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1. Introduction 

The essence of the global challenge is represented 
by the climate changes and the renewable energy 
plays an important role in mitigating it. The 
burning of fossil fuels for energy generation is 
a significant contributor to the accumulation of 
greenhouse gases in the atmosphere, leading to 
global warming and climate change. Fossil fuel 
reserves are finite and are being depleted rapidly 
due to extensive usage. This reality necessitates 
a shift towards sustainable and renewable energy 
sources. Renewable energy sources such as wind, 
solar, tidal, biomass, and hydro micro turbines 
offer a sustainable alternative to fossil fuels. These 
sources are abundant, clean, and replenishable.  
Significant efforts are being directed towards 
research and development in renewable energy 
technologies to make them more efficient, 
affordable, and accessible. 

In addition to primary renewable energy sources, 
secondary storage technologies such as hydrogen 
fuel cells, super capacitors (SC), and batteries play 
a crucial role in storing and efficiently utilizing 
renewable energy, thereby enhancing its reliability 
and stability in the electricity grid. Renewable 
energy systems inherently produce fewer or zero 
emissions compared to fossil fuel-based energy 
generation, contributing to the reduction of 
greenhouse gas emissions and combating climate 
change. In conclusion, the transition to renewable 
energy is imperative to mitigate the impacts of 
climate change, ensure energy security, and foster 
sustainable development for future generations.

Akram et al. (2017) presented a methodology for 
optimizing sources of renewable energy and hybrid 
power reserve arrangements in a grid-connected 
micro grid, with the aim of minimizing cost, 
improving reliability, and reducing greenhouse 
gas emissions.

The methodology proposed in (Sandhu & 
Mahesh, 2018) explores the impact of demand 
side management in hybrid PV and wind/battery 
energy setup, for optimization purposes. Also, the 
Pigeon Inspired Algorithm has been employed and 
an energy filter algorithm was created to reduce 
the oscillations. 

This paper explored an inverter control scheme for 
wind energy systems under weak grid conditions. 
It addressed transient issues and slow dynamic 
response due to unpredictable wind speed and 
generator inertia which were also approached in 
(Rahul & Suhag, 2018). The article introduces a 
hybrid Maximum Power Point Tracking (MPPT) 
method using an Adaptive Neuro-Fuzzy Inference 
System-Particle Swarm Optimization (ANFIS-
PSO) to efficiently extract PV power with zero 
oscillation tracking (Priyadarshi et al., 2020). This 
method eliminates the need for additional sensors 
for irradiance and temperature measurements, 
enhancing PV potential extraction. 

The research (Benadli et al., 2021) explores the 
use of sliding mode control in a hybrid system 
for renewable energy that includes a photovoltaic 
system and a wind turbine, with a permanent 
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magnet synchronous generator connected via 
a DC/DC converter. The paper (Elnozahy et 
al., 2021) compares and analyzes three types 
of controllers in DC-AC inverters in hybrid 
renewable energy source systems, using sliding 
mode control and artificial neural network 
techniques. A sliding mode control technique 
(SMC) used to improve PV power by minimizing 
oscillation around the operating point, thus 
achieving smoother peak power under various 
conditions, was reported in (Mostafa et al., 2020). 
In the research proposed in (Khatibi et al., 2022), 
it was aimed to develop a grid-connected hybrid 
renewable electricity system with the intention 
of providing Yazd City from Iran structures the 
required electricity using genetic algorithms and 
TRNSYS software. In the studied region, the use 
of batteries was not adequate.

The article (Priyadarshi et al., 2023) presented 
a hybrid wind-photovoltaic micro grid system, 
controlled by a sliding mode controller, achieving 
maximum power point tracking using a hybrid 
fuzzy logic controller optimized through particle 
swarm optimization. The result was that the 
system achieved peak PV power with simplified 
implementation and high convergence speed.

The article pointed out that the hybrid power 
system is a renewable energy generation strategy 
utilizing photovoltaic panels, battery storage, and 
solid oxide fuel cells, with an adaptive neural 
fuzzy inference system trained on Double Integral 
Sliding Mode Controller (DI-SMC), as presented 
in (Banu et al., 2022).

The objective of this study (Kalvinathan & Chitra, 
2022) is to combine a hybrid control system 
consisting of a developed artificial neuro fuzzy 
system (SMC-ANFIS) and a slide mode controller 
to achieved optimal transient response under 
dynamic load conditions.

The radial basis function network with deep 
learning is outlined within the MPPT approach, 
enhancing accuracy and convergence speed. The 
boosted slap swarm optimization approach is used 
for quicker reaction time. The suggested approach 
is outperforming in terms of global MPPT, the 
recommended method performs better than fuzzy 
logic-based neural network and traditional MPPT 
methods, thus resulting the power and efficiency 
described in (Raj & Samuel, 2022). The paper 
(Roumila et al., 2017) worked out fuzzy logic 
controller for energy management in a hybrid 

wind, solar, and diesel system with storage battery. 
This study demonstrates the simplicity and ease of 
determining operating process based on weather 
conditions. The research studied about hybrid 
renewable energy associated with a reliable energy 
source, which is provided to the consumer, end 
user or distributed generation through appropriate 
control design and energy management 
mechanism. The appropriate storage backup 
option was used in the metaheuristic algorithm, 
with a finer-grained solution being obtained, as 
demonstrated by the results in (Saharia et al., 
2018). Lamzouri et al. (2021) used a new and 
effective output power control method for a hybrid 
electric generator system, combining sliding mode 
control and integral action to regulate output 
power and extend battery life cycle, demonstrating 
robustness against environmental changes.

In the article (Li et al., 2020), a control system for 
a combined energy system using MPPT algorithm 
with fuzzy logic controller was developed and 
shuffled a frog leaping algorithm was modified 
for optimal parameters, achieving an efficiency of 
99%. Guo et al. (2021) designed a MPPT technique 
for solar PV systems, combining incremental 
conductance and a hybrid SFLA-PS-based adaptive 
neuro-fuzzy inference system, to generate optimal 
voltages and maximize power points.

The paper (Chandan et al., 2020) analyzed 
the hybrid electric system performance using 
MATLAB/Simulink. It developed a model 
incorporating a battery, fuel cell, and super-
capacitor, focusing on energy management and 
load demand regulation. Thus, the simulation 
outcomes confirm overall performance in the 
MATLAB/Simulink environment.

The method proposed by Yasin (2019) for power 
balance control in a hybrid multisource DC 
micro grid system aimed to meet load power 
demand and stabilize DC bus voltage. The 
experimental results showed that the dynamic 
and static performance was improved. The paper 
(Nedim et al., 2023) introduced an intelligent 
mode-based controller that integrated hybrid 
non-conventional power with a hybrid energy 
management control model for optimal operation. 
It used a shuffled frog leaping algorithm, based 
on artificial neural networks, and implemented 
in MATLAB/Simulink. The research (Masry et 
al., 2023) discussed a maximum power point 
tracking method for solar PV systems with ANN-
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VSP & O-FLC algorithm-based controller. The 
obtained results showed both low distortions and 
low oscillations.

Samuel & Rajan (2015) proposed dual algorithms 
to solve the long-term generation maintenance 
scheduling problem in power systems, with 
the help of the designed hybrid particle swarm 
optimization-based genetic algorithm and hybrid 
particle swarm optimization-based shuffling frog 
leaping algorithm. The result demonstrated that, 
during the planning period, the best maintenance 
program was achieved. 

In the paper (Momen et al., 2023) a framework 
for optimizing energy consumption in micro 
grid using the improved shuffled frog leaping 
algorithm (ISFLA) is proposed, in order to 
address load uncertainties and renewable energy 
production probability. 

The paper (Ullah et al., 2023) offered a summary 
of the hybrid micro grid’s energy management and 
control, recommending the use of the most widely 
used control techniques, including proportional 
integral derivative, fuzzy logic, artificial neural 
networks, and sliding mode controllers.

In their work, Chiu & Ngo (2023) presented the 
hybrid MPPT method, and scrambled frog leaping 
algorithm combined and incremental conductance, 
which effectively located the maximum power 
region. The incremental conductance searching 
phase precisely discovered MPP. In the research 
described in (Nie & Nie, 2017), a MPPT-based 
particle swarm optimization and an improved 
shuffled frog leaping algorithm were used to 
address the nonlinear optimization extreme point 
problems and to overcome the measurement noise 
effects in complex environments.

Based on this background information, the 
primary contribution of this study is to suggest 
a SMC in the presence of severe modeling 
errors and disturbances. This is because the 
high switching frequencies and significant 
management effort required may cause the plant’s 
high-frequency modes to be unintentionally 
excited. Consequently, this work suggests a 
higher computational cost for SMC-ANN, which 
leads to the SFLA high-dimensional difficulties. 
The traditional sliding mode controller 
occasionally causes a steady state mistake. To 
ensure that, the present research first addresses 
the aforementioned shortcomings of controllers, 

and then suggests a methodology of SFLA-ANN. 
Thus, minimal oscillation amplitude, reduced 
steady state inaccuracy, and shortened switching 
operation adjustment time can be observed.

The main objectives of the suggested research are 
to design and test the hybrid power architecture 
with PV power, wind power, SC and grid 
backup. The SFLA-ANN algorithm governs 
this hybrid configuration inverter which is the 
main instrument for directing and optimizing 
the combined configuration, including nonlinear 
outcomes of PV and wind configurations. 

This paper is structured as follows. Section 2 
presents the system architecture. Next, the power 
management controllers are outlined in Section 3.  
Then, the experimental results are considered in 
Section 4 and, eventually, Section 5 draws the 
conclusions of the study.

2. System Architecture 

2.1 Proposed Methodology for 
Efficient HEMC

The DC/DC boost conversion system is connected 
to the wind and photovoltaic sources. The grid’s 
output voltage is connected to the DC bus via an 
AC/DC converter, and the storage device SC is 
connected to a bi-directional (BID) DC buck-
boost converter. Every DC power conversion 
system is linked to the DC bus, then the common 
DC link capacitor and filter are used to feed power 
to the DC/AC voltage source inverter (VSI), 
which, in turn, supplies power to the RL load.  The 
control reference signal for VSI, produced by the 
suggested controller, illustrates the comparison 
between the DC bus voltage (Vdc) of the common 
DC link capacitor and the load parameter. SMC, 
SFLA, SMC-ANN, and SFLA-ANN controllers 
are among the four energy management strategies 
used to operate all of the power conversion 
systems. A grid-integrated hybrid renewable 
energy system is seen in Figure 1. It comprises 
photovoltaic (PV) energy, wind energy and 
super capacitor (SC). The maximum power point 
tracking boost converters are used to link these 
sources. This VSI is used to stabilize the voltage 
during dynamic load changes. This study proposes 
the use of the SFLA-ANN algorithm to regulate 
the DC bus voltage, manage the SC charging and 
discharging, also control the VSI. This proposed 
algorithm aims to maintain the rated AC voltage 
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profile at VSI’s output point, especially during 
dynamic load variations. The proposed SFLA-
ANN algorithm serves two primary functions:

•	 DC bus voltage management and 
supercapacitor charge and discharge 
supervision;

•	 Controlling VSI and ensuring the rated 
profile of AC voltage at VSI’s output point, 
during dynamic changes in load conditions. 

Figure 1. Proposed HEMC

2.2 Solar PV Modeling 

The characteristics of a solar photovoltaic module 
include its single diode model parameters such 
as ISC (short-circuit current), VOC (open-circuit 
voltage), and Pmax (maximum power output), but 
also the f shunt resistance (RSh) and series resistance 
(RS) can be mentioned as part of the model.  
This model specification is Soltech ISTH-215-P, 
ISC - 8.95 A, VOC - 45.22V, Power (Pmax) – 315 W. 

2.3 Wind Energy Modeling 

The AC power generated from wind generator is 
proportional to wind speed. The generated AC 
voltage from Permanent Magnet Synchronous 
Generator (PMSG) is fed to DC bus after 
conversion, through a bridge diode rectifier. The 
values of the wind model parameters are the 
following: the wind velocity is 9 m/s, the rated 
power of the wind turbine is 2.5 kW, the rated 
speed of the PMSG is 4000 rpm and the operating 
voltage is 100V AC.

2.4 Super Capacitor (SC) Modeling

The supercapacitor has a large amount of 
potential energy that would be stored, charged and 

discharged rapidly. This SC device is used under 
dynamic load conditions and represents a backup 
in case of renewable energy source deficiency.

2.5 Power Management Strategy (PMS)

The HEMC has a wide range of sources which are 
necessary in order to implement the best power 
management system. In order to achieve this, 
five distinct modes have been devised for ideal 
performance under RL load circumstances. As 
it can be seen in Figure 2, the proposed HEMC 
controller exerts a variety of configurations in 
order to provide smooth operations.

Figure 2. Configuration of HEMC 

The variety of configurations is as follows:

Mode 1: This mode utilizes power from solar PV, 
wind, and the grid to manage the load. Any excess 
power is used to charge the capacitor;

Mode 2: In order to guarantee sufficient power 
for the load, the wind velocity and PV insolation 
are decreased, while grid power remains 
constant. During this time, the super capacitor is 
in charging mode;

Mode 3:  SC’s power is discharged to the load, 
due to grid operation in isolation, and both PV and 
wind powers are deviated;

Mode 4: PV insolation is dynamically reduced, 
while wind velocity is maintained. The super 
capacitor is fully discharged, and grid power 
manages the load, with surplus voltage used to 
charge the SC device;

Mode 5:  If the wind source is deficient, the grid 
and PV system manage the load.
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These modes demonstrate a comprehensive 
approach to managing a hybrid renewable energy 
system under various conditions, optimizing power 
utilization, and ensuring continuous supply to the 
load. The energy management strategy is designed 
to dynamically adapt to changes in renewable 
energy generation and to grid conditions, in order 
to maintain grid stability and efficiency.

3. Power Management Controllers

3.1 Conventional Sliding Mode 
Controller (SMC)

The Sliding Mode Control algorithm is chosen for 
its ability to optimally operate under dynamically 
varying external disturbance conditions in 
HEMC, specifically addressing the robustness 
to external disturbances. 

The selection of the sliding surfaces Ψ, s, Ф, and 
µ is made to regulate the parameters of PV energy, 
wind energy SC and grid power conversion 
system, respectively, as shown in equation (1):

, , , gridPV sc PP PPwind s
t t t t t

ψ s µ
∂∂ ∂∂ ∂

= = Φ = = =
∂ ∂ ∂ ∂ ∂     

(1)

where PPV, Pwind, Psc, and Pgrid are the Power 
Sources of the grid which integrates hybrid 
renewable energy system.

The PV power (Ppv), wind power (PWind) SC power 
(Psc) and grid power (Pgrid) are found as:
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Based on equation (2), the sliding surface of the 
system is presented in equations (3) and (4):
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where µs ,,, ΦΨ  are the sliding surfaces of PV 
energy, wind energy, SC and grid, respectively, 
while s represents the total of the sliding surfaces 
of power sources.

The control parameter of the SMC is obtained 
from equations (1) - (4).

SMC’s distinctive duty cycle (d) is shown in 
equation (5):

( )sksignvd +=                                       (5)

where v is the equivalent control value, 
calculated using equation (6) and k is the gain 
constant, therefore: 
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Duty cycle variation ranges from 0 to 1. Hence, 
equation (7) reveals the limitations of SMC’s logic:
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The SMC controller finds the optimal operating 
point of the surface, compares it with common 
DC bus voltage and produces the control signal 
named as Modulation Index (MI). After that, 
the Pulse Width Modulation (PWM) signal 
employs a comparator to generate a control 
pulse operating at a frequency of 3000 kHz and a 
damping factor of 1200, to manage the renewable 
power conversion system.

3.2 SFLA Controller

The Shuffled Frog Leaping Algorithm (SFLA) 
is a recently proposed evolutionary algorithm 
which works based on the principle of the 
frogs searching for the maximum food source 
location in a waterhole, where they can jump 
over numerous distinct stones in search of food. 
Individual frogs are permitted to speak with one 
another, in order to fulfil the information-sharing 
goal, and benefit from the experiences of others, 
in order to improve their own leaping direction 
and step size. The frog population is divided into 
multiple memeplexes with the same number, but 
varying ability, to form a tiny group in a local 
range, enabling them to locate food efficiently 
and precisely. The aristocracy established in 
the area leads others on their own food searches 
among various routes. Each memeplex shuffles 
to exchange information with other memeplexes 
after a predetermined number of searches, which 
causes a large number of frogs to pick up new 
concepts from various memeplexes and recognise 
the social exchange of knowledge, enabling the 
entire frog population to effectively and swiftly 
locate the food source in accordance with the 
proper direction.
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Step 1. Random generation creates a virtual 
population of F distinct frogs in the feasible 
D-dimensional space. A candidate solution to an 
optimization issue is represented by each frog, and 
the number of proposal variables is D. Thus, the 
vector which expresses the frog is Xi = [Xi1, Xi2, …, 
XiN]. Every frog has a corresponding fitness value 
that indicates how well the frog is performing.

Step 2. The population is divided into “m” 
memplexes (communities) each containing “n” 
frogs, so that all frogs are sorted in descending 
order based on their fitness ratings.

The SFLA metaheuristic describes optimization 
in an iterative manner. In this work, the optimal 
operational point for the climatic deficiency, the 
values of the solar irradiance, wind velocity and 
grid voltage are formulated and derived in the 
first stage, by utilizing the SFLA method, which 
is comprises.  D represents the proposed variable 
in the memetic vector, to perform the local search. 
The different types of frogs, with various classes, 
are called Memeplex. The number of memeplex 
m=N/n, where N is the total number of frogs, and n 
is the quantity of frogs that each memeplex uses in 
order to select a better fitness value and to establish 
a higher probability regarding the existence of 
frogs in submemeplex. SFLA is a crucial tool 
for optimizing power management in systems 
involving PV power, wind power, SC power and 
grid power. It harmonizes energy utilization and 
regulates energy storage within super capacitors, 
enhancing sustainability and performance. The 
optimal operational point of the correspondence 
between the frog and its performance is defined 
as fi. The frogs that perform the best and worst are 
determined as (Xb) and (Xw) in each memeplex, 
respectively, as well as best (Xg), in the entire 
population. The evaluation updated equations are 
shown below:

( )wbi XXRandD −×=                               (8)
)( maxmin iiii

old
w

new
w DDDDXX ≤≤+=                  (9)

where Di is the position of the frogs, Rand is the 
random value between 0 and 1, and Di min and Di 

max are permitted frog’s position of lower and upper 
bound of the step size, respectively. In memeplex’s 
progression, the frog Xw leaps in the direction of 
the frog Xb, which is updated in accordance with 
equations 8 and 9.   This procedure is called the 
shuffling process. This produces the individual’s 
desired optimal operational fit values which provide 
the best possible control reference parameter.

3.3 SMC-ANN Controller 

An ANN-based optimal intelligence fitting tool is 
used to solve difficult problems. The HEMS can 
be effectively controlled using ANN. The ANN 
control consists of three layers: input, hidden, 
and output.  This task involves gathering 2000 
input and output data from the SMC-HEMC 
controller and using the ANN fitting tool to train 
it. The root mean square error represents the 
output performance.

3.4 Proposed SFLA-ANN Controller

The hybrid SFLA-ANN controller is a powerful 
combination tool used to control and optimize 
the nonlinear responses of hybrid renewable 
system. SFLA works based on ANN expert 
knowledge structures.

SFLA-ANN control model is developed from 
MATLAB “annfitting” tool trained process, as 
shown in Figure 3. 

Figure 3. SFLA-ANN hybrid controller

As reference, voltage and current are considered 
the input parameters and the control signal of MI 
is considered the output parameter. It comprises 
the 3000 data collected from SFLA simulation 
models of PV, wind, SC and grid energy of the 
proposed system. The developed SFLA – ANN 
has been exported to the proposed simulation 
model for optimal operation of the grid. It 
integrates hybrid renewable energy system under 
RL load conditions. Solar PV and wind power are 
the primary sources in renewable energy, whereas 
the backup storage device of SC and supportive 
elements of controlled grid are connected to the 
DC switch.  The developed Simulink is used to 
check the validity of control algorithms of SMC, 
SFLA, SMC-ANN, and SFLA-ANN controllers, 
to regulate the DC/AC conversion inverter with a 
dynamically changing RL load as well as the DC 
bus voltage. The proposed simulation model can 
be seen in Figure 4. 
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Figure 4. Proposed simulation model

The HEMC model produces four control signals 
which are Spv, Swind, Ssc and Sgrid from four input 
parameters of the solar, wind, SC and grid energy. 
The PMS (see Figure 2 from the previous section) 
is based on five different modes, wherein the load 
power and the balance are delivered in accordance 
with equation (10):

( ) ( ) ( ) ( )
( )

load sc sc pv pv wind wind

grid grid

P t S P t P t S P t S
P t S

± × = × + ×

+ ×
  
(10)

when >+gridRESP Load, the SC is charging, when <+gridRESP Load, the SC is discharging:

where Spv Swind: Ssc and Sgrid are control signals of 

PV, wind, SC and grid energy, respectively, P 
is the power across the load, SC, PV, wind and 
grid energy with respect to time and PRES+grid is 
the total power from renewable sources and grid. 
The simulation is carried out for the two different 
conditions as follows: 

(1) Static load condition;

(2) Dynamic load condition. 

To test the efficacy of the suggested simulation 
for hybrid energy structure, the simulation is 
carried out with five different time configurations 
and it has been performed from 0s to 0.9s. 
Figure 5 display the source parameter for each 
main component in the simulation, including PV 
insolation, wind energy, SC voltage, SC current 
and SOC. The differential power sources are used 
to meet the load profile according to the operating 
condition. During periods of peak load demand, 
all available power sources from solar, wind, grid, 
and SC are used to meet load demands.

Figure 5. Source parameter (a) PV insolation, (b) wind 
velocity, (c) SC voltage, (d) SC current, (e) SC-SOC

3.5 Mode of Operation with Respect to 
Time (t) in Seconds (s)

Mode 1 (0.0s <t< 0.15s): With an interval duration 
from 0.0s to 0.15s, PV, wind and grid energy are 
connected with load. In this setting of operation, 
the PV irradiation is 500W/m2, the wind speed is 
9 m/s, and the grid voltage is 750V. Therefore, 
within this mode, the SC starts charging.

Mode 2 (0.15s <t< 0.3s): With an interval 
duration from 0.15s to 0.3s, PV, wind and grid 
energy are connected with load. In this position, 
the PV irradiation is 250 W/m2, the wind speed is 
5 m/s and the grid voltage is 750V. With this setup, 
the SC continues to be in the charging mode.

Mode 3 (0.3s <t< 0.6s): With an interval duration 
from 0.3s to 0.6s, the grid voltage is isolated. At 
this time, both PV irradiation and wind velocity 
are raised to 1000W/m2 and 9m/s, respectively. 
Further, the SC initiates to discharge.

Mode 4 (0.6s <t< 0.75s): In this fixture, the grid 
remains isolated, the PV irradiance is 750W/m2 
and the wind velocity is 3 m/s. In this situation, 
SC is connected to charge mode.
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Mode 5 (0.75s <t< 0.9s): With an interval duration 
from 0.75s to 0.9s, the grid is reconnected to750 
Vdc, the PV irradiance is 750 W/m2, and the wind 
velocity is 3 m/s. SC is still in the charge mode. 

4. Experimental Results

4.1 Static Load

In order to determine the output response control 
using these four algorithms, the continuous RL 
load of (7.5kW+7.5kvar) is connected across 
VSI of the hybrid system with two distinct 
combinations of renewable sources, SC and 
grid, with durations ranging from 0s to 0.9s. The 
output voltages for integrated renewable sources, 
SC, and grid from the recommended DC-DC 
converters are shown in Figure 6, before utilizing 
any controllers.

Figure 6. Source voltage (V)

Figures 7 (a) and (b) show the control signals 
from both suggested and traditional controllers 
and the zoomed-in view of Modulation Index 
(MI), produced by the HEMC model in 
accordance with the load demand and available 
renewable power source.

Figure 7. (a) MI (b) Zoomed-in view of MI

Figures 8 (a) and (b) present the three-phase load 
voltage and load current.

Figure 8. Three phase (a) load voltage  
(b) load current

Figures 9 (a), (b) and (c) present the comparison 
between experimental results for voltage, current 
and power from proposed HEMC which is 
connected with static RL load, this power being 
managed by four distinct algorithms.

Figure 9. Comparison of static load (a) voltage, (b) 
current, (c) power

During the renewable sources change in static 
RL load, the following observations have been 
recorded. The respective RMS voltage is seen 
in Figure 9(a), and as a result, the suggested 
SFLA-ANN controller’s upwelling load voltage 
ranges from 0 to 457.90V and settles at 434.8V 
in 0.094 seconds, whereas load voltage of SMC-
ANN controller got increased from 0 to 458.7V 
and settled at 412.0V, in 0.10 s.  Similarly, the 
SFLA has a transient voltage of 448.9V and a 
stable voltage of 403.6V with a 0.15s settling 
period, whereas the SMC has a transient voltage 
of 428.5V and a stable voltage of 392.60V with a 
0.18s settling period. All the parameters have been 
recorded at the simulation time of 0s to 0.15s. The 
performances of all configuration varied from 0s 
to 0.9s. 

The RMS current is seen in Figure 9(b), and as 
a result, the suggested SFLA-ANN controller’s 
upwelling load current ranges from 0 to 16.4A and 
settles at 15.02A in 0.075s, whereas load current 
of SMC-ANN controller got increased from 0A to 
16.35A and settled at 14.33A, in 0.8s. Similarly, 
the SFLA has a transient current of 16.03A and 
a stable current of 14.14A, with a 0.15s settling 
period, whereas the SMC has a transient current 
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of 15.6A and a stable current of 13.61A with a 
0.18s settling period. All the parameters have been 
recorded at the simulation time of 0s to 0.15s. The 
performances of all configurations varied from 0s 
to 0.9s.

The RMS load power is seen in Figure 9(c), and 
as a result, the suggested SFLA-ANN controller’s 
upwelling load power ranges from 0 to 7437 W 
and settles at 6523 W in 0.09s, whereas load power 
of SMC-ANN controller got increased from 0 to 
7533W and settled at 6001W, in 0.13s. Similarly, 
the SFLA has a transient power of 7192 W and 
a stable power of 5685 W with a 0.16s settling 
period, whereas the SMC has a transient power 
of 6665W and a stable power of 5356W with a 
0.19s settling period. All the parameters have been 
recorded at the simulation time of 0 to 0.15s. The 
performances of all configurations varied from 0s 
to 0.9s.

4.2 Dynamic Load

During the renewable sources as well as load 
changes in dynamic load, the RL dynamically 
provided different values of specified intervals 
with different operating climatic conditions, 
coupled with varied grid voltage and observed 
transients of voltage, current and power.

Figures 10 (a) and (b) illustrate the modulation 
index (MI) for dynamic load and its zoomed-in 
view, respectively, generated by the HEMC model 
based on the available renewable power source 
and load demand. The following observations 
were made when the dynamic RL load was 
changing. The proposed SFLA-ANN controller’s 
upwelling load voltage spans from 0 to 423.6V 
and settles at 419.3V in 0.073s, as a result of the 
respective RMS voltage, which is shown in Figure 
11(a). In contrast, the SMC-ANN controller’s 
load voltage climbed from 0 to 412 V before 
stabilizing at 405.3V in 0.09s. Comparably, the 
SFLA has a 399.4V steady voltage and a 405V 
transient voltage with a 0.14s settling time. All 
of the parameters have been obtained during the 
simulation time of 0 to 0.15s, despite the SMC 
having a transient voltage of 382V and a stable 
voltage of 350V with a 0.16s settling period. 
Every configuration’s performance ranged from 
0 to 0.9s. 

Figure 10. (a) MI, (b) Zoomed-in view of MI

The following observations was made during the 
load shift in the dynamic RL load. Figure 11(b) 
shows the respective RMS load current. As a result, 
the upwelling load current of the recommended 
SFLA-ANN controller varies from 0 to 16.97A 
and settles at 15.05A in 0.07s, whereas, the load 
current of the SMC-ANN controller increased 
from 0 to 14.82A and resting at 14.03A in 0.09 s. 
In similar fashion, the SFLA exhibits a transient 
load current of 14.56A and a stable load current 
of 13.97A with a settling time of 0.10s, while the 
SMC exhibits a transient load current of 14.01A 
and a stable load current of 13.27A with a settling 
period of 0.13s. All parameters were recorded 
during the simulation time of 0 to 0.1 seconds 
over the simulation period, which ranges from 0 to 
0.15 seconds. Every configuration’s performance 
ranged from 0 to 0.9 seconds. From Figure 11(c), 
the following numerical and simulated findings 
can be observed: the power output of the various 
dynamic load configurations for RL duration of 
0 to 0.9 seconds, and the load connected with 
(7.5kW+7.5kvar).

Figure 11. Comparison of dynamic load voltage (b) 
current (c) power
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The following observations were made during 
the load shift in the dynamic RL load. Figure 
11(c) shows the RMS load power. As a result, 
the upwelling load power of the recommended 
SFLA-ANN controller varies from 0 to 7193W 
and settles at 6341W in 0.07 seconds. The 
percentage of oscillation is 1.03%, whereas, 
the load power of the SMC-ANN controller 
increased from 0 to 6149W and rested at 5644W 
in 0.09 second. The percentage of oscillation is 
1.21%.  In similar fashion, the SFLA exhibits 
a transient load power of 5855W and a stable 
load power of 5597W, with a settling time of 
0.14s. The percentage of oscillation is 1.1.8%, 
while the SMC exhibits a transient load power 
of 5392W and a stable load power of 5080W, 
with a settling period of 0.17s. The percentage of 
oscillation is 1.16%. All parameters were recorded 
during the simulation time of 0 to 0.15s. Every 
configuration’s performance ranged from 0 to 
0.9 seconds.  It can be concluded that the SFLA-
ANN’s power management system significantly 
reduces transients and thus the oscillations, which 
also reduces the settling time.

4.3 An Overview of the Experimental 
Findings and Discussions

Table 1 and 2 display the transients of load 
power and settling time taken from Figure 9 
(c) and Figure 11 (c), respectively. Based on a 
comprehensive analysis of power transients and 
settling time using four different algorithms, the 
proposed SFLA-ANN method has a maximum 
steady state power with shorter settling time for 
static and dynamic loads in Mode 1, during the 
specified duration of 0 s - 0.15 s, respectively. The 
experimental data compares the performance of 
different methods in handling load voltage, load 
current, and load power under both static and 
dynamic configurations. The proposed SFLA-
ANN method demonstrates superior performance 
in reducing power transients and settling time, 
compared to existing approaches. Thus, the 
transients of load power oscillation are also 
significantly reduced.  

The percentage power oscillation for both static 
and dynamic load circumstances is shown in  
Table 3. It clearly demonstrates that the SFLA-
ANN performs better because of its low 

Table 1. Load power transient and settling time for static load at mode 1 in the duration of 0 s - 0.15 s

Serial No Algorithm
Load Power in Watts (W)

Settling Time in seconds (s)
Transient Steady

1 SFLA-ANN 7437 6253 0.09
2 SMC-ANN 7533 6001 0.13
3 SFLA 7192 5685 0.16
4 SMC 6665 5356 0.19

Table 2. Load power transient and settling time for dynamic load at mode 1 in the duration of 0 s - 0.15 s

Serial No Algorithm
Load Power in Watts(W)

Settling Time in seconds (s)
Transient Steady

1 SFLA-ANN 7193 6341 0.07
2 SMC-ANN 6149 5644 0.09
3 SFLA 5855 5597 0.14
4 SMC 5392 5080 0.17

Table 3. Percentage of load power oscillations 

Serial No Algorithm
Power oscillation in %

Static load Dynamic load
1 SFLA-ANN 1.13 1.03
2 SMC-ANN 1.28 1.21
3 SFLA 1.35 1.18
4 SMC 1.38 1.16
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oscillations. The hybrid shuffled frog leaping 
algorithm-artificial neural network (SFLA-ANN) 
controller provides a stable output. It shows 
significantly reduced power oscillations and 
quicker settling times compared to conventional 
models such as SMC, SFLA, and SMC-ANN. 
Overall, the proposed approach supports both 
static and dynamic load conditions across 
various climatic conditions. Its effectiveness 
stems from the characteristics of artificial neural 
networks, including their ability to handle 
nonlinear problems, generate detailed theoretical 
insights, and quickly adapt to new data through 
optimization of weights in the ANN.

5. Conclusion 

In conclusion, this study systematically 
evaluates the performance of four distinct power 
management controllers in a controlled grid-
integrated hybrid renewable energy management 

system (HEMC). The experimental outcomes, 
conducted under varied climatic conditions and 
specified configurations of renewable sources, SC 
and grid inputs were meticulously analyzed. The 
detailed examination of voltage, current, and load 
power transients, settling times and percentage 
of load power oscillations was carried out both 
for experimental and numerical validations, 
in static and dynamic load conditions. The 
effectiveness of the SFLA-ANN controller was 
reinforced. It significantly outperformed the other 
controllers, demonstrating its adaptability and 
advanced capabilities. The study recommends the 
incorporation of the hybrid SFLA ANN controller 
in future works, highlighting its potential for 
further advancements. Additionally, the paper 
underscores the ongoing benefits of integrating 
green energy, particularly in the context of Electric 
Vehicles, emphasizing the continued relevance 
and application of these findings in sustainable 
energy systems.
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