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1. Introduction

The Hybrid Electric Vehicle (HEV), as a type 
of vehicle with an excellent energy-saving and 
environmental performance, has been increasingly 
accepted by the public (Lu & Li, 2020). This type 
of car combines the advantages of an internal 
combustion engine and an electric motor, aiming 
to provide better fuel efficiency and lower exhaust 
emission levels (Zhao et al., 2021). Hybrid 
Electric Vehicle Energy Management (HEVEM) 
has become a key technical challenge as it directly 
affects the fuel efficiency and performance 
of these vehicles. Optimizing the powertrain 
of HEVs to improve their energy conversion 
efficiency and reduce their energy consumption 
is a standard powertrain issue in the automotive 
industry. Designing excellent energy management 
methods can effectively reduce the operating 
costs of HEVs, thereby enhancing their market 
competitiveness and value.

Traditional HEVEM technology, Model Predictive 
Control (MPC), and Dynamic Programming (DP) 
require the use of heuristic algorithms in areas 
such as fuzzy control, parameter optimization, 
and motion mode construction (Qi et al., 2022). 
DP is a commonly used dynamic optimization 
technique, and MPC is specifically designed to 
handle planning problems with severe information 
loss in the dynamic optimization. These methods 
have certain advantages, such as fast processing 
speed, easy implementation, and being easy to 

understand. However, their main drawbacks 
are also very obvious. Their generalization 
ability is weak and they can only handle certain 
specific working conditions, such as urban road 
conditions, highway conditions, etc. In addition, 
their optimization objectives are usually fixed and 
cannot meet the needs triggered by multi-objective 
and dynamic changes. In recent years, Deep 
Reinforcement Learning (DRL) has shown a strong 
performance in multiple fields, a thing which has 
the potential to change the current state of HEVEM. 
As a way of imitating human learning, DRL can 
optimize decision-making through self-learning 
methods during continuous interaction with the 
environment. Although DRL has been recognized 
to some extent in HEV, there is still limited research 
on optimization of DRL-based HEVEM. Based 
on this background, it was necessary to conduct 
this study. The contribution of this study lies in 
the design of an energy management model for 
HEV based on improved double deep Q-networks. 
This model uses deep learning and reinforcement 
learning techniques to carry out the energy system 
management of HEV under nonlinear and high 
latitude data conditions, effectively reducing fuel 
consumption during operation, and providing a 
feasible new solution for the HEVEM.

The remainder of this paper is as follows. Section 
2 introduces the research results of domestic 
and foreign scholars on HEV vehicle energy 
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management, as well as the application value of deep 
reinforcement learning algorithms in improving 
vehicle energy management. Section 3 mainly 
elaborates on the design process of the energy 
management algorithm for the HEV hybrid power 
system based on an improved deep Q-learning 
network (DQN). Section 4 refers to the experiments 
conducted for verifying the performance of the 
proposed algorithm and applying it to actual HEV 
vehicle operating conditions. Finally, Section 5 
includes the conclusion of this paper, related to the 
obtained experimental results and the shortcomings 
of this research.

2. Related Works

Vehicle energy management has become 
increasingly important due to the increasing 
demand for environmental protection and energy 
efficiency. Given the increasing advancement of 
decentralized power systems and electric vehicles, 
Tan & Chen (2020) sought to improve the energy 
management performance of multiple microgrid 
systems under the uncertainty of electric vehicle 
charging. A multi-objective optimization model 
was established to minimize transmission losses, 
operating costs, and carbon emissions in a multi-
microgrid system. The simulation results confirmed 
the superiority of the improved algorithm in terms 
of global search performance and fast convergence 
performance (Tan & Chen, 2020). Ghaderi et al. 
(2020) studied the impact of cell and fuel cell 
degradation on HEVEM. To this end, an online 
energy management strategy that simultaneously 
adapted to both battery and Fuel Cell (FC) models 
was proposed. These test scenarios using standard 
driving cycles confirmed that the electromagnetic 
system could successfully solve the model 
uncertainty caused by power performance drift 
in the above situations (Ghaderi et al., 2020). 
Demircali & Koroglu (2020) stated that in a multi-
power hybrid structure, an energy management 
system was needed to improve system efficiency 
and provide optimal power sharing between 
the battery and power supply. The performance 
of Jaya optimization method was compared 
with that of DP, one of the global optimization 
methods, and that of particle swarm optimization, 
another heuristic real-time application method. 
These simulation results confirmed that the Jaya 
optimization method had a loss of nearly 3.1%, 
achieving the best effect in terms of total energy 
loss (Demircali & Koroglu, 2020). Cui et al. (2022) 

proposed a multi-objective hierarchical strategy 
with low computational complexity by combining 
resistance network-triggered motion planning and 
convex torque optimization based on a variable 
direction multiplier. Finally, the superiority of 
this method was verified through simulation and 
hardware in loop experiments (Cui et al., 2022).

The development of efficient HEVEM strategies 
has become a key task due to the variability 
of the topology structure of electrified power 
systems and the uncertainty of driving scenarios.  
By utilizing DRLs, a heuristic rule-based local 
controller was embedded in the loop to eliminate 
unreasonable torque allocation while considering 
the characteristics of the powertrain components. 
In addition, a hybrid experience playback method 
based on a hybrid experience buffer composed of 
offline optimal computing experience and online 
learning experience was proposed to address 
the impact of environmental interference. These 
experiments confirmed that under different 
operating conditions, the improved DRL obtained 
the best fuel optimality, fastest convergence 
speed, and highest robustness compared with 
typical value-based and policy-based optimization 
methods Wang et al. (2020) combined computer 
vision with DRL to improve the fuel economy 
of HEV, which could autonomously learn the 
optimal control strategy from visual input. These 
experiments confirmed that visual information-
based DRL systems reduced fuel consumption by 
4.3% to 8.8% in comparison with systems without 
visual information, achieving a global optimal DP 
fuel economy of 96.5% .

In summary, although previous studies included 
extensive research on the energy-saving issues 
related to mechanical and electronic products such 
as HEV, most of them did not employ cutting-edge 
neural network algorithms to construct energy-
saving methods. Meanwhile, the effectiveness 
of energy-saving design methods has not been 
verified using multiple complex operating 
conditions, so this study was conducted with the 
aim to compensate for these shortcomings.

3. Research Methods

Before embarking on a specific research, it is 
necessary to first clarify the object of the research. 
There are three types of HEVs: parallel, series, 
and hybrid HEVs. The hybrid HEV can optimize 
the motor and engine under different operating 
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conditions and environments. This is equivalent 
to simultaneously possessing the advantages 
of the other two HEVs, which can improve the 
power performance of vehicles while ensuring 
excellent fuel economy (Alfaverh, Denai & Sun, 
2023). However, the disadvantage of hybrid 
HEV is that the system structure is too complex, 
making control operations more difficult, which 
results in significant energy loss in the entire 
vehicle. Therefore, it is of practical significance 
to investigate and adopt more suitable control 
methods for a hybrid HEVEM.

3.1 The Design of HEV Hybrid Energy 
Management Strategy Based on 
DQN

As it was mentioned above, the object of this study 
is the power split HEV in the hybrid HEV. The 
power split HEV includes an engine and several 
drive motors, which can transform multiple 
operating modes according to different driving 
needs, thus achieving a superior performance 
(Wei et al., 2021). By contrast, series hybrid 
vehicles may have reduced energy efficiency due 
to multiple energy conversions (Mellit, Pavan & 
Lughi, 2021). In comparison with parallel hybrid 
vehicles, planetary gear design compensates for 
the construction shortcomings of power coupling 
systems in urban driving scenarios, which creates 
conditions for the transmission system to operate 
in high-efficiency areas (Paterova & Prauzek, 
2021). However, the relatively high complexity of 
the double-array planetary structure also increases 
the difficulty of control.

The research on the energy management control 
strategy for a vehicle cannot be separated from 
the power system structure of the vehicle itself. 
Figure 1 shows the power transmission system of 
a power split HEV (Zhang et al., 2020). The power 
system features a double-row planetary structure, 
with Motor 1 (MG1) connected to a sun gear on the 
planetary row, while the planet carrier is connected 
to the engine. The planet carrier of planetary row 
2 is also fixed, and the sun gear is connected to 
Motor 2 (MG2). The corresponding gear rings of 
the two planetary rows are fixed and also connected 
to the output end. The double-array planetary can 
decouple the engine from the driving load, which 
can also adjust the speed and torque of MG1 
(Huang et al., 2022). MG2 can provide power in 
pure electric mode and recover energy by providing 
braking torque when the car slows down.

Figure 1. Power Transmission System Structure for a 
Power Split HEV 

Considering the physical size and performance of 
such vehicles, the basic parameters corresponding 
to the transmission structure of the HEV in Figure 
1 are set as follows. In terms of the entire vehicle, 
the total mass, wheel radius, windward area, rolling 
resistance coefficient, air resistance coefficient, and 
air density are 1400kg, 0.288 m, 2.54 m2, 0.015, 
0.28, and 1.2 kg/m³, respectively. In terms of 
engine, the maximum power and maximum torque 
are 73kW@5200r/min and 145N·m@4000r/min. 
The MG1 and MG2 are rated at 42kW, 10,000r/
min and 60kW, 12,000r/min, respectively, in terms 
of power and top speed. The above parameters are 
prerequisites for building a vehicle driving model 
and designing energy management.

The engine dynamic effects of the power split HEV 
are short-lived and can be ignored. Therefore, this 
study used data from engine bench experiments to 
construct a quasi-steady state model of the engine, 
motor, battery, planetary gear, and vehicle driving 
dynamics in the automotive hybrid power system.

The energy distribution of the motor and engine 
during driving is essentially a sequential decision-
making problem. Therefore, it is more appropriate to 
use Q-learning in reinforcement learning. However, 
this algorithm lacks the ability to parameterize data 
fitting and has poor computational performance 
for high latitude inputs (there is a high number of 
features or dimensions in the input data). Therefore, 
this study presents the design of a DQN for a power 
split HEVEM. Traditional DP and MPC methods 
have a poor energy planning capability under 
complex road conditions. Processing complex 
nonlinear data is the advantage of deep learning 
algorithms, which is also the main reason for 
choosing to use the DQN algorithm to construct 
energy management models.
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When dealing with the energy management 
problem for a power split HEV, Q-learning needs 
to discretize the state and control in advance. The 
high accuracy of discretization indicates good 
computational performance, but the corresponding 
computational workload also increases 
significantly (Han & Yang, 2021). However, the 
state of the vehicle is a continuous variable and 
may not fall on the pre-discretized grid points of 
the Q table in the actual driving process. In this 
case, using interpolation to estimate the Q value 
of state-action pairs may result in errors. On the 
contrary, DQN directly inputs the vehicle state 
into the deep network processing method, which 
can avoid interpolation errors in Q-learning and 
ensure the continuity of state changes. Based on 
this, the reward function, state, and action of the 
DQN network are first designed.

In DQN, the vehicle speed V, acceleration A, 
engine speed We, and battery SOC are considered 
as system state variables. The value of the control 
action is the torque TMG1 of MG1. The setting of 
instant rewards is consistent with Q-learning. 
Equation (1) expresses the state and the value of 
the control action:

[ ]{ }, , , T
es V A WS SOC= =

                             
(1)

In equation (1), s and S represent the state variable 
and its set, respectively.

In equation (2), a represents the execution of the 
action:

{ }1MGA a T= =                                               (2)

Equation (3) represents the reward R(s,a) (Zhang 
et al. ,2022):

( ) ( )( ){ }
0

2
,

T

refR s a fuel SOC t SOC dtλ= − + −∫
  

(3)

In equation (3), T is the endpoint of the time 
period for measuring rewards, fuel represents the 
fuel consumption, λ is the penalty coefficient and 
SOCref is the reference battery status. A five-layer 
fully connected neural network is used to construct 
a DQN to adapt to state action pairs’ Q value. 
The input layer has four neurons corresponding 
to the vehicle’s speed, acceleration, engine speed, 
and battery. The number of neurons for the three 
hidden layers is 200, 100, and 100, respectively, 
using ReLU activation function. Figure 2 shows 
the designed network structure.

Figure 2. Deep Neural Network Structure in DQN 
(Kose & Oktay, 2023)

The output layer in Figure 2 discretizes TMG1 into 
32 parts using the linear activation function in 
equation (4). Corresponding to the output layer 
neurons, each output represents the Q value of the 
corresponding control action in the current state:

{ }1 2 32, ,...,A A A A=                                       (4)

The variation range for the battery SOC is small, 
but the variation range for the vehicle speed 
and engine speed is wide. The vehicle state is 
normalized to ensure the convergence speed of 
the model. In DQN, the ε-greedy strategy is used 
to execute control actions, where ε represents the 
exploration rate. In strategy exploration, actions 
are randomly selected with probability ε (Yuan et 
al., 2021). Then, for strategy utilization, the action 
corresponding to deep network’s maximum Q 
value is selected with probability 1-ε. So far, the 
operation mode for the HEV energy management 
policy based on DQN can be obtained, which is 
illustrated in Figure 3.

Figure 3. HEV Energy Management Operation Mode 
Based on DQN Algorithm 
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The management process includes a control cycle 
and a learning cycle. In the control cycle, the 
controller employs the ε-greedy strategy based 
on the current state information st for the vehicle. 
There is a probability ε to select a random action 
for exploration, while there is a probability 1-ε to 
select the action with the maximum Q value after 
executing Q_eval network (Peng et al., 2021). 
After completing the action, the vehicle state will 
change and the relevant state action sequence 
will be stored in the experience pool. When the 
experience pool data storage space is full, the 
learning task begins to execute. A dual network 
structure including Q_eval and Q_target is set 
up to achieve strategy learning and optimization 
in the learning cycle. Q_eval is used to calculate 
the Q value of the current state action pair and 
generate the optimal control action, while its 
network parameter θ undergoes gradient updates 
at each step. Q_target is used to calculate the 
target Q value, and its network parameters do not 
require gradient updates. Instead, they are copied 
from Q_eval parameter θ to Q_target parameter 
θ− at every fixed step. This delayed update system 
enhances the stability of DQN. The loss function 
L(θ) of DQN is defined as the square of the 
difference between the target Q and the predicted 
Q in equation (5):

( ) ( ) ( )( )
!

1 1
2, , , ,

t
t t t ta

L E r maxQ s a Q s aθ γ θ θ
+

−
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 
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⋅
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target Q. r and γ are the parameters of the median 
function in the Q table, namely the output of Q_
target. θ− is a parameter copied from Q_eval at 
regular intervals. Q(st,at,θ) and θ represent the 
output of Q_eval and the parameter updated by 
real-time gradient, respectively.

3.2 The Design of DQN Algorithm 
Calculation Process

Although the designed DQN algorithm has a higher 
fitting ability and high latitude data processing 
ability in comparison with the Q-learning 
algorithm, there is still an overestimation problem 
with Q-learning. Overestimation refers to the fact 
that the true value in learning is lower than the 
updated estimated value. The problem with DQN 
arises from the maximization calculation for the 
median function, as follows. The median function 

Q(st,at,) in the Q table is updated according 
to equation (6) below. The advantage of these 
equations is that they incorporate Double Deep 
Q-networks (DoubleDQN) by contrast with 
traditional reinforcement learning algorithms, 
thereby effectively reducing overestimation of 
state values (Xiaofei et al., 2022):

( ) ( ) ( ) ( )
'

, , ', ' ,t t t t t ta
Q s a Q s a R maxQ s a Q s aα γ← + + − 

     
(6)

In equation (6), s' and a' are the corresponding 
state variables when Q reaches its maximum 
values st and at at time t. R is the parameter γ 
of the median function in Q table. Equation (7) 
represents the update of the corresponding DQN 
median function θt.

( ) ( )1 '
', '; , ; , ;( )t t a

r maxQ s a Q s a Q s aθ θ α γ θ θ θ−
+ = + + − ∇ 

     
(7)

From equations (7) and (8), both Q-learning 
and DQN value function updates include the 
max operation. The max operation resulted in 
the actual Q(s',a') value being lower than the 
estimated value. It is assumed that all states 
of Q(s',a') were overestimated with the same 
magnitude. The greedy strategy only focuses 
on the maximum Q value and corresponding 
actions. Even if all value functions are uniformly 
overestimated, this strategy will not affect the 
generation of the optimal strategy, because the 
goal of reinforcement learning is to find the 
optimal strategy, rather than accurately calculating 
the value function corresponding to each state. 
However, the overestimation of the target Q is 
not uniform for the solution of practical problems, 
which may result in the learning strategy being 
suboptimal rather than optimal.

Yang et al. (2022) have proposed the DoubleDQN 
method to solve this problem, which can effectively 
reduce state value overestimation and outperform 
DQN for many problems. Here, this method is also 
used for action selection and evaluation to calculate 
the target Q

tY  in equation (8):

( )
'

', ';
a

Q
t r maxQ s aY γ θ −= +

                            
(8)

The choice of action is to solve Q
tY , and it is 

necessary to select an action a* to maximize 
Q(s',a') at state s'. The evaluation of actions 
consists in calculating the corresponding state 
action value function of a*, which will form the 
target Q.
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In DoubleDQN, different neural network 
parameters are used for action selection and 
evaluation, and its target DoubleQ

tY  is calculated 
according to equation (9):

( )( )'
', ', ', ;DoubleQ

t a
Y r Q s arg maxQ s aγ θ θ −= +

   
(9)

The action value function in DoubleDQN is 
calculated based on parameter θ in equation (10):

( )
'

', ',
a

arg maxQ s a θ
                                     

(10)

After selecting the maximum action a*, the action 
is evaluated using equation (11), and the network 
parameter used this time is θ:

( )*', ;DoubleQ
tY r Q s aγ θ −= +

                        
(11)

DQN reduces the time series correlation for 
different kinds of data through experience 
playback. However, it is difficult for intelligent 
agents to learn efficiently by using uniform 
sampling methods to sample data from the 
experience pool. This is because the empirical 
data generated by the interaction between 
the environment and the agent is not equally 
important. Some states related to it may have a 
higher learning value than others. Therefore, this 
study adopts the prioritised experience replay 
method to extract data from the experience 
pool and give higher sampling weights to states 
with higher learning efficiency. Prioritised 
experience replay mainly includes two steps: 
defining priority and sampling. Priority is first 
defined, and the absolute value |δ| of the temporal 
difference deviation for the sample is selected to 
evaluate the priority of the sample. Therefore, the 
temporal difference deviation of sample m can 
be calculated as the absolute value |δ(m)| of the 
difference between the target Q and the estimated 
Q according to equation (12):

( ) ( )( )'
', max ', , ,; ( );

a
m r Q s arg Q s a Q s aδ γ θ θ θ−= + −

  
(12)

If δ is larger, it indicates that the estimated Q of 
the state is greater than the target Q, which has 
a higher learning value. Therefore, prioritizing 
the playback of samples with larger δ can enable 
reinforcement learning algorithms to converge 
quickly. However, if samples with larger δ are 
consistently selected according to the greedy 
pattern, sample diversity will be lost, which 
may lead to over-fitting. Therefore, a very small 
constant ξ greater than 0 is added in this study to 

the temporal difference deviation of each sample 
as the sampling priority pm of the sample in 
equation (13):

mp δ ξ= +                                                  (13)

Then a sampling section is designed. Figure 4 
shows the experience pool storage structure in 
DQN. A binary tree is used to store experience 
pool sample data with priority. The leaf nodes in 
the binary tree store the data and priority of the 
samples, while non-leaf nodes store the sum of the 
priority values for their child nodes.

Figure 4. DQN Experience Pool Storage Structure 
(Wu et al., 2020)

The sampling probability P(m) of sample m is 
described in equation (14):

( ) m m
k

P m p pα α= ∑
                                      

(14)

In equation (14), the parameter α determines the 
priority, and its value range is (0,1). When α drops 
to 0, it means uniform sampling is adopted. On the 
contrary, the adopted degree of priority sampling 
is greater.

The prerequisite for updating the value function 
using batch gradient descent is that the sampling 
distribution should be consistent with the value 
function distribution. But prioritizing experience 
replay may break this consistency. To correct 
the deviation, it is now necessary to calculate an 
importance sampling coefficient wk in equation 
(15) before the gradient:

( )
1 1

kw
N P m

β
 

=  
                                          

(15)

In equation (15), N represents the size of the 
experience pool, while β represents the weight 
coefficient. The sampling coefficient wk is often 
standardized to ensure the stability of the algorithm 
during use. At this point, the DoubleDQN with 
prioritized experience playback is constructed and 
applied to the power split HEVEM, replacing the 
traditional DQN as it is illustrated in Figure 5.
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Figure 5. Double DQN Algorithm Flow with 
Prioritised Experience Playback 

4. Performance Testing for Energy 
Management Algorithms

A simulation experiment was conducted using the 
condition recognition method for the purpose of 
testing the energy management capability of this 
design method. This experiment included various 
common hybrid vehicle energy control methods, 
which were analyzed according to the loss function, 
battery SOC, model memory consumption, and 
vehicle fuel consumption indicators.

4.1 Experimental Design

Some typical operating conditions were 
selected to construct combined operating 
conditions, which were used as data for testing 
various controllable models and methods. The 
selected typical operating conditions should 

comprehensively reflect the actual driving 
conditions and road environment for the 
vehicle. They should at least cover suburban 
and high-speed conditions, idle mode, constant 
speed, rapid deceleration conditions, and other 
operating conditions. Table 1 shows the selected 
typical operating conditions.

The above operating conditions were 
concatenated into a complete testing condition 
according to the number sequence. Figure 6 
shows the acceleration and velocity variation 
curves for this full operating condition. Figures 
6(a) and 6(b) show the acceleration curve 
and the corresponding velocity curve of the 
process, respectively. The total operating time 
after splicing was 10985 seconds. Further on, 
Q-learning, DP, and Faster-RCNN were selected 
to construct a comparative model, and compare 
the mode parameters and select the optimal 
solution through multiple experiments.

Figure 6. Complete Speed and Acceleration Variation 
Curves Spliced from Typical Operating Conditions 

Table 1. Typical operating conditions Information Table 

Number Condition name Time length (s) Data Size (KB) Number of types of road conditions covered
#1 WVUSUB 1665 322 3
#2 NYCC 599 58 1
#3 NurembergR36 1082 126 2
#4 WVUCITY 1408 249 4
#5 LA92 1436 301 1
#6 SC03 601 69 1
#7 ARB02 1640 285 2
#8 HWFET 766 41 5
#9 REP05 1401 364 2
#10 EUDC 401 72 5
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4.2 Experimental Results Analysis

First, the changes in the loss function for each 
model were analysed during the training phase as 
it is illustrated in Figure 7. The horizontal axis and 
vertical axis represent the number of iterations and 
loss function, respectively, and different curves 
represent different models. When the number of 
iterations exceeded 300, each model completed 
training. At this time, the loss functions values for 
DoubleDQN, Q-learning, DP, and Faster-RCNN 
were 1.82, 4.25, 5.36, and 6.29, respectively. The 
DoubleDQN illustrated in Figure 7 obtained the 
smallest value for the loss function.

Figure 7. Changes in Loss Functions of Each Model 
during the Training Phase 

According to practical experience in the industry, 
the core operating conditions that should be 
included in the data for testing automotive energy 
management strategies included congestion 
conditions, suburban conditions, and high-speed 
conditions. Due to their size relationship in 
terms of speed, they were assigned the values of 
“1”, “2”, and “3”, respectively. Due to the high 
computational complexity of testing the complete 
operating conditions, at least one segment with 
numbers “1”, “2”, and “3” was randomly selected 
from the complete operating conditions to form 
random testing conditions 1 and 2. Figure 8 
shows the vehicle speed under random condition 
1 and the corresponding SOC calculation results. 
Figure 8(a) shows the speed and condition number 
variation curve for random condition 1. Figure 
8(b) shows the SOC curve for random condition 
1. As it can be seen in Figure 8, the variation of 
operating conditions within random condition 
1 was relatively complex, including three basic 
operating conditions, and the switching between 

basic working conditions was frequent. Except for 
the energy management model based on Faster-
RCNN, the trend of SOC curve change for the 
other models was generally consistent, while the 
former had a higher overall value. Among the 
other three management modes, DoubleDQN 
had the lowest average SOC value, which meant it 
worked the most with a motor. The analysis results 
for random condition 2 were basically consistent 
with Figure 8.

Figure 8. Random Condition 1 Vehicle Speed Mode 
and SOC Calculation Results 

The employed models were also compared from 
the perspective of fuel consumption indicators. 
Figure 9 shows the overall fuel consumption 
under various operating conditions for the four 
energy management models. The four energy 
management models of various hybrid systems are 
displayed on the horizontal axis, while the vertical 
axis represents the fuel consumption of each 
model under comparative operating conditions, in 
L/100km. The two filling styles represent the two 
random operating conditions. Each experimental 
protocol was repeated 10 times to improve the 
reliability of statistical results, and these results 
were computed in the form of mean and standard 
deviation. The management model based on 
Faster-RCNN had the highest fuel consumption 
per 100 kilometers for both random operating 
conditions than all other management models. The 
management model based on DoubleDQN had 
the lowest fuel consumption per 100 kilometers 
in random operating conditions 1 and 2 among all 
the employed models, while the fuel consumption 
of the Q-learning management model was slightly 
higher than that of DoubleDQN. Specifically, 
the fuel consumption per 100 kilometers for 
DoubleDQN, Q-learning, DP, and Faster-RCNN 
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under random conditions 1 and 2 was 4.05, 4.13, 
4.19, and 4.46, and 3.64, 3.81, 3.94, and 4.25 
L/100km, respectively.

Figure 9. Comparison of Overall Fuel Consumption 
for the employed Energy Management Models 

Then a specific analysis was conducted on the 
fuel consumption changes for each management 
model under complete operating conditions taking 
random working condition 1 as an example. 
The evaluation index was changed to the fuel 
consumption within a hundred seconds. Figure 
10 shows the obtained statistical results. The 
horizontal axis represents time, in seconds, and 
the vertical axis represents the fuel consumption 
within 100 seconds for each of the two schemes, 
in ml/100s. Figure 10(a) illustrates the fuel 
consumption for the Q-learning model and 
DoubleDQN model over time for intervals of 
100 seconds, and Figure 10(b) illustrates the fuel 
consumption for the DP model and Faster RCNN 
model over time for intervals of 100 seconds. 

Figure 10. Real-time Fuel Consumption Changes 
for the employed Energy Management Models under 

Random Condition 1 

There was a negative correlation between the fuel 
consumption within 100 seconds and the SOC 
value for each model, because the power of HEV 
came from fuel-powered engines and electric 
motors, and the battery energy consumption was 
low. Under the same conditions, it meant that 
the engine energy consumption was high. The 
average fuel consumption per 100 seconds for 
DoubleDQN as it is illustrated in Figure 10 was 
43ml/100s, which was significantly lower than 
that of the other energy management models.

Finally, the consumption of hardware system 
memory for each model was compared to 
determine their deployment difficulty, as it 
is illustrated in Figure 11. Due to the low 
computational complexity in this case, all 
models were directly tested under the complete 
splicing condition. The memory consumption for 
DoubleDQN was relatively high, second only to 
Faster-RCNN, because the DoubleDQN model 
contains a deep neural network structure internally, 
which increases the overall complexity and total 
number of parameters of the model. Due to the 
simple calculation logic, the DP-based model had 
fewer parameters and involved fewer calculation 
processes, resulting in minimal memory 
consumption. Specifically, the average memory 
consumption for DoubleDQN, Q-learning, DP, 
and Faster-RCNN under the complete splicing 
condition was 238MB, 176MB, 89MB, and 
271MB, respectively.

Figure 11. Comparison of Memory Consumption 
during the Running Process for the Employed Models

Comparing the time complexity of each model 
from a mathematical perspective, the calculation 
of the number of operating conditions for the four 
models in Table 2 was carried out by randomly 
concatenating the various conditions listed in 
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Table 1. Table 2 includes the mixed comparison 
results. As it can be seen in Table 2, the improved 
DoubleDQN model proposed in this paper took 
2.4s, 15.2s, 46.8s, 285.1s, and 763.5s to calculate 
the number of operating conditions for the cases 
involving 1, 10, 100, 1000, and 10000 working 
conditions, respectively, which was longer than for 
all other compared models except for the Faster-
RCNN. The time complexity of this model was 
relatively high.

The computational complexity of the HEVEM 
model based on the improved DQN presented in 
this paper was higher than that of similar traditional 
models. A detailed analysis is given below. 
Firstly, the model proposed in this paper used a 
fully connected neural network with a five-layer 
structure, which contained a large number of neuron 
structures and coefficients, thereby improving the 
overall computational complexity of this model. 
Secondly, prioritising experience replay calculation 
also increased the computational complexity of the 
employed algorithm, as this method required first 
adding high-priority experiences to the experience 
replay time. The prerequisite for this step was to 
scroll through all experience elements and find the 
experience with the highest priority. Finally, the 
model had a dual network structure, which included 
two types of networks: Q_eval and Q_target. Both 
networks started optimizing parameters during 
the training process, which also increased the 
overall complexity of this model (originating from 
experimental results and original images).

5. Conclusion

This paper proposed a HEVEM based on an 
improved DQN to enhance the energy management 
efficiency of HEV hybrid systems. When the 
number of iterations exceeded 300, each model 
completed the training. At this point, the values of 
the loss functions of DoubleDQN, Q-learning, DP, 
and Faster-RCNN were 1.82, 4.25, 5.36, and 6.29, 

respectively. The proposed DoubleDQN obtained 
the smallest value for the loss function. The SOC 
variation patterns for DoubleDQN, Q-learning, 
and DP algorithms were consistent, but the 
average value of SOC obtained by DoubleDQN 
was the smallest, namely 0.49. The energy 
management model based on Faster-RCNN had 
a higher fuel consumption per 100 kilometers in 
the two random operating conditions than all other 
management models. The management model 
based on DoubleDQN presented in this study had 
the lowest fuel consumption per 100 kilometers 
in random conditions 1 and 2 among all the 
employed models. The fuel consumption per 100 
kilometers for DoubleDQN, Q-learning, DP, and 
Faster-RCNN under random condition 1 and 2 was 
4.05, 4.13, 4.19, and 4.46, and 3.64, 3.81, 3.94, 
and 4.25L/100km, respectively. The average fuel 
consumption per 100 seconds for DoubleDQN 
was 43ml/100s, which was significantly lower 
than that of the other management models. 
Therefore, the energy management algorithm for 
the HEV hybrid system proposed in this paper 
had a stronger energy management capability. 
However, due to research limitations, subjective 
evaluation research on this algorithm has not 
been carried out, which is also an area that future 
research should focus on.

Table 2. Comparison Results for Average Calculation Time and Time Complexity for the Employed Models 
(Unit: second)

The number of operating conditions to be calculated Improve DoubleDQN DP Q-learning Faster-RCNN
1 2.4 0.7 1.3 3.2
10 15.2 1.3 2.5 32.5
100 46.8 2.5 6.4 75.9
1000 285.1 9.2 28.2 463.1
10000 763.5 26.7 105.1 1254.8
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