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1. Introduction

Machine learning service providers such as 
Google and Microsoft have invested a lot of 
energy in building machine learning models, 
such as Microsoft Azure and Google Prediction 
API. As machine learning services require more 
and more computer power, companies that 
cannot afford it will outsource machine learning 
tasks to the cloud. In the open cloud computing 
environment, transferring user data required by 
the machine learning model will face the risk of 
user privacy disclosure. Applying homomorphic 
encryption to the privacy protection system of the 
machine learning model can protect users’ privacy 
data from being illegally stolen. Homomorphic 
encryption algorithms allow the machine learning 
model to calculate the encrypted data without 
decrypting the ciphertext, output the predicted 
ciphertext result and return it to the user, decrypted 
into plaintext by the user. The machine learning 
service providers will not obtain the user’s private 
data, hence the security of the user’s private data 
is guaranteed.

Homomorphic encryption algorithms are divided 
into partially homomorphic encryption (Rivest, 
Shamir & Adleman, 1978; Goldwasser & 
Micali, 1982) and fully homomorphic encryption 
algorithms (Gentry, 2009a; Fan & Vercauteren, 
2012). The partially homomorphic encryption 
algorithms allow only a certain operation to be 
performed, e.g. addition or multiplication. The 

fully homomorphic encryption algorithms support 
the cryptographic execution of multiplication 
and addition operations, and the properties of 
homomorphism are satisfied for both operations. 
The fully homomorphic encryption algorithms 
mainly include Gentry’s Scheme (Gentry & 
Halevi, 2011; Gentry, 2009b); Brakerski-
Gentry-Vaikuntanathan (BGV) algorithm 
(Brakerski, Gentry & Vaikuntanathan, 2012) and 
Brakerski–Fan–Vercauteren (BFV) algorithm 
(Fan & Vercauteren, 2012; Brakersky, 2012), 
Gentry-Sahai-Waters (GSW) algorithm (Gentry, 
Sahai & Waters, 2013), Cheon, Kim, Kim and 
Song  (CKKS) algorithm (Cheon et al., 2017), 
and so on.

The privacy-preserving computation technology 
represented by homomorphic encryption provides 
an important information security guarantee 
for the development and application of cloud 
computing, big data, and distributed artificial 
intelligence. The current research on privacy-
preserving computation focuses on solving the 
security protection problem of machine learning 
model and on the computational efficiency of 
homomorphic encryption. Gilad-Bachrach et 
al. (2016) proposed a CryptoNets model for 
carrying out homomorphic encryption ciphertext 
calculation on the CNN model and protect users’ 
private data. Hesamifard, Takabi & Ghasemi 
(2017) proposed a Cryptodl solution, which 
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provides a theoretical basis for finding the 
lowest degree polynomial approximation of 
nonlinear activation function within a certain 
error range, and reduces the time complexity 
of the homomorphically encrypted ciphertext 
and plaintext multiplication by using number 
theoretic transforms. Chaturvedi et al.(2018) 
proposed a homomorphic encryption machine 
learning model based on Chebyshev polynomial 
deep neural network. Chabanne et al. (2017) 
used the Taylor series to approximate the 
nonlinear activation function ReLu function and 
added a batch normalization layer to improve 
the machine learning model’s performance. 
Badawi et al. (2020) proposed a homomorphic 
convolutional neural network (HCNN) model 
by using GPUs to accelerate the calculation of 
homomorphically encrypted ciphertext. Boemer 
et al. (2019) proposed a graph-HE scheme, a 
deep neural network model compiler developed 
by Intel. It supports the deployment of trained 
neural networks using popular machine learning 
frameworks to calculate homomorphically 
encrypted ciphertext in order to protect the 
user’s privacy data input into the machine 
learning model. Hesamifard et al. (2018) 
proposed a privacy-preserving machine learning 
scheme, which required more preprocessing and 
calculation on the user side. Chou et al. (2018) 
proposed a pruning and quantization method to 
implement a Faster CryptoNets scheme. Due to 
the complexity of ciphertext operations, most 
schemes only carry out machine learning with 
small-scale network layers. If the number of 
homomorphic operations is too big the learning 
and prediction process will generate high-
dimensional ciphertext data and a high level of 
ciphertext noises. The precision of prediction 
will be limited, even decryption operation 
may fail. Using homomorphic encryption to 
protect model and data security while ensuring 
the computational efficiency of a machine 
learning model over encrypted data is still a  
challenging problem.

Several methods were designed and implemented 
to improve the performance of the neural 
networks over encrypted data in order to 
improve the encrypted neural network structure 
and optimize the encrypted inference and 
computation. This paper proposes a BFV-based 
cryptographic low-latency convolutional neural 
network (CLOL-CNN) model for privacy-

preserving computation. The proposed model 
is developed to solve the problems of low 
throughput prediction in the CNN model over 
encrypted data and high computation time of 
homomorphic encryption when neural networks` 
input data comes from different user data sources 
in distributed machine learning scenarios. 

The model consists of BFV homomorphic 
encryption module, cryptographic convolution 
layer, cryptographic batch normalization 
(BN) layer, activation function layer, and 
cryptographic full connection layer. This model 
uses BFV homomorphic encryption algorithm 
to protect users’ privacy. The data input to the 
neural network model is encrypted on the user 
side. The inner layers of the neural networks 
are delicately designed to support the operation 
of homomorphic encryption. The encoding 
method for plaintext is improved by scaling the 
plaintext weight and offset to an integer power 
of two and encoding a piece of plaintext data 
into a new monomial. The time complexity 
of ciphertext and plaintext multiplication is 
reduced. In the cryptographic convolution 
layer, the ciphertext is calculated and output 
as a homomorphic ciphertext vector through 
convolution operations. To improve the model’s 
accuracy, a batch normalization layer is added 
to give the data input to the activation function a 
stable normal distribution so that the polynomial 
approximates the activation function in a small 
fixed interval. This layer does not increase the 
ciphertext multiplication depth. The activation 
function layer only performs one homomorphic 
encryption multiplication operation on the 
ciphertext vector jointly represented by all 
neurons. Finally, an arithmetic algorithm of 
homomorphic encrypted ciphertext and plaintext 
weight matrix is designed to reduce time cost in 
the cryptographic full connection layer.

This paper is organized as follows. Section 2 briefly 
presents the background of BFV homomorphic 
encryption. Section 3 provides a detailed 
presentation of the proposed CLOL-CNN model. 
Section 4 sets forth an experiment for evaluating the 
effectiveness of the proposed model and discusses 
the experimental results. Finally, Section 5 presents 
the conclusion of this paper.  
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2. Background

BFV scheme is a hierarchical fully homomorphic 
encryption scheme based on the Ring-Learning 
With Errors (RLWE) problem. The security 
of BFV scheme is guaranteed by very strong 
hardness of worst-case and average-case ideal 
lattice problems. BFV scheme takes polynomial 
rings as an algebraic system. The key, plaintext 
and ciphertext are polynomial forms. BFV 
scheme uses key exchange to limit the growth of 
ciphertext dimension, and uses modulus exchange 
to reduce noises in ciphertext. BFV’s addition and 
multiplication homomorphic computations are 
more efficient than for other schemes.

2.1 BFV-based Homomorphic 
Encryption Scheme

The encryption steps for plaintext data based on 
the BFV algorithm are as follows: 

Step 1: Select homomorphic encryption 
parameters, which include plaintext prime 
modulus t, ciphertext prime modulus q, polynomial 
highest power r, ciphertext multiplication depth L, 
and key exchange column number .

Step 2: Generate private key sk = s. s is a vector 
randomly and uniformly selected on 𝜒, and the 
parameter 𝜒 is the Gaussian noise distribution in 
the integer field, and its value is selected to be as 
small as possible. The private key sk is determined 
by equation (1):
sk χ                                                         (1)

Step 3: Generate public key. Randomly select a 
vector [ ]( ) ( )q ma Z x / ( )x← Φ , and randomly 
select a vector e ←χ , where [ ]qZ x  is the 
integer polynomial field of modulus q, x is the 
independent variable, and q is the coefficient 
module of homomorphically encrypted ciphertext 
polynomial, which is jointly determined by m, t, 
and r. ( )m xΦ  is a circular polynomial, which 
can be decomposed into ψ(m) multiplied by the 
irreducible polynomials, and the public key pk is 
determined by equation (2):

[ ]( ) ( )0 1qpk as e ,a pk ,pk= − + =
                    

(2)

Step 4: A homomorphic encryption polynomial 
is used for encoding plaintext vector into a 
polynomial. The plaintext is encoded into a prime 

polynomial [ ]( ) ( )t mM Z x / x← Φ , where [ ]tZ x  
is the integer polynomial field of module t.

Step 5: Encrypt plaintext polynomial with the 
public key. Randomly generate noise polynomial 

1e ←χ , and uniformly selected vector s ←χ .  
Multiply polynomial m by an amplification factor 
q/t, and encrypt plaintext polynomial m with 
public key pk to obtain ciphertext C as it is shown 
in equation (3):

[ ] ( )1 q
C= q / t M e pk s + +                            (3)

2.2 Operations over BFV-based 
Encrypted Data

Given two ciphertexts:

[ ] ( )1 1 1 1 q
c q / t M e pk s + + =

                      (4)

[ ] ( )2 2 2 2 q
c q / t M e pk s + + =

                    (5)

where 1M  and 2M  are prime polynomials 
encoded by two plaintexts, 1e  and 2e  are the noise 
polynomials randomly generated on the Gaussian 
noise distribution, s is the vector randomly and 
uniformly selected on the Gaussian distribution, 
and pk is the public key.

The addition result for the two ciphertexts is 
shown in equation (6):

[ ]( )
[ ]( )
[ ]( ) ( ) ( )

1 2 1 1 1

2 2 2

1 2 1 2 1 2

c c q / t M e hs

q / t M e hs

q / t M M e e pk s s

+ + +

+ + +

= + + + + +

=

  

(6)

The multiplication result for the two ciphertexts 
is shown in equation (7):

[ ] [ ]( ) ( )2
1 2 1 2 1 2c c q / t M M e pk s s⋅ ⋅= + +        (7)

When two ciphertexts are multiplied, the result is 
composed of three-ring elements instead of two-
ring elements according to the scaling of q / t .  
With the increase in the number of ciphertext 
multiplications, the dimension of ciphertexts 
will become larger, and time and space costs will 
be increased exponentially. To avoid dimension 
expansion, the dimension of the ciphertext should 
be reduced. Let [ ]0 1 2c c ,  c ,  c=  represent the 
homomorphically encrypted ciphertext calculated 
as 1 2c c⋅ , and one should verify if [ ]0 1c '   c ',  c '=  
satisfies equation (8).

2 ' '
0 1 2 0 1q q

c c S c S c c S R   + + = + ⋅ +⋅   ⋅
         

(8)
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where R, S are small noise polynomials. When 
performing re-linearization, additional noise 
must be considered so that correct values can 
be decrypted.

3. Algorithmic Contributions

3.1 Overall CLOL-CNN Model

A BFV-based homomorphic encryption is 
employed in order to establish a cryptographic 
convolutional neural network model to protect the 
user’s plaintext privacy data from being leaked. 
The proposed model can homomorphically 
encrypt users’ data with different secret keys 
from different sources and perform deep learning 
prediction over encrypted data with low latency. 

The framework of the CLOL-CNN model is 
illustrated in Figure 1. Plaintext data is encrypted 
by the user into a homomorphically encrypted 
ciphertext with a length k and input into the CLOL-
CNN model. The cryptographic convolution layer 
outputs the ciphertext vector after convolution 
calculation. The cryptographic BN layer is added 
before the activation function layer so that the data 
input to the activation function has a stable normal 
distribution. The activation function layer applies 
the polynomial approximation of the nonlinear 
activation function to each ciphertext vector 
for feature combination. The cryptographic full 
connection layer outputs the prediction result over 
encrypted data.

Figure 1. The framework of the CLOL-CNN model

3.2 Plaintext Encoding Method

For a given plaintext integer z, its binary expansion 
is expressed as n 1( ) 1 0z z z z−= … . The integer z 

can be encoded as polynomial ( )
n 1

i
i

i 0

f x b x .
−

=

=∑  

If iz 0≥ , then the polynomial coefficient ib =
iz . If iz 0< , then the polynomial coefficient 
ib = it z .−  The encoding method for plaintext 

is improved by scaling the plaintext weight and 
offset to an integer power of two and encoding 
a piece of plaintext data into a new monomial. 
When plaintext kb 2= ±  is selected, k∈Z, the 
binary expansion of plaintext z only has one bit 
with an assigned value, and the other bits are 0. 
The plaintext z is encoded as k

kb x , which is a 
monomial. This plaintext encoding method gives 
the time complexity of the multiplication operation 
of homomorphically encrypted ciphertext and 
plaintext ( )O n .

Based on this plaintext encoding method, the 
multiplication algorithm for ciphertext and 
plaintext is described in Algorithm 1.

Algorithm 1. Ciphertext and plaintext multiplication

1: Input: encoded plaintext b= ,k
kb x ciphertext c=

1

0

−

=
∑
n

i
i

i

c x

2: Output: homomorphic encrypted ciphertext 
1

0

 
−

=

=∑
n

i
i

i

d d x
3: for i=0 to n-1 do
4: initialization j=i+k.
5: if j≤ n-1 then
6: ( )  =   j i kd c b moduloQ
7: else
8: ( )  − =   j n i kd c b moduloQ
9: end if
10: end for
11: Calculate homomorphic encrypted ciphertext 

1

0

 
−

=

=∑
n

i
i

i

d d x

3.3 Ciphertext Operations in the 
Cryptographic Convolution Layer

All pixels of each image are homomorphically 
encrypted into a homomorphically encrypted 
ciphertext, which is represented by vector v. 
The ciphertext is decomposed into r pieces of 
ciphertext, represented by vectors 1 r m , ,m… , 
where the i-th element of vector jm  is ( )

ió v j . 
This ciphertext representation makes ciphertext 
convolution calculation faster and more 
effective in the convolution layer. When the 
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convolution kernel is flattened to one dimension, 
the convolution operation can be regarded as a 
restricted linear operation. When the weight 
vector w, convolution window size w, a set of 
permutations σi, and other parameters are set, the 
output of the convolution operation corresponding 
to the plaintext weight jw  in the convolution 
kernel is  

ij σ
j

w v j . Let  
i

j
i σm v j .The 

output of the convolution operation is calculated 
by j

j  w m , i.e. it can be calculated by using r 
times of homomorphically encrypted ciphertext 
multiplication and r-1 times of homomorphically 
encrypted ciphertext addition. The ciphertext 
operations in the cryptographic convolution layer 
are described in Algorithm 2.

Algorithm 2. Ciphertext convolution operation
1: Input：image with size m×m, convolution kernel size 

n×n, step size s, filling p. 
2: Output: convolution result V.
3: An image with size m×m is homomorphically encrypted 

into a one-dimensional vector v of length 2m . 
4: v→(

21 , ,… nm m ), len( 1m )=…=len(
2nm ) =

=
22 1 − + 

+ 
 

m n p
s

, corresponding to 2n  weights in 

the convolution kernel.
5: for i=1 to 2n  do
6: = ×i i

im m w
7: end for
8: for i=1 to 2n  do
9: V=V+ im
10: end for

For example, a pixel matrix 4
4A R∈  corresponds 

to an image with 4×4 pixels and a convolution 
filter with size 2×2. The convolution filter 
slides on the image with a step size of 2 in 
each direction. i, ja  is expressed as row i and 
column j of matrix A. Firstly, the input image 
is homomorphically encrypted into a vector v 
= (a11, a12, a13, a14, a21, a22, a23, a24, a31, a32, a33, 
a34, a41, a42, a43, a44). The homomorphically 
encrypted ciphertext is decomposed into four 

homomorphic encrypted ciphertexts, namely 
1

11 13 31 33M (a , a , a , a )= , ( )2
12 14 32 34M a , a , a , a= , 

( )3
21 23 41 43M a , a , a , a= , ( )4

22 24 42 44M a , a , a , a= .  
The plaintext weight in the convolution kernel 
encodes the plaintext weight and plaintext offset 
into a monomial with the proposed encoding 
method so that the multiplication overhead of 
homomorphic encrypted ciphertext and plaintext is 
smaller than in the case of other encoding methods. 
The four homomorphic encrypted ciphertexts are 
multiplied by the corresponding four plaintext 
weights in the convolution kernel to calculate 
the four homomorphic encrypted ciphertext 
vectors. Then these four homomorphic encrypted 
ciphertext vectors are added to calculate an output 
vector of the convolution layer. Homomorphically 
encrypted ciphertext multiplication is used only 
four times and homomorphically encrypted 
ciphertext addition is used only three times in 
convolution operations, as it is shown in Figure 
2. The homomorphically encrypted ciphertext is 
output as a homomorphically encrypted ciphertext 
vector after convolution operations.

3.4 Ciphertext Operations in the 
Cryptographic BN Layer 

The batch normalization layer is widely used in 
deep learning models, and is generally placed after 
the convolution layer. The BN layer standardizes 
the distribution of all samples in a batch while 
keeping the statistical distribution of each sample 
in the batch unchanged to reduce the difference 
between different samples in the same batch. The 
BN layer is added before the activation function 
layer so that the data input to the activation 
function has a stable normal distribution. The 
polynomial approximation can fit the activation 
function in a small fixed interval to improve the 
model’s accuracy. 

Figure 2. Ciphertext operations in the convolution layer
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The ciphertext operations in the BN layer are 
described in Algorithm 3.

Algorithm 3. Ciphertext operation in the BN layer

1. Input: Homomorphic encrypted ciphertext ix  , 
outputted by the i-th neuron of convolution layer, its 
weight w, and BN layer parameters r, β

2. Output：batch normalized result BNz .

3. Calculate ciphertext mean 
m

z i
i 1

1μ w x
m



 
 (m is the number of neurons).
4. Calculate ciphertext variance

m
2 2
z i z

i 1

1σ (w x μ )
m



   .

5. Train the parameters

 
2
z

rr
σ ε

ˆ 


,

 

z
2
z

r μβ β
σ ε

ˆ 
 


.

6.Calculate a batch normalized result 

BN iz (wr̂)x β̂   and input it to the next layer.

The learnable parameters r, β are trained by back 
propagation in the training phase. The chain 
derivative equations of back propagation are 
used to calculate and update r, β and relevant 
weights. In forward propagation, ciphertext mean 
μz and ciphertext variance 2

zσ  are calculated by 
xi, and then μz, 

2
zσ  are updated with momentum. 

The new distribution value is calculated through 
the parameters r, β. The added BN layer may 
increase the computational overhead of the 
deep learning model. In order to apply the BN 
layer to homomorphic encryption, the ciphertext 
operations in the proposed model are calculated by 
the formula BN iz (wr̂)x â̂= + , where wr̂  is fixed 
in the prediction phase, and the multiplication 
depth of homomorphic encryption ciphertext is 
reduced to 1. The batch normalization layer is 
applied to improve the classification accuracy 
of homomorphically encrypted ciphertext, and 
the multiplication depth of homomorphically 
encrypted ciphertext is not increased.

3.5 Ciphertext Operations in the 
Activation Function Layer

The activation function layer only performs 
one homomorphic encryption multiplication 
operation on the ciphertext vector jointly 
represented by all neurons. The prediction time 
of the homomorphically encrypted ciphertext 
vector is effectively reduced. In addition, the 
memory bottleneck problem can be solved by 
homomorphically encrypting the whole image 
rather than the pixels at the same position of several 

images. This improvement enables the model 
to analyze larger datasets more effectively and 
makes the homomorphic encryption scheme more 
applicable in deep learning over encrypted data.

3.6 Ciphertext Operations in the Full 
Connection Layer

Algorithm 4. Multiplication of ciphertext vector and 
plaintext weight matrix in full connection layer

1. Input: homomorphic encrypted ciphertext vector v 
with length k, weight matrix W with size k h× .

2. Output: full connection result A
3. Generate n copies of the ciphertext vector v, 

and define a new ciphertext vector m satisfy 
n 2i i k ii 2 km ,m ,m , v− ×+ + …= .

4. Select the n rows of the weight matrix W to transform 
into a one-dimensional vector u with length n k× , 
and then the weight matrix is encoded into h/n one-
dimensional vectors 0 1 h/na ,  a ,  ,  a… .

5. for i = 1 to h/n do 
6.    i ia m a= ⋅ . 
7. end for
8. Calculate the full connection result A: rotate the h/n 

ciphertext vectors 0 1 h/na ,  a ,  ,  a… , and then  
add them.

Assume that the size of the full connection 
layer is k h.×  A homomorphically encrypted 
ciphertext vector v with length k is input into 
the full connection layer. A homomorphically 
encrypted ciphertext vector m is composed 
of n copies of homomorphically encrypted 
ciphertext vector v with length k, and the 
elements in homomorphic encrypted ciphertext 
vector m satisfy n 2i i k ii 2 km ,m ,m v−+ + ×

…= .  
A plaintext weight matrix W with n rows in 
the full connection layer can be transformed 
into a one-dimensional plaintext vector u with 
length n k× . The homomorphically encrypted 
ciphertext vector m is multiplied by the one-
dimensional plaintext vector u with length n k× . 
The multiplication result is a new homomorphic 
encrypted ciphertext vector. One calculation 
can use n neurons in the full connection layer. 
If the full connection layer has h neurons, it 
only needs to perform the multiplication of 
homomorphic encrypted ciphertext vector and 
plaintext vector h/n  times and output h/n  
vectors. A homomorphically encrypted ciphertext 
vector can be obtained by rotating and adding 
these vectors, which is the output result of the 
full connection layer. The calculation method is 
described in Algorithm 4.
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4. Experiments

In order to evaluate the effectiveness of the CLOL-
CNN model, the experiment carried out includes 
two phases: the model training phase and the 
homomorphically encrypted ciphertext prediction 
phase. The model training phase aims to train and 
optimize the parameters effectively used during the 
forward propagation of ciphertext prediction. The 
plaintext dataset is employed for training the model. 
In the ciphertext prediction phase, the plaintext 
data is encrypted by BFV-based homomorphic 
encryption, and the ciphertexts are predicted. 
The MNIST image dataset is applied to evaluate 
the proposed model. The detailed experimental 
environment description is shown in Table 1.

4.1 Experimental Learning and 
Predicting Task

The application scenario for the proposed model 
is shown in Figure 3. There is a learning and 
predicting task, which requires that the client 
submits the user’s hand-writing pictures to the 
cloud and the model in the cloud performs training 
or prediction. User’s data from different sources 
is encrypted into a homomorphically encrypted 
ciphertext. The CLOL-CNN model predicts the 
homomorphically encrypted ciphertext. The user 
decrypts the predicted result. Since the user’s data 

is input into the CLOL-CNN model after being 
homomorphically encrypted, the model cannot 
obtain the user’s private data, and the security of 
the user’s private data is guaranteed. On the other 
hand, the user cannot obtain the internal structure 
and parameters of the CLOL-CNN model, and the 
security of the model is guaranteed.

4.2 Polynomial Approximation of 
Nonlinear Activation Function

In the proposed model, the BN layer is added 
before the activation function layer so that the 
data input to the activation function has a stable 
normal distribution. Because nonlinear activation 
functions, such as ReLU, swish, sigmoid, and 
tanh, are unsuitable for homomorphic encryption, 
the polynomial approximation method represents 
these functions. The polynomial approximation 
fit the activation function in a small fixed interval. 
ReLU, swish, sigmoid, and tanh functions represent 
the second- to fourth-order approximations of 
polynomials for the interval [− 4,4].

The polynomial approximation of the activation 
function on the standard normal distribution 
is calculated, and the polynomial regression 
function Polyfit in the Python software 
package Numpy is used in the experiment. 
This function input set ( )1 NX X , ,X= … , 

Table 1. Experimental environment

Environment configuration Model training Ciphertext prediction
Processor Amd Ryzen 7 5800H 3.20GHz Amd Ryzen 7 5800H 3.20GHz

Operating system Win 10 Ultimate 64 bit Win 10 Ultimate 64 bit
Running memory 16GB 16GB

Programing language Python Python C++
Tool library Tensorflow1.3, Numpy SEAL

Figure 3. The application scenario for the CLOL-CNN model
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and polynomial degree n, output polynomial 
( ) 2 n

0 1 2 nP X C X C X C X C X= + + +…+ .  The 
Polyfit function is applied to ( )( ){ }i iX ,ACT X , 
where xi is randomly selected from the standard 
normal distribution with the interval [−4,4], and 

( )iACT X  is a nonlinear activation function. 
Polynomial fitting of the nonlinear activation 
functions is shown in Figure 4. 

Figure 4. Polynomial function fitting of nonlinear 
activation functions

4.3 Training Process for  
MNIST Dataset

The CLOL-CNN model architecture for the 
MNIST dataset includes ten layers, as it is shown 
in Figure 5. In the training phase, the second-
order, third-order, and fourth-order polynomial 
approximations of the four selected nonlinear 
activation functions are used in the activation 
function layer. In order to evaluate the effectiveness 
of polynomial approximations, 32 groups of 
comparative experiments were conducted. 
Meanwhile, the model with the BN layer and 
without the BN layer was tested separately to 
observe the influence of the BN layer on activation 
functions. Figure 6 displays the accuracy of the 
proposed model in the model training phase for 
the four above-mentioned training functions. 
When the fourth-order polynomial approximation 
of the ReLU function is selected as the activation 
function, the training accuracy of the proposed 
model reaches 99.56%, which is better than that 
of other polynomial approximations. The fourth-
order polynomial approximations of the ReLU 
function can be further used in the ciphertext 
prediction phase.

4.4 Prediction Process for  
MNIST Dataset

The BFV-based encryption scheme in the 
homomorphic encryption SEAL library is used 
for encrypting MNIST plaintext data. In the 
ciphertext prediction phase, all pixels of an 
image are encrypted into a ciphertext vector 
through BFV-based homomorphic encryption. 
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Homomorphic encryption parameters are set as n 
= 784, t1=1099511922689, t2=10099512004609, 
q=2283-233+1. Because t1·t2> 280, and q<2284, each 
coefficient corresponding to a homomorphically 
encrypted ciphertext polynomial needs 48 bytes. 
The setting of encryption parameters meets the 
requirements of homomorphic encryption security 
specifications and standards (Albrecht et al., 
2021). Then, the prediction result over encrypted 
data is output by the proposed model.

4.5 Analysis of Experimental Results

To evaluate the performance of the CLOL-
CNN model, nGraph-HE, CryptoNets, DeepDL, 
CryptoDL, and SecureML (Mohassel & Zhang, 

2017) were used as baseline models and CLOL-
CNN was compared with these models. The 
experimental results are shown in Table 2.

4.5.1 Prediction Accuracy of  
CLOL-CNN Model

Table 2 shows that the prediction accuracy of 
the CLOL-CNN model for the homomorphically 
encrypted MNIST dataset reaches 99.56%, 
which is better than other models. Compared 
with the other models, the CLOL-CNN model 
uses the BFV-based encryption scheme that 
does not increase the noises of the ciphertext 
data rapidly. In the proposed model a BN layer 
is added before the activation function layer so 

Figure 5. CLOL-CNN architecture for MNIST dataset

Figure 6. The accuracy of the proposed model with different polynomial approximations

Table 2. Comparison between CLOL model and other models

Dataset Performance CLOL-CNN nGraph-HE CryptoNets DeepDL CryptoDL SecureML

MNIST
Accuracy(%) 99.56 96.9 98.95 99.3 99.52 93.4
Runtime(s) 2.85 135 570 147 320 17.8
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that the data input into the activation function 
can have a normal distribution and the full 
connection layer is retained. The CLOL-CNN 
model only needs to approximate the nonlinear 
activation function with a polynomial function 
in a fixed interval. The efficiency optimization 
algorithms can support more network layers 
with homomorphic operations. They are helpful 
in order for the model to learn more fine-grained 
features of encrypted data and obtain a higher 
classification accuracy.

4.5.2 Time Cost Required in the 
Prediction Phase of the  
Proposed Model

The proposed convolution algorithm of 
homomorphically encrypted ciphertext data 
and the full connection operation algorithm 
of homomorphic encrypted ciphertext vector 
and plaintext weight matrix optimize the 
calculation time for the CLOL-CNN model over 
encrypted data. The activation function layer 
only performs one homomorphic encryption 
multiplication operation on the ciphertext vector 
jointly represented by all neurons. An arithmetic 
algorithm of homomorphic encrypted ciphertext 
and plaintext weight matrix is designed to reduce 
time cost in the cryptographic full connection 
layer. In the CryptoNets model, each neuron 
in CNN alone represents a homomorphically 
encrypted ciphertext. There is an input 
of 845 neurons input into the CryptoNets 
activation function layer, representing 845 
homomorphic encrypted ciphertexts. A total 
of 845 homomorphic encrypted ciphertext 
multiplications are required. In contrast to 
other models, the neurons of each layer in the 
CLOL-CNN model are collectively mapped to 
a homomorphically encrypted ciphertext, so the 
activation function layer only needs to calculate 
multiplication for a homomorphically encrypted 
ciphertext. The prediction time for a single 
homomorphically encrypted MNIST image is 
effectively reduced to 2.85s, which is lower than 
the prediction time for the other selected models. 
For the CLOL-CNN model, the runtime required 
for ciphertext calculation for each layer is shown 
in Table 3.

4.5.3 The Size of Ciphertext 

In this experiment, the homomorphically encrypted 
ciphertext is expressed as four polynomials. 
The highest degree of each polynomial is 784, 
and each coefficient in the polynomial needs 48 
bytes. All pixels of each image are encrypted into 
a ciphertext with the size of 28×28×48×5 bytes. A 
homomorphic encrypted ciphertext image requires 
183.75MB of memory space. By encrypting all 
pixels of each image into a homomorphically 
encrypted ciphertext and mapping each layer 
of the CLOL-CNN model’s neurons to a single 
homomorphically encrypted ciphertext vector, the 
memory overhead is well handled. 

Table 3. Runtime required for ciphertext calculation 
for each layer of the CLOL-CNN model

CLOL-CNN model network layer Time(s)
Convolution layer c1 + BN1 0.49

Activation function layer AC1 0.16
Convolution layer c2 + BN2 0.36

Activation function layer AC2 0.12
Full connection layer FC1 + BN3 1.04
Activation function layer AC3 0.11

Full connection layer FC2 0.57

5. Conclusion

This paper analyzes the influence of encrypted data 
on building deep learning models in distributed 
privacy-preserving applications and services. To 
improve the accuracy and computational overhead 
over homomorphically encrypted data, the BFV-
based cryptographic low-latency convolutional 
neural network (CLOL-CNN) model is proposed, 
which takes the user’s privacy data protection and 
model inference and prediction into consideration 
simultaneously. The structure of the model and 
calculation operations over encrypted data are 
designed in detail. The proposed model was 
evaluated by using the MNIST image dataset. 
The experimental results show that in comparison 
with other related models based on homomorphic 
encryption, the CLOL-CNN model can achieve 
a validation accuracy of over 99.5% with the 
homomorphically encrypted ciphertext of the 
MNIST dataset, it can accomplish the ciphertext 
prediction with low latency, and can improve 
the memory overhead of the homomorphically 
encrypted ciphertext.
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The proposed CLOL-CNN model can effectively 
perform deep learning and computation on 
homomorphically encrypted data to protect user 
data privacy. As a possible future direction, the 
BFV-based scheme and efficiency optimization 
method presented in this paper could be applied in 
order to construct other deep learning models with 
more network layers. BFV-based homomorphic 
encryption scheme guarantees the user’s privacy, 
data security, and model security. Cryptographic 
batch normalization enables the encrypted vectors 
to have a stable normal distribution. Polynomial 
approximation solves the problem related to the 
fact that the nonlinear activation function cannot 
perform homomorphic encryption. The proposed 

convolution and full connection operations on 
homomorphic encrypted data and vectors optimize 
the time and space cost of the deep learning model 
over encrypted data.
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