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1. Introduction 

Let us consider the nonlinear unconstrained 
optimization problem 

{ }min ( ): ,nf x x R∈  (1.1) 

where : nf R R→  is a continuously 
differentiable function, bounded from below. 
As we know, for solving this problem starting 
from an initial guess 0

nx R∈  a nonlinear 
conjugate gradient method generates a 
sequence { }kx  as 

1k k k kx x dα+ = + , (1.2) 

 

where 0kα >  is obtained by line search and 
the directions kd  are generated as 

1 1k k k kd g sβ+ += − + ,   0 0d g= − . (1.3) 

In (1.3) kβ  is known as the conjugate 
gradient parameter, 1k k ks x x+= −  and 

( )k kg f x= ∇ . Consider .  the Euclidean 

norm and define 1k k ky g g+= − . The line 
search in the conjugate gradient algorithms is 
often based on the standard Wolfe conditions: 

( ) ( ) ,T
k k k k k k kf x d f x g dα ρα+ − ≤  (1.4) 
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1
T T
k k k kg d g dσ+ ≥ , (1.5) 

where kd  is a descent direction and 
0 1.ρ σ< ≤ <   

The search direction kd , assumed to be a 
descent one, plays the main role in these 
methods. Different conjugate gradient 
algorithms correspond to different choices for 
the scalar parameter .kβ  On the other hand the 
stepsize kα  guarantees the global convergence 
in some cases and is crucial in efficiency. The 
line search in the conjugate gradient algorithms 
is often based on the standard Wolfe conditions. 
Plenty of conjugate gradient methods are 
known and an excellent survey of these 
methods with a special attention on their global 
convergence is given by Hager and Zhang [20]. 
A numerical comparison of conjugate gradient 
algorithms (1.2) and (1.3) with Wolfe line 
search (1.4) and (1.5), for different formulae of 
parameter kβ  computation, including the Dolan 
and Moré performance profile, is given in [6]. 

In [23] Jorge Nocedal articulated a number of 
open problems in conjugate gradient 
algorithms. Two of them seem to be really 
very important. One refers to the direction 
computation in order to take into account the 
problem structure. In particular, when the 
problem is partially separable the idea is to 
use the partitioned updating like in quasi-
Newton methods [18]. The second one 
focuses on the step length. Intensive 
numerical experiments with conjugate 
gradient algorithms proved that the step 
length may differ from 1 up to two orders of 
magnitude, being larger or smaller than 1, 
depending on how the problem is scaled. 
Moreover, the sizes of the step length tend to 
vary in a totally unpredictable way. This is in 
contrast with the Newton and quasi-Newton 
methods, as well as with the limited memory 
quasi-Newton methods, which usually admit 
the unit step length for most of the iterations 
and require only very few function 
evaluations for step length determination. 

In this paper we present a conjugate gradient 
algorithm which address to these open 
problems. The structure of the paper is as 
follows. In section 2 we present a conjugate 

gradient algorithm with modified secant 
condition. The idea of this algorithm is to use 
the Newton direction for kβ  computation in 
(1.3). This leads us to a formula for kβ  
which contains the Hessian of the minimizing 
function. In section 3 we present the 
convergence of the algorithm both for 
uniformly convex functions and for general 
nonlinear functions. We prove that under 
common assumptions and if the direction is a 
descent one then the method is globally 
convergent. In section 4 we present an 
acceleration scheme of the algorithm. The 
idea of this computational scheme is to take 
advantage that the step lengths kα  in 
conjugate gradient algorithms are very 
different from 1. Therefore, we suggest we 
modify kα  in such a manner as to improve 
the reduction of the function values along the 
iterations. In section 5 we present the 
ACGMSEC algorithm and we prove that for 
uniformly convex functions the convergence 
of the accelerated algorithm is still linear, but 
the reduction in function values is 
significantly improved. Numerical 
comparisons of our algorithm with some 
other conjugate gradient algorithms including 
CG_DESCENT by Hager and Zhang [19], 
CONMIN by Shanno and Phua [29], 
SCALCG by Andrei [3-5], or limited quasi-
Newton LBFGS by Liu and Nocedal [22] are 
presented in section 6. For this we use a set of 
750 unconstrained optimization problems 
presented in [1], some of them from the 
CUTE library [10]. We show that the 
suggested algorithm outperforms the above 
conjugate gradient algorithms and LBFGS. 

2. Conjugate Gradient Algorithms 
with Modified Secant Condition 

Our motivation to get a good algorithm for 
solving (1.1) is to choose the parameter kβ  
in (1.3) in such a way so that for every 1k ≥  
the direction 1kd +  given by (1.3) be the 
Newton direction. Therefore, from the 
equation 

2 1
1 1 1( )k k k k kf x g g sβ−
+ + +−∇ = − + . 
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after some algebra we get: 

2
1 1 1

2
1

( )
( )

T T
k k k k k

k T
k k k

s f x g s g
s f x s

β + + +

+

∇ −
=

∇
. (2.1) 

The salient point with this formula for kβ  
computation is the presence of the Hessian. 
Observe that if the line search is exact we get 
the Daniel method [14]. For large-scale 
problems, choices for the update parameter that 
do not require the evaluation of the Hessian 
matrix are often preferred in practice to the 
methods that require the Hessian. However, the 
presence of the Hessian in kβ  recalls the open 
problem articulated by Nocedal [23]: whether 
one can take advantage of the problem structure 
to design a more efficient nonlinear conjugate 
gradient iteration. Indeed, our numerical 
experiments proved that even though the 
Hessian is partially separable (block diagonal) 
or it is a multidiagonal matrix, the Hessian / 
vector product 2

1( )k kf x s+∇  is time 
consuming, especially for large-scale problems. 
In another effort to use the Hessian in kβ  in [8] 
we experienced a nonlinear conjugate gradient 
algorithm in which the Hessian / vector product 

2
1( )k kf x s+∇  is approximated by finite 

differences. Even though we have got good 
numerical results, in this paper we prefer to 
consider another way of using the curvature of 
the function given by the Hessian. 

As we know, for quasi-Newton methods an 
approximation matrix kB  to the Hessian 

2 ( )kf x∇  is used and updated so that the 
new matrix 1kB +  satisfies the secant 
condition 1k k kB s y+ = . Therefore, in order to 
have an algorithm for solving large-scale 
problems we can assume that the pair 
( , )k ks y  satisfies the secant condition. In this 
case, Zhang, Deng and Chen [30] proved that 
if ks  is sufficiently small, then 

32
1( ) ( )T T

k k k k k ks f x s s y O s+∇ − = . Further, 
Zhang, Deng and Chen [30] and Zhang and 
Xu [31] expanded the secant condition and 
obtained a class of modified secant condition 
with a vector parameter which uses both the 
gradients and the function values in two 

successive points as: 

1 ˆ ,k k kB s y+ =   ˆ k
k k kT

k k

y y u
s u
η

= + , (2.2) 

where  

1 16( ) 3( )T
k k k k k kf f g g sη + += − + +  (2.3) 

and n
ku R∈  is any vector such that 

0.T
k ks u ≠  Obviously, from (2.2) we get 

1 .T T
k k k k k ks B s s y η+ = +  (2.4) 

Zhang, Deng  and  Chen [30]  proved  that  
if ks  is  sufficiently  small,  then  for  

any vector ku  with 0,T
k ks u ≠  

42
1 ˆ( ) ( )T T

k k k k k ks f x s s y O s+∇ − =  holds. 

Therefore, the quantity ˆT
k ks y  given by the 

modified secant condition (2.2) approximates 
the second-order curvature 2

1( )T
k k ks f x s+∇  

with a higher precision than the quantity 
T
k ks y  does. This is a very good motivation 

to use it in (2.1). For this purpose, in order to 
unify both approaches, we consider a slight 
modification of the modified secant condition 
(2.2) as 1 ,k k kB s z+ =  where 

k
k k kT

k k

z y u
s u
δη

= +  (2.5) 

and 0δ ≥  is a scalar parameter. With 

k ku s=  this leads us to  

1 1
2 1 .

T T
k k k k k

k T T
k k k k k kk

s g y g
y s y ss

δηβ
δη δη
+ +

⎛ ⎞
⎜ ⎟= − +
⎜ ⎟ + +⎝ ⎠

 (2.6) 

Therefore, the direction is  

1
1 1 2

1

1

,

T
k k k

k k kT
k k kk

T
k k

kT
k k k

s gd g s
y ss

y g s
y s

δη
δη

δη

+
+ +

+

⎛ ⎞
⎜ ⎟= − + −
⎜ ⎟ +⎝ ⎠

+
+

 (2.7) 
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which is an approximation of the Newton 
direction. Observe that (2.7) can be expressed as: 

1 1 1 ,k k kd Q g+ + += −  (2.8) 

where 

1 1
T T

k k k k k
k T T T

k k k k k k k k

s y s sQ I
y s s s y s

δη
δη δη+

⎛ ⎞
= − + −⎜ ⎟+ +⎝ ⎠

 (2.9) 

is another rank two approximation to the 
inverse of the Hessian. Since the matrix 1kQ +  
defined by (2.9) is not symmetric and hence not 
positive definite, therefore the corresponding 
directions are not necessarily descent and 
numerical instability can result. For 0δ =  we 
get exactly the Perry method [24]. 

3. Convergence Analysis 

In this section we analyze the convergence of 
the algorithm (1.2) and (2.7), 
where 0 0d g= − . In the following we 
consider that 0kg ≠  for all 1k ≥ , otherwise 
a stationary point is obtained. Assume that: 

(i) The level set 

{ }0: ( ) ( )nS x R f x f x= ∈ ≤  is 

bounded, i.e. there is a constant D such 
that x D≤  for all .x S∈  

(ii) In a neighborhood N  of S , the 
function f is continuously 
differentiable and its gradient is 
Lipschitz continuous, i.e. there exists a 
constant 0L >  such that 

( ) ( )f x f y L x y∇ −∇ ≤ − , for all 
, .x y N∈  

Under these assumptions on f  there exists a 
constant 0Γ ≥  such that ( )f x∇ ≤ Γ  for all 

.x S∈  In order to prove the global 
convergence, we assume that the step size kα  
in (1.2) is obtained by the strong Wolfe line 
search, that is, 

( ) ( ) ,T
k k k k k k kf x d f x g dα ρα+ − ≤  (3.1) 

1 .T T
k k k kg d g dσ+ ≤  (3.2) 

where ρ  and σ  are positive constants such 
that 0 1.ρ σ< ≤ <  

Dai et al. [13] proved that for any conjugate 
gradient method with strong Wolfe line 
search the following general result holds: 

Lemma 3.1. Suppose that the assumptions (i) 
and (ii) hold and consider any conjugate 
gradient method (1.2) and (1.3), where kd  is 
a descent direction and kα  is obtained by the 
strong Wolfe line search (3.1) and (3.2). If 

2
1

1
k kd≥

= ∞∑ , (3.3) 

then 

liminf 0.k
k

g
→∞

=  ■ (3.4) 

To prove the global convergence of the 
algorithm we need the following estimates. 
Using the mean value theorem in (2.3) we 
have: 

1 16( ) 3( )T
k k k k k kf f g g sη + += − + +  

1 16 ( ) ( ) 3( ( ) ( ))T T
k k k k k kf x x f x f x sξ + += ∇ − + ∇ +∇

1

3 ( ) 3 ( ) 3 ( )

3 ( )

T T T
k k k k k k

T
k k

f s f s f x s

f x s

ξ ξ

+

= − ∇ − ∇ + ∇

+ ∇

( )13 ( ) ( ) ( ) ( ) ,T
k k k k kf x f f x f sξ ξ+= ∇ −∇ +∇ −∇

 

where 1(1 )k k kx xξ τ τ += + −  and (0,1).τ ∈  
From the Lipschitz continuity we have: 

(
)1

3 ( ) ( )

( ) ( )
k k k

k k k

f x f

f x f s

η ξ

ξ+

≤ ∇ −∇

+ ∇ −∇
 

( )13 k k k k kL x L x sξ ξ+≤ − + −  

( )1 13 (1 ) k k k k kL x x L x x sτ τ+ += − − + −  

2 2 23 (1 ) 3 3 .k k kL s L s L sτ τ= − + =  (3.5) 
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On the other hand 

T T
k k k k k ky s y sδη δ η+ ≤ +  

2 23k k k k ky s L s L sδ η δ≤ + ≤ +
2(1 3 ) .kL sδ= +  (3.6) 

Global convergence for uniformly convex 
functions. For uniformly convex functions 
which satisfy the above assumptions (i) and 
(ii) we can prove that the norm of 1kd +  
generated by (2.7) is bounded above. Thus, 
by Lemma 3.1 we can prove the global 
convergence of the algorithm (1.2) and (2.7). 

As we know, if f  is a uniformly convex 
function, then there exists a constant 0μ >  
such that 

2( ( ) ( )) ( ) ,Tf x f y x y x yμ∇ −∇ − ≥ −  for 

any , .x y S∈  (3.7) 

Equivalently, this can be expressed as 

2( ) ( ) ( ) ( ) ,
2

Tf x f y f y x y x yμ
≥ +∇ − + −

 for any , .x y S∈  (3.8) 

From (3.7) and (3.8) it follows that 

2 ,T
k k ky s sμ≥  (3.9) 

2
1 1 .

2
T

k k k k kf f g s sμ
+ +− ≥ − +  (3.10) 

Obviously, from (3.9) and (3.10) we get: 

2 2T
k k k ks y s L sμ ≤ ≤ , (3.11) 

i.e. .Lμ ≤  

Theorem 3.1. Suppose that the assumptions 
(i) and (ii) hold and f  is a uniformly convex 
function. Consider the algorithm (1.2) and 
(2.7), where  1kd +  is a descent direction and 

kα  is obtained by the strong Wolfe line 
search (3.1) and (3.2). If ,L μ=  then for any 

0δ ≥  the algorithm satisfies lim 0.kk
g

→∞
=  If 

,L μ>  then for 0 /(3( ))L Lδ μ≤ ≤ −  the 
algorithm satisfies lim 0.kk

g
→∞

=  

Proof. Using the above relations (3.10) and 
(3.11) we have 

1

1

6 ( )

3 ( )

T T
k k k k k k k

T
k k k

y s y s f f

g g s

δη δ

δ
+

+

+ = + −

+ +
 

2
1

1

6 ( )
2

3 ( )

T T
k k k k k

T
k k k

y s g s s

g g s

μδ

δ

+

+

≥ + − +

+ +
 

2
1 16 3 3 3T T T T

k k k k k k k k ky s g s s g s g sδ δμ δ δ+ += − + + +
2(1 3 ) 3T

k k ky s sδ δμ= − +
3(1 3 ) T T

k k k ky s y s
L
δμδ≥ − +  

3(1 3 ) .T
k ky s

L
δμδ= − +  (3.12) 

Now, if ,L μ=  then for all 0δ ≥ , 
2 ,T

k k k ky s sδη μ+ ≥ i.e. 
2 ,T

k k k ky s m sδη+ ≥  where 

.m μ=  

On the other hand, if ,L μ≥  then for 

0
3( )

L
L

δ
μ

≤ <
−

, the coefficient of the right 

hand side of (3.12) is positive, that is 
23(1 3 ) ,T

k k k ky s s
L
δμδη δ μ+ ≥ − + i.e. 

2 ,T
k k k ky s m sδη+ ≥ where 

3(1 3 ) .m
L
δμδ μ= − +  

Therefore, 

1
1 1

1
21

T
k k

k k kT
k k k

T
k k k

kT
k k kk

y gd g s
y s

s g s
y ss

δη

δη
δη

+
+ +

+

= − +
+

⎛ ⎞
⎜ ⎟− −
⎜ ⎟ +⎝ ⎠
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1
1

1
21

k k
k kT

k k k

k kk
kT

k k kk

y g
g s

y s

s g
s

y ss

δη

δη
δη

+
+

+

≤ + +
+

−
+

. (3.13) 

But, from (3.5) it follows that 

2 2

2

2

1 1

3
1 1 3 .

kk

k k

k

k

s s

L s
L

s

δ ηδη

δ
δ

− ≤ +

≤ + = +

 (3.14) 

From (3.13), having in view the Lipschitz 
continuity, (3.14) and the above estimation 
on T

k k ky s δη+  we get: 

21
1 1 2

21
2 21

k
k k k

k

kk
k

k k

L g
d g s

m s

g
s

s m s
δη

+
+ +

+

≤ +

+ −

 

1 1 1
1 3

k k k
L Lg g g
m m

δ
+ + +

+
≤ + +  

1 3(1 ) .L L
m m

δ+
≤ + + Γ  (3.15) 

This relation shows that 

2

2
1 1

1 1 .
( 1 3 )k kk

m
m L Ld δ≥ ≥

⎛ ⎞
≥ = ∞⎜ ⎟+ + + Γ⎝ ⎠

∑ ∑
 

Therefore, from Lemma 3.1 we have 
liminf 0,k

k
g

→∞
=  which for uniformly convex 

functions is equivalent to lim 0.kk
g

→∞
=  ■ 

Observe that for L μ> , 
1

3( ) 3
L

L μ
>

−
. 

Theorem 3.1 says that there is a constant 
1/ 3δ >  such that for any 0 δ δ≤ ≤  we 

have lim 0.kk
g

→∞
=  In case of a given problem 

both constants L  and μ  are not evaluated. 
Therefore, we do not know how to estimate 
the parameterδ  or whether 1δ =  can be 
taken. However, 0δ =  is admissible. 

Global convergence for general nonlinear 
functions. For general nonlinear functions, 
following the method of Dai and Liao [11] or 
that of Yabe and Takano [32], we replace 
(2.6) by: 

1

1
2

max ,0

1

T
k k

k T
k k k

T
k k k

T
k k kk

y g
y s

s g
y ss

β
δη

δη
δη

+ +

+

⎧ ⎫
= ⎨ ⎬+⎩ ⎭
⎛ ⎞
⎜ ⎟− −
⎜ ⎟ +⎝ ⎠

 (3.16) 

and prove that the corresponding algorithm 
with strong Wolfe line search is globally 
convergent. Assume that the direction 1kd +  
satisfies the descent condition 

1 1 0.T
k kg d+ + ≤  (3.17) 

To prove the global convergence by 
contradiction we assume that there is a 
positive constant γ  such that 

kg γ≥  for all 0.k ≥  (3.18) 

Our convergence analysis of (1.2) and (3.16) 
for general nonlinear functions follows the 
insights developed by Gilbert and Nocedal in 
their analysis of the PRP+ conjugate gradient 
scheme [16] or those given by Hager and 
Zhang of their CG_DESCENT algorithm 
[19]. Similar to the approach of Yabe and 
Takano [32] we establish a bound for the 
change 1k kw w+ −  in the normalized direction 

/ ,k k kw d d=  which is used to conclude 
that the gradients cannot be bounded away 
from zero.   

Lemma 3.2. Suppose that the assumptions (i) 
and (ii) hold and consider the conjugate 
gradient algorithm (1.2), where the direction 

1kd +  given by (1.3) and (3.16) satisfies the 
descent condition (3.17) and kα  is obtained 
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by the strong Wolfe line search conditions 
(3.1) and (3.2). If (3.18) holds and δ  is 
chosen so that 

10
3(1 2 )

σδ
σ ρ
−

≤ <
+ −

 

then 1 0kd + ≠  and 

2
1

1
,k k

k
w w+

≥

− < ∞∑  (3.19) 

where / .k k kw d d=  

Proof. The proof is similar to that of Lemma 
4 given in Yabe and Takano [32]. Obviously, 
by (3.17) we have 0.kd ≠  Therefore, kw  is 
well defined. Now, from (3.18) and from 
Lemma 3.1 it follows that 

2
0

1 ,
k kd≥

< ∞∑  

otherwise (3.4) holds, contradicting (3.18). In 
the following we write: 

1 2 ,k k kβ β β+ = +  (3.20) 

where: 

1 1max ,0 ,
T
k k

k T
k k k

y g
y s

β
δη
+⎧ ⎫

= ⎨ ⎬+⎩ ⎭
 (3.21) 

2 1
21 .

T
k k k

k T
k k kk

s g
y ss

δη
β

δη
+

⎛ ⎞
⎜ ⎟= − −
⎜ ⎟ +⎝ ⎠

 (3.22) 

Define: 
2

1 1 ,k k k kv g sβ+ += − +  (3.23) 

1
1

1

,k
k

k

vr
d

+
+

+

=  (3.24) 

1
1

1

0.k
k k

k

d
d

τ β+
+

= ≥  (3.25) 

Therefore, we have 

1 2
1 1

1
1 1

k k k k k k
k

k k

d g s sw
d d

β β+ +
+

+ +

− + +
= =  

2
11

1 1

kk k k k
k

k k k

dg s s
d d d

β β+

+ +

− +
= +  

1 1 .k k k kr wτ α+ += +  

Now, since 1 1,k kw w += =  it follows that 

2 2
1 1 1k k k k kr w wτ α+ + += −

2 22 2
1 1 1 12 T

k k k k k k k kw w w wτ α τ α+ + + += − +  

2 22 2
1 1 1 12 T

k k k k k k k kw w w wτ α τ α+ + + += − +
2

1 1 .k k k kw wτ α+ += −  

Therefore, 

1 1 1 1 1 .k k k k k k k k kr w w w wτ α τ α+ + + + += − = −

Since 1 0kτ + ≥  we get 

1 1 1(1 )( )k k k k k kw w w wτ α+ + +− ≤ + −  

1 1 1 1k k k k k k k kw w w wτ α τ α+ + + += + − −  

1 1 1 1 12 .k k k k k k k k kw w w w rτ α τ α+ + + + +≤ − + − =
 (3.26) 

Now, we evaluate the quantity .T
k k ky s δη+  

Using the strong Wolfe conditions we have: 

1

1

6 ( )

3 ( )

T T
k k k k k k k

T
k k k

y s y s f f

g g s

δη δ

δ
+

+

+ = + −

+ +

16 3 ( )T T T
k k k k k k ky s g s g g sδρ δ +≥ − + +  

1 1( ) 6 3 ( )T T T
k k k k k k k kg g s g s g g sδρ δ+ += − − + +

1(1 3 ) (3 6 1)T T
k k k kg s g sδ δ δρ+= + + − −  

(1 3 ) (3 6 1)T T
k k k kg s g sδ σ δ δρ≥ + + − −  

[ ]3(1 2 ) (1 ) .T
k kg sσ ρ δ σ= + − − −  (3.27) 
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We assumed that 0.T T
k k k k kg s g dα= <  

Therefore, if 
10 ,

3(1 2 )
σδ

σ ρ
−

≤ <
+ −

 then 

there is a constant 0M >  such that  

0.T T
k k k k ky s Mg sδη+ ≥ − >  (3.28) 

From the definition of 1kv +  it follows that 

2
1 1k k k kv g sβ+ += − + 2

1k k kg sβ+≤ +  

1
1 21

T
k kk

k kT
k k kk

s g
g s

y ss
δη

δη
+

+= + −
+

 

1 21 .
T
k kk

k kT
k kk

s g
g s

M s gs

σδη
+≤ + −  

Therefore, using (3.14) we have 

1 1 (1 3 )

(1 3 ) .

k k kv g L s
M

L D
M

σδ

σδ

+ +≤ + +

≤ Γ + +
 (3.29) 

With the above estimates we get: 

2
2 2

1 2
1 1 1

4 4 k
k k k

k k k k

v
w w r

d
+

≥ ≥ ≥

− = =∑ ∑ ∑  

2

2
1

14 (1 3 ) ,
k k

L D
M d
σδ

≥

⎛ ⎞≤ Γ + + < ∞⎜ ⎟
⎝ ⎠

∑  

i.e. (3.19) holds, which completes the proof. ■ 

This Lemma shows that asymptotically the 
search directions generated by the algorithm 
change slowly. Using Lemma 3.2 and 
assuming that kd  satisfies the sufficient 
descent condition  

2T
k k kg d c g≤ − , (3.30) 

where 0c >  is a constant, we can establish 
the following Lemma, showing that kβ

+  

satisfies a slightly different form of Property 
(*). The Property (*), first derived by Gilbert 
and Nocedal [16], shows that kβ  in 
conjugate gradient algorithms will be small 
when the step ks  is small. For example, 

PRP
kβ  has this property, this explaining the 

efficiency of the PRP conjugate gradient 
algorithm. Suppose that the step length kα  
obtained by the strong Wolfe conditions (3.1) 
and (3.2) is bounded away from zero, i.e. 
there is a positive constant 0ω >  such that 

.kα ω≥  

Lemma 3.3. Suppose that the assumptions (i) 
and (ii) hold and consider the conjugate 
gradient algorithm (1.2), where the direction 

1kd +  given by (1.3) and (3.16) satisfies the 
sufficient descent condition (3.30) and kα  is 
obtained by the strong Wolfe line search 
conditions (3.1) and (3.2) and .kα ω≥  If  

10
3(1 2 )

σδ
σ ρ
−

≤ <
+ −

 then there exist the 

constants 1b >  and 0ξ >  such that  

k bβ + ≤  (3.31) 

and  

1
k ks

b
ξ β +≤ ⇒ ≤  (3.32) 

for all .k  

Proof. From (3.28), (3.30) and using (3.18) 
we get: 

2 2.T T
k k k k k ky s Mg s Mc g Mcδη ω ωγ+ ≥ − ≥ ≥

 (3.33) 

Now, from (3.16), using (3.14) and (3.33) we 
have: 

1 1
21

T T
k k k k k

k T T
k k k k k kk

y g s g
y s y ss

δηβ
δη δη

+ + +≤ + −
+ +

 

1 1
2

(1 3 )T T
k k k ky g L s g

Mc
δ

ωγ
+ ++ +

≤  
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1 1
2

(1 3 )k k k ky g L s g
Mc

δ
ωγ

+ ++ +
≤  

12

1 3
k k

L L s g
Mc

δ
ωγ +

+ +
≤ 2

1 3L L D
Mc

δ
ωγ

+ +
≤ Γ  

2

( 1 3 ) .L L D b
Mc

δ
ωγ

+ + Γ
= ≡  (3.34) 

Without loss of generality we can define b  
such that 1.b >  Let us define: 

22 1 .
( 1 3 )

Mc
L L D

ωγξ
δ

⎛ ⎞
≡ ⎜ ⎟+ + Γ⎝ ⎠

 (3.35) 

Obviously, if ks ξ≤ , from the fourth 
inequality in (3.34) we have 

2

( 1 3 ) 1 .k
L L

Mc b
δβ ξ

ωγ
+ + + Γ
≤ =  

Therefore, for b  and ξ  defined in (3.34) and 
(3.35) respectively, (3.31) and (3.32) hold. ■ 

The Property (*) presented in Lemma 3.3 can 
be used to show that if the gradients are 
bounded away from zero and (3.31) and 
(3.32) hold, then a finite number of steps ks  
cannot be too small. Therefore, the algorithm 
makes a rapid progress to the optimum. 
Indeed, for 0λ >  and a positive integer Δ  
let us define the set of indices: 

{ }*
, 1: 1, ,k iK i N k i k sλ λΔ −= ∈ ≤ ≤ + Δ − >

where *N is the set of positive integers. The 
following Lemma is similar to Lemma 3.5 in 
Dai and Liao [11] and to Lemma 4.2 in 
Gilbert and Nocedal [16]. 

Lemma 3.4. Suppose that all the assumptions 
of Lemma 3.3 are satisfied. Then there is a 

0λ >  such that for any *NΔ∈  and any 
index 0k , there is an index 0k k≥  such that 

, / 2.kK λ
Δ > Δ  

Using Lemma 3.2 and Lemma 3.4 we can 
prove the global convergence theorem for 

method (1.2), (1.3) and (3.16). The theorem 
is similar to Theorem 3.6 in Dai and Liao 
[11] or to Theorem 3.2 in Hager and Zhang 
[19] and the proof is omitted here. 

Theorem 3.2. Suppose that the 
assumptions (i) and (ii) hold and consider 
the conjugate gradient algorithm (1.2), 
where the direction 1kd +  given by (1.3) 
and (3.16) satisfies the sufficient descent 
condition (3.30) and kα  is obtained by the 
strong Wolfe line search conditions (3.1) 

and (3.2). If 
10

3(1 2 )
σδ

σ ρ
−

≤ <
+ −

 then 

liminf 0.kk
g

→∞
=  ■ 

Since ρ  and σ  are given in the Wolfe line 
search conditions, it follows that the upper 
bound of δ  established in Theorem 3.2 is 
smaller than 1/3. Again observe that 0δ =  is 
admissible. Even though the modified secant 
condition (2.2), as given by Zhang, Deng and 
Chen [30] and Zhang and Xu [31], has 1δ = , 
we do not know whether this value for δ  can 
be considered in numerical experiments.  

Although we were able to prove the global 
convergence of the computational scheme 
(1.2), (1.3) and (3.16), however, its 
computational performances are greatly 
improved by an acceleration scheme which 
we present in the next section.  

4. Acceleration of the Algorithm 

It is common to see that in conjugate gradient 
algorithms the search directions tend to be 
poorly scaled and as a consequence the line 
search must perform more function 
evaluations in order to obtain a suitable 
steplength .kα  In order to improve the 
performances of the conjugate gradient 
algorithms the efforts were directed to design 
procedures for direction computation based 
on the second order information. For 
example, CONMIN [], and SCALCG [] take 
this idea of BFGS preconditioning. In this 
section we focus on the step length 
modification. In the context of gradient 
descent algorithm with backtracking the step 
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length modification has been considered for 
the first time in [2]. 

Jorge Nocedal [23] pointed out that in 
conjugate gradient methods the step lengths 
may differ from 1 in a very unpredictable 
manner. They can be larger or smaller than 1 
depending on how the problem is scaled. 
Numerical comparisons between conjugate 
gradient methods and the limited memory 
quasi Newton method, by Liu and Nocedal 
[22], show that the latter is more successful 
[6]. One explanation of the efficiency of the 
limited memory quasi-Newton method is 
given by its ability to accept unity step 
lengths along the iterations. In this section we 
take advantage of this behavior of conjugate 
gradient algorithms and present an 
acceleration scheme. Basically this modifies 
the step length in a multiplicative manner to 
improve the reduction of the function values 
along the iterations.  

Line search. For implementing the algorithm 
(1.2) one of the crucial elements is the 
stepsize computation. In the following we 
consider the line searches that satisfy either 
the Goldstein’s conditions [17]: 

1

2

( ) ( )

,

T
k k k k k k k

T
k k k

g d f x d f x

g d

ρ α α

ρ α

≤ + −

≤
 (4.1) 

where 1
2 120 1ρ ρ< < < <  and 0,kα >  or 

the Wolfe conditions (1.4) and (1.5). 

Proposition 4.1. Assume that kd  is a descent 
direction and f∇  satisfies the Lipschitz 
condition ( ) ( )k kf x f x L x x∇ −∇ ≤ −  for 

all x  on the line segment connecting kx  and 

1,kx +  where L is a positive constant. If the 
line search satisfies the Goldstein conditions 
(4.1), then 

1
2

(1 ) .
T
k k

k
k

g d
L d
ρα −

≥  (4.2) 

If the line search satisfies the Wolfe 
conditions (1.4) and (1.5), then 

2
(1 ) .

T
k k

k
k

g d
L d
σα −

≥  (4.3) 

Proof. If the Goldstein conditions are 
satisfied, then using the mean value theorem 
from (4.1) we get: 

1 ( ) ( )T
k k k k k k kg d f x d f xρ α α≤ + −  

( )T
k k k kf x d dα ξ= ∇ +

22 ,T
k k k k kg d L dα α≤ +  

where [0, ].kξ α∈  From this inequality we 
immediately get (4.2). 

Now, to prove (4.3) subtract T
k kg d  from both 

sides of (1.5) and using the Lipschitz 
condition we get: 

2
1( 1) ( ) .T T

k k k k k k kg d g g d L dσ α+− ≤ − ≤
 (4.4) 

But, kd  is a descent direction and since 
1σ < , we immediately get (4.3). ■ 

Therefore, satisfying the Goldstein or the 
Wolfe line search conditions α is bounded 
away from zero, i.e. there exists a positive 
constant ω , such that .α ω≥  

Acceleration scheme [7]. Given the initial 
point 0x  we can compute 0 0( ),f f x=  

0 0( )g f x= ∇  and by Wolfe line search 
conditions (1.4) and (1.5) the steplength 0α  
is determined. With these, the next iteration is 
computed as: 1 0 0 0x x dα= + ,  ( 0 0d g= − ) 
where 1f  and 1g  are immediately determined 
and the direction 1d  can be computed as: 

1 1 0 0d g dβ= − + , where the conjugate 
gradient parameter 0β  is computed as in 
(3.16) with a given value for .δ  Therefore, at 
the iteration 1, 2,...k =  we know ,kx  ,kf  

kg  and 1 1.k k k kd g dβ − −= − +  Suppose that 

kd  is a descent direction. By the Wolfe line 
search (1.4) and (1.5) we can compute kα  
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with which the following point 
k k kz x dα= +  is determined. The first Wolfe 

condition (1.4) shows that the step length 
0kα >  satisfies: 

( ) ( ) ( ) .T
k k k k k k kf z f x d f x g dα ρα= + ≤ +  

With these, let us introduce the accelerated 
conjugate gradient algorithm by means of the 
following iterative scheme: 

1k k k k kx x dγ α+ = + , (4.5) 

where 0kγ >  is a parameter which follows 
to be determined in such a manner as to 
improve the behavior of the algorithm. Now, 
we have: 

( )22 2

( ) ( )
1 ( ) .
2

T
k k k k k k k

T
k k k k k k

f x d f x g d

d f x d o d

α α

α α

+ = +

+ ∇ +
 (4.6) 

On the other hand, for 0γ >  we have: 

( )22 2 2

( ) ( )
1 ( ) .
2

T
k k k k k k k

T
k k k k k k

f x d f x g d

d f x d o d

γα γα

γ α γα

+ = +

+ ∇ +

 (4.7) 

With these we can write: 

( ) ( ) ( ),k k k k k k kf x d f x dγα α γ+ = + +Ψ
 (4.8) 

where 

2 2 21( ) ( 1) ( )
2

( 1)

T
k k k k k

T
k k k

d f x d

g d

γ γ α

γ α

Ψ = − ∇

+ −

( ) ( )2 22 .k k k k k ko d o dγ α α α α+ −  (4.9) 

Let us denote: 

0,T
k k k ka g dα= ≤  

2 2 ( ) ,T
k k k k kb d f x dα= ∇  

( )2 .k k ko dε α=  

Observe that 0ka ≤ , since kd  is a descent 
direction, and for convex functions 0.kb ≥  

Therefore, 

2 21( ) ( 1) ( 1) .
2k k k k k k kb aγ γ γ γ α ε α εΨ = − + − + −

 (4.10) 

Now, we see that ( ) ( 2 )k k k k kb aγ α ε γ′Ψ = + +  
and ( ) 0k mγ′Ψ =  where 

.
2

k
m

k k k

a
b

γ
α ε

= −
+

 (4.11) 

Observe that (0) 0.k ka′Ψ = <  Therefore, 
assuming that 2 0,k k kb α ε+ >  then ( )k γΨ  
is a convex quadratic function with minimum 
value in point mγ  and 

2( ( 2 ))( ) 0.
2( 2 )

k k k k
k m

k k k

a b
b

α εγ
α ε

+ +
Ψ = − ≤

+
 

Considering mγ γ=  in (4.8) and since 
0kb ≥ , we see that for every k  

2

( ) ( )

( ( 2 )) ( ),
2( 2 )

k m k k k k k

k k k k
k k k

k k k

f x d f x d

a b f x d
b

γ α α

α ε α
α ε

+ = +

+ +
− ≤ +

+

 

which is a possible improvement of the 
values of function f  (when 

( 2 ) 0k k k ka b α ε+ + ≠ ). Therefore, using 
this simple multiplicative modification of 
the step size kα  as k kγ α  where 

/( 2 )k m k k k ka bγ γ α ε= = − +  we get: 

1
2

( ) ( )

( ( 2 ))( )
2( 2 )

k k k k k

T k k k k
k k k k

k k k

f x f x d

a bf x g d
b

γ α

α ερα
α ε

+ = +

+ +
≤ + −

+
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2( ( 2 ))( )
2( 2 )

( ),

k k k k
k k

k k k

k

a bf x a
b

f x

α ε ρ
α ε

⎡ ⎤+ +
= − −⎢ ⎥+⎣ ⎦
≤

 (4.12) 

since 0,ka ≤  ( kd  is a descent direction). 

Observe that if kd  is a descent direction, then 

2 2( ( 2 )) ( )
2( 2 ) 2

k k k k k k

k k k k

a b a b
b b

α ε
α ε

+ + +
>

+
 

and from (4.12) we get: 

2

1
( ( 2 ))( ) ( )

2( 2 )
k k k k

k k k
k k k

a bf x f x a
b

α ε ρ
α ε+

⎡ ⎤+ +
≤ − −⎢ ⎥+⎣ ⎦

2( )( ) ( ).
2

k k
k k k

k

a bf x a f x
b

ρ
⎡ ⎤+

< − − ≤⎢ ⎥
⎣ ⎦

 

Therefore, neglecting the contribution of 
kε , we still get an improvement on the 

function values. 

Now, in order to get the algorithm we have to 
determine a way for kb  computation. For 
this, at point k k kz x dα= +  we have: 

2 2

( ) ( ) ( )
1 ( ) ,
2

T
k k k k k k k

T
k k k k

f z f x d f x g d

d f x d

α α

α

= + = +

+ ∇ �
 

where kx�  is a point on the line segment 
connecting kx  and .z  On the other hand, at 
point k k kx z dα= −  we have: 

2 2

( ) ( ) ( )
1 ( ) ,
2

k k k

T T
k z k k k k k

f x f z d f z

g d d f x d

α

α α

= − =

− + ∇
 

where ( )zg f z= ∇  and kx  is a point on the 
line segment connecting kx  and .z  Having in 
view the local character of searching and that 
the distance between kx  and z is small 
enough, we can consider .k k kx x x= =�  So, 

adding the above equalities we get: 

,T
k k k kb y dα= −  (4.13) 

where .k k zy g g= −   

Observe that if k ka b> , then 1.kγ >  In this 

case k k kγ α α> and it is also possible that 
1k kγ α ≤  or 1.k kγ α >  Hence, the steplength 

k kγ α  can be greater than 1. On the other 

hand, if ,k ka b≤  then 1.kγ ≤  In this case 

,k k kγ α α≤  so the steplength k kγ α  is 

reduced. Therefore, if k ka b≠ , then 1kγ ≠  

and the steplength kα  computed by Wolfe 
conditions will be modified by its increasing 
or its reducing through factor .kγ  

Neglecting kε  in (4.10), we see that 

(1) 0kΨ =  and if / 2,k ka b≤  then 

(0) / 2 0k k ka bΨ = − − ≤  and 1.kγ <  
Therefore, for any [0,1]γ ∈ , ( ) 0.k γΨ ≤  As 
a consequence for any (0,1),γ ∈  it follows 
that ( ) ( ).k k k kf x d f xγα+ <  In this case, for 
any [0,1]γ ∈ , .k k kγ α α≤  However, in our 
algorithm we selected k mγ γ=  as the point 
achieving the minimum value of ( ).k γΨ   

5. Algorithm ACGMSEC 

Using the above developments the following 
accelerated conjugate gradient algorithm with 
modified secant condition can be presented. 

Step 
1. 

Select the initial starting point 
0x dom f∈  and compute: 

0 0( )f f x=  and 0 0( ).g f x=∇  Set 

0 0d g= −  and 0.k =  Select a 
value for parameters ε  and .τ  

Step 
2. 

Test a criterion for stopping the 
iterations. For example, if 

kg ε
∞
≤ , then stop; otherwise 

continue with step 3. 
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Step 
3. 

Using the Wolfe line search 
conditions (1.4) and (1.5) 
determine the steplength .kα  

Step 
4. 

Compute: k k kz x dα= + , 
( )zg f z=∇  and .k k zy g g= −  

Step 
5. 

Compute: T
k k k ka g dα= , and 

T
k k k kb y dα= − . 

Step 
6. 

If 0,kb ≠  then compute 
/k k ka bγ = −  and update the 

variables as 1k k k k kx x dγ α+ = + , 
otherwise update the variables as 

1k k k kx x dα+ = + . Compute 1kf +  
and 1.kg +  Compute 

1k k ky g g+= −  and 

1 .k k ks x x+= −  

Step 
7. 

Set 0.δ =  If ,ks τ≤  then set 
1.δ =  

Step 
8. 

Determine kβ  as in (3.16). 

Step 
9. 

Compute the search direction as: 
1 1k k k kd g sβ+ += − + . 

Step 
10. 

Restart criterion. If the restart 
criterion of Powell 

2
1 10.2T

k k kg g g+ +>  is satisfied, 

then set 1 1k kd g+ += − . 

Step 
11. 

Compute the initial guess 
α αk k k kd d= − −1 1 / ,  set k k= +1 
and continue with step 2.  

It is well known that if f  is bounded along 
the direction kd  then there exists a stepsize 

kα  satisfying the Wolfe line search 
conditions (1.4) and (1.5). In our algorithm, 
when the Powell restart condition is satisfied, 
then we restart the algorithm with the 
negative gradient 1.kg +−  Under reasonable 
assumptions, the Wolfe conditions and the 
Powell restart criterion are sufficient to prove 
the global convergence of the algorithm. The 
first trial of the step length crucially affects 
the practical behavior of the algorithm. At 
every iteration 1k ≥  the starting guess for 
the step kα  in the line search is computed as 

1 1 / .k k kd dα − −  This selection was used for 
the first time by Shanno and Phua in 
CONMIN [29]. It was also considered in the 
packages: SCG by Birgin and Martínez [9] 
and in SCALCG by Andrei [3-6]. In step 7 
we use 0δ =  and only when ks τ≤ , where 
τ  is a small specified constant, is the 
modified secant condition (2.2) considered, 
i.e. we set 1δ =  in our numerical 
experiments.  

Proposition 5.1. Suppose that f  is a 
uniformly convex function on the level set 

{ }0: ( ) ( )S x f x f x= ≤ , and kd  satisfies the 

sufficient descent condition 2
1 ,T

k k kg d c g<−  

where 1 0c > , and 
2 2

2k kd c g≤ , where 

2 0.c >  Then the sequence generated by 

ACGMSEC converges linearly to *,x  
solution to the problem (1.1). 

Proof. From (4.12) we have that 
1( ) ( )k kf x f x+ ≤  for all .k  Since f  is 

bounded below, it follows that 

1lim( ( ) ( )) 0.k kk
f x f x +→∞

− =  

Now, since f  is uniformly convex there 
exist positive constants m  and ,M  such that 

2 ( )mI f x MI≤ ∇ ≤  on .S  Suppose that 

k kx d Sα+ ∈  and k m kx d Sγ α+ ∈  for all 
0.α >  We have: 

2( )( ) ( ) .
2

k k
k m k k k

k

a bf x d f x d
b

γ α α +
+ ≤ + −

But, from uniform convexity we have the 
following quadratic upper bound on 

( )k kf x dα+ : 

221( ) ( ) .
2

T
k k k k k kf x d f x g d M dα α α+ ≤ + +

Therefore, 

2 22
1 2

1( ) ( )
2k k k k kf x d f x c g Mc gα α α+ ≤ − +

22
1 2

1( ) .
2k kf x c Mc gα α⎡ ⎤= + − +⎢ ⎥⎣ ⎦
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Observe that for 1 20 /( ),c Mcα≤ ≤  

2 1
1 2

1
2 2

cc Mcα α α− + ≤ −  which follows 

from the convexity of  2
1 2( / 2) .c Mcα α− +  

Using this result we get: 

2
1

2
1

1( ) ( )
2

( )

k k k k

k k

f x d f x c g

f x c g

α α

ρ α

+ ≤ −

≤ −
, 

since 1/ 2.ρ <   

From proposition 4.1 the Wolfe line search 
terminates with a value 0.α ω≥ >  
Therefore, for 1 20 /( ),c Mcα≤ ≤  this 
provides a lower bound on the decrease in the 
function ,f  i.e.  

2
1( ) ( ) .k k k kf x d f x c gα ρ ω+ ≤ −  (5.1) 

On the other hand, 
42 22

2 1
22

2

2
22 1

2

( )( )
2 2

( ) .
2

kk k

k k

k

Mc c ga b
b Mc g

Mc c g
Mc

α α

α

ω

−+
≥

−
≥

 (5.2) 

Considering (5.1) and (5.2) we get: 
2

1

2
22 1

2

( ) ( )

( ) .
2

k m k k k

k

f x d f x c g

Mc c g
Mc

γ α ρ ω

ω

+ ≤ −

−
−

 (5.3) 

Therefore, 

2
22 1

1
2

( ) ( )

( ) .
2

k k m k

k

f x f x d

Mc cc g
Mc

γ α

ωρ ω

− +

⎡ ⎤−
≥ +⎢ ⎥
⎣ ⎦

 

But, 1( ) ( ) 0k kf x f x +− →  and as a 
consequence kg  goes to zero, i.e. kx  

converges to *.x  Having in view that ( )kf x  
is a nonincreasing sequence, it follows that 

( )kf x  converges to *( ).f x  From (5.3) we 
see that 

2
22 1

1 1
2

( )( ) ( ) .
2k k k

Mc cf x f x c g
Mc

ωρ ω+

⎡ ⎤−
≤ − +⎢ ⎥

⎣ ⎦
 (5.4) 

Combining this with 2 *2 ( ( ) )k kg m f x f≥ −  

and subtracting *f  from both sides of (5.4) 
we conclude: 

* *
1( ) ( ( ) ),k kf x f c f x f+ − ≤ −  

where  
2

2 1
1

2

( )1 2 1.
2

Mc cc m c
Mc

ωρ ω
⎡ ⎤−

= − + <⎢ ⎥
⎣ ⎦

 

Therefore, ( )kf x  converges to *f  at least as 
fast as a geometric series with a factor that 
depends on the parameter ρ  in the first 
Wolfe condition and the bounds m  and .M  
So, the convergence of the acceleration 
scheme is at least linear. ■ 

6. Numerical Results and 
Comparisons 

In this section we report some numerical 
results obtained with a Fortran 
implementation of the ACGMSEC algorithm. 
The code is written in Fortran and compiled 
with f77 (default compiler settings) on a 
Workstation Intel Pentium 4 with 1.8 GHz. 
We selected a number of 75 large-scale 
unconstrained optimization test functions 
(some from CUTE library [10]) in 
generalized or extended form [1]. For each 
test function we have taken ten numerical 
experiments with the number of variables 

1000,2000,...,10000.n =  The algorithm 
implements the Wolfe line search conditions 
with 0.0001ρ =  and 0.9σ = , and also the 

same stopping criterion gk ∞
−≤10 6, where 

.
∞

is the maximum absolute component of a 
vector.  The comparisons of algorithms are 
given in the following context. Let 
f i

ALG1 and f i
ALG2 be the optimal value found 

by ALG1 and ALG2, for problem 
i = 1 750, , ,…  respectively. We say that, in 
the particular problem i,  the performance of 
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ALG1 was better than the performance of 
ALG2 if:  

f fi
ALG

i
ALG1 2 310− < −  (6.1) 

and the number of iterations, or the number 
of function-gradient evaluations, or the CPU 
time of ALG1 was less than the number of 
iterations, or the number of function-gradient 
evaluations, or the CPU time corresponding 
to ALG2, respectively. 

 

In the first set of numerical experiments we 
compare ACGMSEC with 0τ =  versus some 
conjugate gradient algorithms. Figures 1-6 
present the Dolan and Moré [15] CPU 
performance profile of ACGMSEC versus 
Hestenes-Stiefel [21], Polak-Ribière-Polyak 
[25, 26], Dai-Yuan [12], Dai-Liao [11], 
hybrid Dai-Yuan and hybrid Dai-Yuan zero 
[12], respectively.  

 
 
 

  
 

Figure. 1. ACGMSEC ( 0τ = ) versus Hestenes-Stiefel. 
 
 
 
 
 

 
 

Figure 2. ACGMSEC ( 0τ = ) versus Polak-Ribière-Polyak. 



 Studies in Informatics and Control, Vol. 18, No. 3, September 2009 226

 

 
 

 
 

 
Figure 3. ACGMSEC ( 0τ = ) versus Dai-Yuan. 

 

 

  
Figure 4. ACGMSEC ( 0τ = ) versus Dai-Liao (t=1). 

 

 

  
Figure 5. ACGMSEC ( 0τ = ) versus hybrid Dai-Yuan. 
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Figure 6. ACGMSEC ( 0τ = ) versus hybrid Dai-Yuan zero. 

 

 
Figure 7. ACGMSEC ( 0τ = ) versus CG_DESCENT with Wolfe conditions. 

 
 

 
Figure 8. ACGMSEC ( 0τ = ) versus CG_DESCENT with approximate Wolfe conditions. 

When comparing ACGMSEC with all these 
conjugate gradient algorithms subject to CPU 
time metric we see that ACGMSEC is top 
performer, i.e. the accelerated conjugate 
gradient algorithm with modified secant 
condition is more successful and more robust 
than the considered conjugate gradient 
algorithms. The percentage of the test 
problems for which a method is the fastest is 
given on the left axis of the plot. The right 

 side of the plot gives the percentage of the 
test problems that were successfully solved 
by these algorithms, respectively.   

In the second set of numerical experiments 
we compare ACGMSEC with 
CG_DESCENT by Hager and Zhang [19]. 
Figures 7 and 8 present the Dolan and Moré 
CPU performance profiles of ACGMSEC 
versus these algorithms. 



 Studies in Informatics and Control, Vol. 18, No. 3, September 2009 228

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the Figures above we see that 
ACGMSEC is again the top performer. The 
modified secant condition and acceleration 
scheme are very important ingredients in design-
ing efficient conjugate gradient algorithms.  

In the third set of numerical experiments we 
compare ACGMSEC with the CONMIN 
conjugate gradient algorithm by Shanno and 
Phua [29]. Figure 9 presents the Dolan and 
Moré CPU performance profiles of 
ACGMSEC versus CONMIN. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the fourth set of numerical experiments 
we compare ACGMSEC with SCALCG by 
Andrei [3-5]. Figure 10 presents the Dolan 
and Moré CPU performance profiles of 
ACGMSEC versus SCALCG (spectral). 

Finally, in Figure 11 we present a comparison 
between ACGMSEC and LBFGS (m=3) by 
Liu and Nocedal [22].  

 

 

 
 
 

  
Figure 9. ACGMSEC ( 0τ = ) versus CONMIN (Shanno-Phua). 

 
 
 

 
Figure 10. ACGMSEC ( 0τ = ) versus SCALCG (spectral). 
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From Figures 7 and 8 we see that the 
performances of ACGMSEC and 
CG_DESCENT are comparable, ACGMSEC 
being slightly faster. CG_DESCENT is a 
highly elaborated modification of the 
Hestenes and Stiefel method. This 
modification is scale invariant, it goes to zero 
when the iterates jamm and it enhances 
descent. On the other hand, ACGMSEC uses 
the second order information in a very clever 
manner through the modified secant 
condition. Although we are not able to prove 
the global convergence for (1.2), (1.3) and 
(2.6), we established the global convergence 
for general nonlinear functions by restricting 

kβ  like in (3.16). At present this is a classical 
approach. Similar results have been obtained 
for the Polak-Ribière-Polyak, Fletcher-
Revees, Dai-Yuan and CG_DESCENT 
versions of the conjugate gradient methods. 
The novelty of the ACGMSEC algorithm is 
given by the incorporation of the second 
order information through the modified 
secant condition and through the 
acceleration scheme.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7. Conclusion 

We have presented a new conjugate gradient 
algorithm (ACGMSEC) for solving large-
scale unconstrained optimization problems. 
The algorithm exploits the presence of the 
Hessian in the formula for kβ  computation 
as well as the fact that the step lengths in 
conjugate gradient algorithms differ from 1 in 
the vast majority of iterations. The algorithm 
approximates the Hessian / vector product by 
means of the modified secant condition. It 
modifies the step length by an acceleration 
scheme which proved to be very efficient in 
reducing the values of the minimizing 
function along the iterations. We proved that 
if the direction is a descent one, then the 
algorithm is globally convergent. For 
uniformly convex functions the convergence 
of the accelerated scheme is still linear, but 
the reduction in function values is 
significantly improved. For a test set 
consisting of 750 problems (some of them 
from CUTE library) with dimensions ranging 

 

 

 
 
 

 

Figure 11. ACGMSEC ( 0τ = ) vs LBFGS (m=3) 
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 between 1000 and 10,000, the CPU time 
performance profiles of ACGMSEC was 
higher than those of HS, PRP, DY, DL (t=1), 
hDY, hDYz, CG_DESCENT, CONMIN, 
SCALCG and LBFGS (m=3). Both the above 
ingredients based on the modified secant 
condition and on the acceleration scheme are 
crucial for the efficiency of the algorithm.  
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