
 

1. Introduction 

Introduced into the neural network literature 
by Broomhead and Lowe [1], the radial basis 
function neural networks have been widely 
used for function approximation, pattern 
classification and recognition due to their 
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structural simplicity and faster learning 
abilities [2, 3]. However, their design still 
remains a difficult task due to the absence of 
systematic method giving an optimal 
architecture. A too small network cannot well 
learn the problem, but a too large network 
will lead to over-fitting and poor 
generalization performance [4]. 
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A very important step for the RBF network 
training is to decide a proper number of 
hidden neurons (number of basis functions), 
because it controls the complexity and the 
generalization ability of RBF networks, so 
many works have proposed RBF classifier 
conception algorithms [5-11].  

The radial basis function network is three 
layers feedback network, typically used for 
supervised classification. Its training 
procedure is usually split into two successive 
steps. First, the centers of the hidden layer 
neurons are selected by clustering algorithms 
such as k-means [11, 12], vector quantization 
[13], decision trees [14], and then the widths 
are calculated [15]. Second, the weights 
connecting the hidden layer with the output 
layer are determined by Singular Value 
Decomposition (SVD) or by Least Mean 
Squared (LMS) algorithms [16]. 

In this paper, a new learning algorithm is 
proposed for construction of the radial basis 
function networks solving classification 
problems. It determines the proper number of 
hidden neurons and calculates the centers 
values of the radial basis functions. After the 
selection of the centers of the hidden neurons, 
the widths of the nodes are determined by the 
P-nearest neighbour heuristic, and the 
weights between the hidden layer and the 
output layer calculated by the pseudo-inverse 
matrix. 

The proposed approach consists of combining 
new evaluation measurement with the k-
means algorithm, which have led to a new 
algorithm, called HNEM-k-means, allowing 
the automatic determination of the clusters 
number in the data of each class. Two 
different real databases are used in order to 
evaluate the classifier performances. 

2. Construction of RBF Neural 
Network Classifier – Problem 
Statement 

Classification systems are either supervised 
or unsupervised, depending on whether they 
assign new inputs to one of a finite number of 
discrete supervised classes or unsupervised 
categories, respectively [12]. 

In supervised classification, classes exist a 
priori. The mapping from a set of input data 

vectors, to a finite set of discrete class labels 
( 1, ,y m∈ K ) is modeled in terms of some 

mathematical function , where ( ,y y x= )Τ
Τ  is an adjustable parameters vector [12], 

( 1, , , size of data set)lx l N N= K  an 
input data, and  the total number of class 
types. 

m

In unsupervised classification, also called 
clustering, data set is partionned into groups 
(clusters) such that the data points in a cluster 
are more similar to each other than points in 
different clusters [17]. 

The RBF neural network architecture [11] 
consists of one input layer, one hidden layer 
and an output layer. Each input neuron 
corresponds to an element of an input vector 
which is fully connected to the hidden layer 
neurons. Again, each of the hidden layer 
neurons is fully connected to the output 
neurons.  

The output of a hidden layer neuron i  is 
usually generated by a gaussian function iϕ  
specified by its center  and its width ic iσ : 

( )
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2exp , 1, ,
2
l i

i l
i

x c
x i nϕ

σ

⎧ ⎫−⎪ ⎪= − =⎨ ⎬
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K  (1) 

where .  is the Euclidean distance between 

the input vector lx  and the center vector . ic

The number of neurons in the output layer is 
equal to the possible classes of the given 
problem. Each output layer neuron  
computes a linear weighted sum of the 
outputs of the hidden layer neurons as 
follows: 

js

( )
1

n

j ij i
i

s f w xϕ
=

⎛ ⎞= ⎜
⎝ ⎠
∑ l ⎟  (2) 

where the  parameters are the synaptic 
weights connecting the hidden nodes to those 
of the output layer. 

ijw

In this paper, the problem of finding a proper 
number of hidden neurons is transformed into 
a clustering problem. The patterns of each 
class are partitioned into clusters using the k-
means algorithm and then the obtained 
partition is evaluated using the proposed 
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evaluation measurements to reach the optimal 
solution. 

The k-means algorithm [12] aims to optimize 
an objective function given by: 

1 1

1
2

k N

il l i
i l

J xδ
= =

= ∑∑ c−  (3) 

with 

1 if
0 else

l i
il

x c
δ

∈⎧
⎨
⎩

 

where  represents the sum of square-error 
for all objects in the data set, 

J
lx  a point in 

space representing a given object, and  the 
center (both 

ic

lx  and  are 
multidimensional). 

ic

Initially, k-means algorithm randomly selects 
 objects, which initially represent a cluster 

centers’. The remaining objects are assigned 
to clusters to which they are most similar, 
based on the distance between the object and 
the cluster mean. Then the new mean for each 
cluster is calculated. This process iterates 
until the criterion function converges. 

k

This algorithm consists of the following steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The k-means algorithm is very simple and 
can be easily implemented in solving many 
practical problems. It can work very well for 
compact and hyperspherical clusters and can 

be used to cluster large data sets. One of the 
drawbacks of k-means is that there is no 
efficient and universal method for identifying 
the initial partitions and the number of clusters. 

The centers’ convergence varies with 
different initial points. A general strategy for 
the problem is to run the algorithm many 
times with random initial partitions [12]. In 
order to solve this problem, the k-means 
algorithm is executed many times and then 
the centers giving the minimal value of 
objective function are used as initial centers 
for the algorithm’s starting. 

3. Proposed Evaluation Measure-
ment 

The use of the clustering algorithm such as k-
means, requires to specify , the number of 
clusters, in advance. However, it is difficult 
to pre-assign . So the problem in clustering 
is to decide of the optimal number of clusters 
that fits a data set. In order to obtain this 
number, the partitioning result must be 
evaluated. Usually, this clustering result is 
measured by a criterion known as the cluster 
validity index. The two measurement criteria 
for evaluating and selecting an optimal 
clustering scheme are: compactness and 
separation. Several validity indexes have 
been proposed in the literature [17-20].  

k

k

In this paper, new validity indexes permitting 
to evaluate, globally and locally, the obtained 
partition are proposed. 

3.1 Proposed global evaluation 

The global evaluation gives information about 
the quality of the whole generated partition 
obtained by the k-means. In this part, new 
formulations are proposed to define the global 
compactness and separation in a partition.  

Step 1: Initialize a -partition 
randomly:  

k
1 2, , , kc c cK

Step 2: Assign each object in the data set 
to the nearest cluster c   j

l j l ix c x c− −p  for 

 1, , , and 1, ,l N j i j= ≠ =K K k

Step 3: Compute the new cluster centers:  
* 1

l j

j l
x cj

c x
N ∈

= ∑
 

where  is the number of samples in 

 
jN

jc

Repeat steps 2 and 3 until there is no 
change for each cluster 

Definition 1. Global compactness: Given the 
groups scheme { }1 2, , , kK K K K= K  for a set 

of patterns { }1 2, , NX x x x= K  and 

{ }'
* */ and not a singletonK K K K= , 

1, 2, , ,j M= K  ( )'M card K= ,  the 

number of groups and 

k
M  the number of non 

singleton groups. 
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The global compactness,  is given by: CP

1

M

j
j

MCP
Var

=

=

∑
 (4) 

whith jVar  the variance of the group.  

The variance of each cluster is obtained by 
summing over only the members of each 
cluster, its expression is: 

( )( )

2

2
*

l pj

i j
x C

j

x c
Var

Card K
∈

−

=
∑

 (5) 

where jc  is the center of the group . *K

Definition 2. Global separation: the global 
separation Sep of a groups scheme 

{ }1 2, , , kK K K K= K  for a set of patterns 

{ }1 2, , NX x x x= K  is defined by: 

( )
2

1

k

n l
n

c c
S P

k
=

⎛ ⎞−⎜
⎜=
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ⎟
⎟

 (6) 

Definition 3. Global separation-
compactness: Given the groups scheme 

{ }1 2, , , kK K K K= K  for a set of patterns 

{ }1 2, , NX x x x= K and 

{ }'
* */ and not a singletonK K K K= , 

1, 2, , ,j M= K  ( )'M card K= ,  the 

number of groups and 

k
M  the number of non 

singleton groups. 

The global separation-compactness, SC , of 
the groups scheme , is formulated as: K

MSC SP CP
k

= × ×  (7) 

Consequently the best data partition is 
obtained by maximizing the measure . SC

3.2 Proposed local evaluation 

The local evaluation is used to evaluate 
individual groups. It identifies the worst group 
to be merged with others; each pattern of this 
group is assigned to the nearest group. Then 

the groups’ centers are recalculated. To 
identify this worst group, separation and 
compactness measurements for local 
evaluation of groups are employed. 

Definition 4. Local compactness: Given the 
groups scheme { }1 2, , , kK K K K= K  for a 

set of patterns { }1 2, , NX x x x= K  if each 

lK K∈  is not a singleton, the local 
compactness of the group , , is given 
by the following expression: 

lK lcp

( )( ) 2

2

i l

l
l

i l
x K

card K
cp

x c
∈

=
−∑

  (8) 

Definition 5. Local separation: Given the 
groups scheme { }1 2, , , kK K K K= K  for a 

set of patterns { }1 2, , NX x x x= K  if each 

lK K∈  is not a singleton, local separation of 
the group ,  , is given by the following 
expression: 

lK lsp

2

1
minl jj K
j l

sp c c
≤ ≤
≠

= − l  (9) 

Definition 6. Local separation-
compactness: Given the groups scheme 

{ }1 2, , , kK K K K= K  for a set of patterns 

{ }1 2, , NX x x x= K  if each  is not a 

singleton, local separation of the group , 
 , is given by the following expression: 

lK K∈

lK

lsp

l lsc sp cpl= ×  (10) 

The smallest value of  indicates the worst 
group to be merged with others. 

lsc

4. New Algorithm Constructing 
the Hidden Layer of FRB: 
HNEM-k-means 

In this part, a new algorithm determining the 
characteristics of the hidden layer of RBF 
neural network is proposed. In fact, it calculates 
the number of hidden neurons and the centers’ 
values of the gaussian functions. 

The proposed validity indexes measures are 
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integrated into the k-means algorithm which 
leads to a new algorithm, called HNEM-k-
means algorithm (Hidden Neuron Enhanced 
Merging k-means) that automatically 
determines the number of groups in the data 
set of each class. In this algorithm, there is no 
need to specify the number of groups a priori.  

However, it’s needed to specify an upper 
limit for this number: 

( )max , 1, 2, ,jK jΩ = K m . 

Hidden layer characterization 

In order to specify the hidden layer of an 
RBF neural network, it is necessary to decide 
the number of hidden neurons and their 
activation functions. A simple method 
consists in creating a neuron for each training 
pattern. However, this method is not practical 
since in most applications there is a large 
number of training patterns and the 
dimension of the input space is very large. 
Therefore, it is more practical to classify the 
training patterns to a reasonable number of 
groups by using a clustering algorithm such 
as k-means and then to assign a neuron to 
each cluster. 

Such an algorithm is applied when the class of 
each training pattern is unknown. However, the 
RBF neural network is used for a supervised 
classification. So, it takes advantage of the 
information about the class membership in 
order to obtain a better clustering result. Hence, 
it is proposed to cluster the patterns class by 
class instead of clustering the entire patterns at 
the same time. The number of groups can be 
automatically obtained by combining the 
proposed validity indexes with the k-means 
algorithm. 

4.1 Proposed HNEM-k-means algorithm 

The proposed HNEM-k-means algorithm is 
based on pruning strategy, i.e., it starts with a 
maximum number of groups . This 
number is decreased during the iterations 
until obtaining the optimal value of the 
number of groups  for each class 

. 

max
jK Ω

j
optKΩ

( ), 1,2, ,j j mΩ = K

The number  of the hidden layer’s 
neurons is the sum of the number of groups 

TotK

j
optKΩ  for each class. A neuron is then related 

to each group. The  value can be 
defined a priori, if the data base structure is 
known, but this is not always possible. That’s 
why, the Bezdek suggestion is adopted [21]: 

max
jKΩ

max
jK Ω = N  (N dataset size of class jΩ ). 

In this algorithm, every iteration aims to 
maximize the global separation-compactness 
index , obtained for the different calculated 
number of groups. So, in every iteration the 
worst group is identified and merged with the 
other groups. The optimal number of groups 
correspond to the highest SC , calculated 
during the different iterations of the algorithm. 

SC

The proposed HNEM-k-means algorithm, 
described in the following, determines the 
centers values and the j

optKΩ  number of groups.  

 

Input:  Set of data 
{ }1 2, , , d

NX x x x R= ∈K  

Output:  Optimal cluster number j
optK Ω  and 

the centers values 
Step 1:  Initialize the parameters related to 
the k-means, max

j jK K NΩ Ω= = min 2jKΩ =,  
Step 2:  Apply the k-means algorithm  
Step 3:  Compute and store the global 

separation-compactness  for SC
the crisp partition obtained in step 
2 

Step 4:  Repeat  
  4.1 Apply the merging procedure 
  4.2 Decrease the number of clusters 

1j jK KΩ Ω← −  
  4.3 Compute the global separation-

compactness for new clusters and denote 
it  'SC

  4.4 Compare the current  with 'SC
the previous  and keep the maximum SC
one 

 Until min
j jK KΩ Ω≤  

Step 5:  Output optimal number of clusters 
j

optK Ω  and their cluster center 

{ }1 2, , , j
optK

c c c c Ω= K  
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The merging procedure described in the 
following, is used to identify the worst group 
which has the smallest  value. lsc

 

Input:  Set of clusters 

{ }* 1 2, , ,j j j
KK K K KΩ Ω Ω Ω
+= K 1
j   

Output:  New set of clusters 

{ }1 2, , ,j j j j
KK K K KΩ Ω Ω Ω= K  

Step 1: Calculate the local separation-
compactness lsc  for each cluster 

of *
jK Ω  using expression (10) 

Step 2: Delete the worst cluster which have 
the minimal value of  lsc
Step 3: Assign each object of this worst 
cluster to other clusters 
Step 4:  Calculate the new centers of 
different clusters using the following formula  

1
j

i j
i

K
i x K

c x
NΩ

Ω
∈

= ∑  

Step 5:  Apply the k-means algorithm to 
find the optimal cluster centers  

Applying the HNEM-k-means algorithm to 
all classes (, 1,2, ,j )j mΩ = K  and summing 

the obtained numbers of clusters j
optKΩ  gives 

the hidden neurons number . A neuron is 
attributed to each cluster and the centers of 
clusters become the centers of the radial basis 
function hidden neurons. 

TotK

To accomplish the hidden layer construction, 
the width  of each 
gaussian function is calculated using the P-
Nearest-Neighbor heuristic (PNN) [15]: 

( )1,2, ,i i Kσ = K Tot

1
2

1

1 P

i i
r

c c
P

σ
=

⎛ ⎞= −⎜
⎝ ⎠
∑ r ⎟   (11) 

where the  are the P-Nearest Neighbors of 
center . 

rc

ic

After determining the hidden nodes positions 
and widths, the training process is completed 
by calculating the synaptic weights  
connecting the hidden nodes to those of the 
output layer using the pseudo-inverse matrix. 

ijw

The created RBF classifier has outputs, 
one for each class 

m
jΩ , the pattern lx  belongs 

to the class tΩ , if ( ){ }max j lj
t s= x . The 

desired output of a point which belongs to 
jΩ  is set to 1 while the others are set to 0. 

5. Evaluation – Case study 

The aim of this section is to evaluate the 
performances of the elaborated RBF 
classifier. The performances of the RBF 
neural networks classifier are tested with two 
different databases namely, iris and diabetes 
[22]. 

The first test is carried out with the iris 
database which is one of the most popular 
data sets to examine the performance of novel 
methods in pattern recognition and machine 
learning. It is composed of three classes (i.e., 
iris setosa, iris versicolor and iris virginical) 
each having 50 patterns with four features. 
Iris setosa can be linearly separated from iris 
versicolor and iris virginical, while iris 
versicolor and iris virginical are not linearly 
separable.  

The second test is done with the diabetes 
database which contains two classes with 768 
patterns representing results of a diabetes test 
given to Pima Indians. The class 1 has 500 
patterns and the class 2 has 268. Each class has 
8 features. This database comprises partially 
superimposed classes. 

The results given by the RBF classifier built 
with our algorithm are compared with those 
obtained with three other neural classifiers: 
the Learning Vector Quantization (LVQ) 
classifier proposed by Kohonen, the RBF 
neural net work classifier for which the 
hidden layer is obtained using the Adaptive 
Pattern Classifier (APCIII) [23], the Multi-
Layer Perceptrons classifier (MLP) and with 
a reference one, the K Nearest Neighbor 
(KNN). 

The results obtained with the holdout method 
which divides the initial data into two 
independent sets: one for training and the other 
for testing the classifier performances. The 
same training sets and tests are used for all 
classifiers. The global measurement used also 
to evaluate the classifier performance is the 
recognition rate. 
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The present comparative results of different 
classifiers over iris and diabetes databases are 
illustrated in table1 and table 2. 

Considering iris database, the best 
recognition rate is obtained by RBF-HNEM-
k-means proposed classifier. For diabetes 
database, the best recognition rate is given for 
the KNN classifier; however the difference 
with the proposed classifier is not important. 
Then, the proposed algorithm gives good 
results in term of recognition rate. 

 

Table 1: Results of the recognition rate over 
iris database 

Classification algorithms Database : iris 
HNEM-k-means 97,33% 
LVQ 94,00% 
APCIII 93,33% 
MLP 96,66% 
KNN 96,70% 

 

Table 2: Results of the recognition rate over 
diabetes database 

Classification algorithms Database : 
diabetes 

HNEM-k-means 76,56% 
LVQ 74,00% 
APCIII 71,00% 
MLP 76,00% 
KNN 77,00% 

6. Conclusion 

In this paper, a new algorithm, to design RBF 
neural networks classifiers and to select the 
centers of the hidden layer neurons in 
particularly, is proposed.  

Based on pruning technique, it aims to 
construct the hidden layer of an RBF neural 
network and starts with the maximum number 
of groups, which is decreased during the 
different iterations of the algorithm. 

The basic idea of this approach is to gather 
the training data class by class and to decide 
of the optimal number of groups in each class 
by using the proposed validity indexes 
measure which are integrated in the k-means 
algorithm. 

The obtained classifier results are satisfactory 
in comparison with other considered 

classifiers in the literature for two real 
databases. 
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