to the original ones, manually 
annotated, after which two errors are computed 
‒ a location dependent Normalized Root Mean 
Square Error (NRMSE) and a depth dependent 
NRMSE. The depth error is computed with the 
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help of a depth estimation network, Monodepth2 
(Godard et al., 2018). The full architecture can 
be seen in Figure 2. 

Figure 2. Trajectory prediction workflow

4.3 Training, Dataset and Experiments

The networks were trained on the KITTI dataset, 
in a similar way to the training that was made for 
the original network. The P_full and the P_3_5 
architectures were trained for 150 epochs, the 
same number used for the basic PredNet network. 
However, the P_5_5 network was trained using 
100 epochs, due to the long time required for the 
training. The P_5_5 network learned faster than 
the P_3_5, the final loss, 0.0229, being smaller 
than the final loss of the P_3_5 network, which 
was 0.0241. Initially, each network was trained 
to predict one frame, then it was trained again, 
using fine-tuning, in order to predict five frames 
in the future.

The dataset is the same one used in (Iancu et 
al., 2022) and it consists of over 4000 manually 
annotated cars in 945 images. The data is divided 
into small clips of 35 frames – 30 for training and 
5 for testing.

Different experiments are made taking into 
account the data used for the segmentation. There 
are three different categories: the segmentation 
data is not included at all, the segmentation is 
obtained by the FCN network or the segmentation 
is taken from the ground truth images, which were 
manually annotated. The segmentation is used 
only for the detection of the road, which improves 
the prediction by making slight modification of 
the detected cars, in the case that they are outside 
the detected road. The segmentation is made only 
for the last real frame, not for the detected frames. 
Each of these three categories is further used in 
two different setups ‒ the detected car locations 
are made considering the ground truth annotations 
of the cars in the predicted frames and the detected 

locations are based on the results from YOLO. 
Furthermore, for the depth there are two different 
setups ‒ considering the estimated depth from 
the predicted frames and considering the depth 
from the real frames. For the segmentation, there 
are two setups ‒ considering the ground truth or 
considering the results from FCN. In total, there 
are eighteen types of different experiments made 
for a given architecture and for each experiments 
the metrics are computed independently for the 
images recorded during the day, during the dusk 
and during the night, but also an average over the 
whole dataset is shown.

Unlike the previous study, which computes the 
RMSE for the location, taking into account the 
four corners of an object, and the RMSE for 
the depth, considering the average depth of the 
pixels in the predicted location compared to the 
average depth of the pixels in the actual location, 
in this research the RMSE was changed with 
normalized RMSE (NRMSE). This change was 
made for a better understanding of the metrics. In 
the following formula, the NRMSE is computed 
regarding the square root of the mean of the 
squared differences between the actual x and y 
coordinates (xip = predicted x coordintate, xir = 
real y coordinate, same for the y) for all the N 
detected objects. Then, the result is divided by 
the maximum possible value of the RMSE, which 
is computed by considering xip=yip=0, xir=640, 
yir=360 (given that the images are 640x360).

2 2

1
( ) ( )

_

N

ip ir ip ir
i

x x y y

NNRMSE
Max RMSE

=

− + −

=

∑

    
(2)

Regarding the depth the error was computed 
by taking into account the normalized value of 
the RMSE, too. The NRMSE for the depth is 
computed by taking the square root of the mean 
between the squared value of the difference 
between the mean value of the predicted N1 
pixels and the real N2 pixels, considering all the 
N detected objects. Then, the result is divided by 
the maximum possible value of the depth RMSE, 
which is 256 (the value of the predicted pixels is 0, 
the value of the real pixels is 256). The NRMSE_
depth has the advantage of estimating how close 
was the network to understand the actual distance 
from the ego vehicle to the surrounding cars.
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4.4 Result Analysis

This subsection presents the most relevant 
results regarding the performances of the three 
architectures P_3_5, P_5_5 and P_full. The focus 
is put on the difference between these architectures 
and the basic PredNet network, not necessarily on 
the absolute values on the results, which are not 
very relevant regarding the comparison. In Figure 
3 there are some images with the second predicted 
frame in different scenarios from each architecture, 
including the original PredNet architecture and 
the ground truth. The differences are not so 
obvious, given that the resolution of the images 
is small, but it can be seen that there are some 
small variations from the ground truth regarding 
different models. Also, the ground truth image 
is clearer. The images shown in this figure were 
taken from the same place, for a fair comparison 
regarding the time of the day. The results are 
presented in Table 1, Table 2 and also in Figure 
4. The first table contains the NRMSE regarding 
the location for each of the eighteen setups and 
regarding the time of the day. The second table 
contains the NRMSE regarding the depth for the 
same setups as in the first table. Lastly, in Figure 
4 it can be seen a plot for the NRMSE taking into 
account the car size, considering the last setup - 
the detections from YOLO and the segmentation 
from the FCN network. 

Table 1. Location NRMSE

Model Det. Segm. Day Dusk Night Avg. 

P.O. GT No 0.217 0.049 0.064 0.169
P.O. GT GT 0.216 0.048 0.064 0.168
P.O. GT FCN 0.216 0.049 0.064 0.168
P.O. YOLO No 0.191 0.132 0.032 0.184
P.O. YOLO GT 0.188 0.108 0.032 0.18
P.O. YOLO FCN 0.188 0.108 0.032 0.18

P35 GT No 0.208 0.056 0.061 0.164
P35 GT GT 0.207 0.056 0.061 0.17
P35 GT FCN 0.207 0.056 0.061 0.163
P35 YOLO No 0.218 0.238 0.063 0.216
P35 YOLO GT 0.215 0.157 0.065 0.21
P35 YOLO FCN 0.211 0.156 0.062 0.206

P55 GT No 0.208 0.056 0.061 0.164
P55 GT GT 0.207 0.056 0.061 0.17
P55 GT FCN 0.207 0.056 0.061 0.163
P55 YOLO No 0.218 0.238 0.063 0.216
P55 YOLO GT 0.215 0.157 0.065 0.21
P55 YOLO FCN 0.211 0.156 0.062 0.206

Pfull GT No 0.209 0.057 0.05 0.164
Pfull GT GT 0.209 0.057 0.049 0.164
Pfull GT FCN 0.209 0.057 0.05 0.164
Pfull YOLO No 0.187 0.207 0.033 0.186
Pfull YOLO GT 0.177 0.121 0.028 0.179
Pfull YOLO FCN 0.177 0.122 0.028 0.172

TP  0.057 0.037 0.078 0.059

Figure 3. Prediction results
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The tables are easy to understand. The first column 
contains the name of the model (P.O. stands for 
PredNet original and TP stands for TraPHic). 
The second column contains the method used for 
object detection – ground truth (GT) or YOLO. In 
the second table, an additional column contains 
the depth information used for the images. Real 
means that the depth values are taken from the 
depth estimation networks on the real images and 
“pred.” means that the estimation was taken from 
the predicted frames. The next columns contain 
the results for day, dusk, night and an average 
for the whole dataset (avg.). The performances 
of each of the three proposed architectures are 
analyzed in the following paragraphs.

The first architecture proposed, P_3_5, obtains 
slightly better results than the basic model for the 
NRMSE considering the location and the ground 
truth detections.

However, for the YOLO detections the error is 
higher, which can be due to the errors introduced 
by YOLO.

The YOLO network obtained only 133 objects for 
this architecture, compared to 162, the number of 
the detections made in the original architecture, 
so this could partially explain the smaller results.

The P_5_5 architecture obtained 157 detected 
objects and P_full obtained 190 detections. The 
results don’t take into account the recall, only the 
mean for the detected cars. 

Considering the NRMSE for the depth, the 
numbers are almost similar with the ones of the 
basic model, with two exceptions only a little bit 
higher. The only exception is for the predicted 
depth, with FCN segmentation, regardless the way 
the detected objects are considered (ground truth 
or YOLO). Regarding the differences between the 
time of the day, all the networks are similar to the 
basic model ‒ the worst results are during the day, 
the best during the dusk. However, this is due to a 
much bigger number of cars during the day which 
are harder to identify.

The second architecture proposed, P_5_5, obtains 
even better results for the NRMSE location 
than the P_3_5 considering the ground truth 
annotations of the cars, therefore better results 
than those of the the basic model. 

Table 2. Depth NRMSE

Model Det. Segm. Depth Day Dusk Night Avg. 

P.O. GT NO Real 0.555 0.034 0.092 0.409

P.O. GT NO Pred 0.559 0.055 0.101 0.413

P.O. GT GT Real 0.567 0.033 0.089 0.434

P.O. GT GT Pred 0.569 0.051 0.094 0.436

P.O. GT FCN Real 0.569 0.033 0.092 0.435

P.O. GT FCN Pred 0.572 0.054 0.1 0.438

P.O. YOLO NO Real 0.272 0.079 0.027 0.254

P.O. YOLO NO Pred 0.659 0.097 0.003 0.613

P.O. YOLO GT Real 0.243 0.076 0.025 0.23

P.O. YOLO GT Pred 0.647 0.064 0.002 0.604

P.O. YOLO FCN Real 0.255 0.076 0.023 0.241

P.O. YOLO FCN Pred 0.622 0.076 0.002 0.583

P35 GT NO Real 0.555 0.041 0.083 0.418

P35 GT NO Pred 0.552 0.046 0.076 0.415

P35 GT GT Real 0.559 0.04 0.083 0.436

P35 GT GT Pred 0.556 0.045 0.076 0.433

P35 GT FCN Real 0.557 0.041 0.083 0.434

P35 GT FCN Pred 0.555 0.046 0.076 0.432

P35 YOLO NO Real 0.293 0.11 0.055 0.263

P35 YOLO NO Pred 0.699 0.168 0.087 0.623

P35 YOLO GT Real 0.264 0.13 0.065 0.246

P35 YOLO GT Pred 0.682 0.083 0.066 0.614

P35 YOLO FCN Real 0.241 0.116 0.05 0.241

P35 YOLO FCN Pred 2.401 0.073 0.07 0.577

P55 GT NO Real 0.561 0.046 0.063 0.416

P55 GT NO Pred 0.561 0.048 0.072 0.416

P55 GT GT Real 0.565 0.044 0.063 0.432

P55 GT GT Pred 0.562 0.046 0.072 0.43

P55 GT FCN Real 0.568 0.046 0.063 0.433

P55 GT FCN Pred 0.566 0.048 0.072 0.432

P55 YOLO NO Real 0.271 0.096 0.045 0.246

P55 YOLO NO Pred 0.633 0.092 0.052 0.568

P55 YOLO GT Real 0.254 0.095 0.041 0.235

P55 YOLO GT Pred 0.63 0.059 0.052 0.567

P55 YOLO FCN Real 0.257 0.095 0.041 0.237

P55 YOLO FCN Pred 0.593 0.063 0.052 0.536

Pfull GT NO Real 0.544 0.036 0.071 0.41

Pfull GT NO Pred 0.541 0.048 0.089 0.409

Pfull GT GT Real 0.557 0.035 0.069 0.434

Pfull GT GT Pred 0.553 0.045 0.083 0.432

Pfull GT FCN Real 0.555 0.036 0.071 0.433

Pfull GT FCN Pred 0.552 0.048 0.087 0.432

Pfull YOLO NO Real 0.293 0.11 0.055 0.263

Pfull YOLO NO Pred 0.66 0.129 0.048 0.584

Pfull YOLO GT Real 0.272 0.116 0.051 0.25

Pfull YOLO GT Pred 0.68 0.083 0.054 0.61

Pfull YOLO FCN Real 0.237 0.112 0.046 0.237

Pfull YOLO FCN Pred 0.64 0.069 0.066 �
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The results regarding the YOLO detection are 
slightly better than the results from the P_3_5 
architecture but unfortunately still worse than the 
results of the basic model.

Regarding the depth NRMSE, the network obtains 
comparable results, but this time the majority of 
the results are better than the ones of the basic 
model, including the most important experiment, 
which is the last one, because it can be used in 
real-life scenarios, without taking into account any 
ground truth or pre-existing frames. 

The last architecture, P_full, consisting of 6 
layers of 3x3 convolutions and with the PReLU 
activation, obtains the best results compared to 
all the previous ones, including the ones of the 
basic model. The results are better in all the 
experiments, with only one exception, for the 
experiment without segmentation and considering 
the YOLO detection. However, this result shows 
that taking into account the segmentation in order 
to adjust the positions of the predicted cars worked 
better for this architecture. Regarding the depth 
the results are slightly better than the ones of the 
basic model in almost all the experiments made, 
including the most relevant one with no ground 
truth. There are a few experiments, though, with 
a slightly better result for the basic model, but the 
difference is too small to be relevant.

Figure 4. NRMSE with regard to car size

5. Discussion

As a conclusion regarding the experiments for 
the proposed architectures, P_full obtains the 
best results in almost all the experiments, P_5_5 
obtains better results than the ones of the original 
networks regarding the location considering the 

ground truth detection and similar results regarding 
the depth NRMSE while P_3_5 obtains similar or 
even worse results in comparison with the ones 
of the PredNet, in all the experiments made. The 
rational conclusion for these experiments is that 
mixing 3x3 convolutions with 5x5 convolutions is 
not a good idea, however more convolutions mean 
better results and for the same number of layers. 
5x5 convolutions were generally better for some 
scenarios than 3x3 convolutions.

Regarding the inference time, given that all the 
presented models are variations of the PredNet, 
the differences between them are not relevant. The 
speed for all the models is about 5 FPS, which can 
be used in real-life applications if one doesn’t want 
to predict the trajectories in every frame. Also, the 
model depends on the speed of the segmentation 
and on the speed of the detection, but generally 
these operations will require less time and can be 
done in parallel.

Considering that autonomous driving is a complex 
topic, the results can be highly influenced by 
the dataset used. For this reason, this work uses 
frames involving different times of the day (day, 
dusk and night). However, the frames consist 
of images recorded in the campus of University 
POLITEHNICA of Bucharest.

A better approach would consist in testing 
many frames from different cities and in traffic 
conditions. However, this will lead to a big effort 
regarding the manual annotation of the data.	

Regarding the trajectory prediction task, the 
current models generally obtain better results 
compared to the ones of the classical PredNet 
architecture. For this reason, instead of using the 
PredNet architecture, a new model for trajectory 
prediction that uses video prediction with the 
help of the P_full architecture, for exemple, can 
be employed.

6. Conclusion and Future Work

This study is a follow up of a previous trajectory 
prediction research and follows the same logic 
for the trajectory prediction architecture ‒ it 
aims to predict future trajectories by using a 
video prediction network, instead of using a 
conventional architecture designed especially for 
the trajectory prediction task.
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This approach is a new one and has the 
advantage that the training data can be easily 
obtained, basically by taking any driving video 
and considering some frames as the input and 
another few frames ahead as the desired output 
(ground truth). However, unlike the previous 
study, the current research also proposes three 
different architecture variations for a classical 
video prediction network called PredNet, 
by modifying its internal representation of 
the convolutional layers and also by using a 
different activation function, namely PReLU. 
This research presents an up-to-date analysis 
of the most important architectures regarding 
video prediction and generation, along with 
their advantages and disadvantages. It presents 
three different variations of the standard PredNet 
architecture, which are used in a framework 
made especially for trajectory prediction, which 
involves object detection, depth estimation and 
semantic segmentation. Different experiments 
are made using these architectures on a dataset 
containing images recorded in the University 
POLITEHNICA of Bucharest campus with 

different light conditions. The results are 
analyzed and compared with those of the 
standard PredNet architecture and also with 
those of a proper trajectory prediction network. 
The results show that the proposed models 
obtain better results than the classical PredNet 
architecture at least in some of the experiments 
made, which can help future researchers to 
develop better models for trajectory prediction, 
considering the video generation approach. The 
models can be updated in the future, considering 
that a trajectory prediction architecture still has 
better results. 
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