
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Introduction 

Till while ago Volterra models still the 
most usual and popular way to describe non 
linear system behaviour as it provides a 
model linear with respect to its parameters 
[3]. Truncated Volterra filters constitute a 
class of non recursive polynomial models 
without output feedback which guarantees 
their stability. Such models can 
approximate any time invariant nonlinear 
system with fading memory [3], [28]. 
These models have been successfully 
applied to a wide variety of engineering 
problems such as modelling a nonlinear 
communication channels, biological 
systems and acoustic noise cancellation 
[15]. In communication systems, Volterra 
models have been used for modelling 
communication channels exhibiting 
nonlinear  behaviours  [10]  and  [14] 
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that is the case of those including amplifiers 
and optical fiber. Indeed, high power 
amplifiers, currently used in mobile radio and 
satellite communication channels, have to 
operate near their nonlinear region for 
maximizing the utilization of the available 
power. However, the main drawback of 
Volterra models is their complexity due to the 
high parameter number. To eliminate this 
disadvantage, two ways can be followed to 
consider simplified models like Hammerstein 
or Wiener models or to reduce the number of 
parameters associated with a Volterra series. 

During the last decade, the issue of Volterra 
model complexity reduction has been 
addressed in two main different ways. The 
first is based on the use of Singular Value 
Decomposition (SVD) of the second kernel 
and PARAFAC tensor decompositions [7] 
and [17] of the higher kernels as these latter 
can be described by tensors. The resulting 
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reduced model known as SVD PARAFAC 
Volterra model [19], [20], [21]. The second is 
based on expanding the Volterra kernels on 
orthonormal basis (OB) such as the Laguerre 
functions basis [4], [5] and [6] or the 
Generalized Orthonormal Basis (GOB) [16], 
[22] and [23]. The complexity reduction 
depends on the choice of the basis parameter 
structure such as poles and truncating order. 
Recently, many approaches are given to 
identify Multiple-Input- Multiple-Output 
(MIMO) Volterra models to describe wireless 
communication channel [11][12][13]. The 
provided model can be used to design 
equalizers to restitute the transmitted signals. 
Channel identification and equalization consist 
in the retrieval of unknown information about 
the transmission channel and source signals, 
respectively. In order to reach a desired quality 
of service, broadband wireless communication 
systems classically perform channel 
identification and/or equalization using pilot 
symbols, i.e. training sequences composed of a 
priori known signals.  

In this paper we are interested to the 
identification and supervised equalization of a 
MIMO non linear communication channel 
described by a reduced MIMO Volterra 
model. This reduction is ensured by 
developing Volterra kernels on Generalized 
Orthogonal Bases (GOB). The resulting model 
is used to synthesise the supervised equalizer. 

2. Volterra Model 

Volterra models have several important 
properties that make them very useful for the 
modelling and analysis of non linear systems 
[3]. These models which are linear with 
respect to their parameters, the kernel 
coefficients, suffer from the huge increasing 
of the parameter number depending on non 
linearity hardness.  

2.1 SISO Volterra model 

The model output is written as: 
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Where u and y are the input and the output of 
the process respectively and  is 
the i

1( , , )i ih m mL
th Volterra kernel. For causal and stable 

system, the infinite sums in (1) can be 
truncated to a finite one as: 

0
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Where P is the process non linearity degree, 
M is the memory and is the statistical 
characteristic. 

0h

The Volterra model can be seen as a natural 
extension of the linear system impulse 
response to non linear systems. Although it is 
linear with respect to its parameter such 
model suffers from the increasing of its 
parameter number and any attempt for its 
using in real time application may fail if a 
reduction operation doesn’t precede such 
attempt. The parameter number of the 
Volterra model given by (2) is: 
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To reduce this number we use generally the 
triangular form of the Volterra model, given as: 
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And the relevant parameter number of such 
model is: 
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2.2 MISO Volterra model [29], [30] 

For multiple inputs; the output of the Volterra 
model in its triangular form is: 
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Where  and 
y(k) are  the process input vector and output 
respectively and 
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ij j j ih mK K m  is the 

Volterra kernel. P is the non linearity degree 
and M is the memory. The corresponding 
parameter number is: 

1

( -1 )1
( -1)! !

P
i

MISO
i

!M in n
M i=

+
= +∑  (7) 

2.3 MIMO Volterra model 

The MIMO system can be considered as a 
collection of Multi Input Single Output 
(MISO) sub systems. Thus the modelling of 
the MIMO System is equivalent to the 
modelling of its sub systems. Let a MIMO 
system with n inputs and S outputs, each 
subsystem output ys (k) can be developed on 
Volterra series as: 
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1 2, ,..., 1 ,...,

i

s
j j j ih m m  is the Volterra Kernel of 

ith order corresponding to the sub system the 
output  of which is and ( )sy k 0

sh  : is the 
statistical characteristic corresponding 
to . ( )sy k

The parameter number is: 
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Reduced Volterra model 

3.1 Generalised Orthogonal Basis (GOB) 

When developing a linear transfer function 
on an orthogonal basis it can be written as a 

linear combination of the basis functions and 
the coefficient of such combination [24], 
known as the Fourrier coefficients, are the 
yielded model parameters. 
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Where are the z-transform of the basis 
functions and 

( )nB z

ng are the Fourrier coefficients. 
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kξ is the pole of order  k,   1 kξ <  

If the considered system is stable, the infinite 
sum in (10) can be truncated to a finite value 
called truncating order.  

The GOB model can be described by a state 
space representation  
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3.2 GOB MIMO Volterra model  

In the following we will be only interested to 
the decomposition of MIMO system on GOB 
[1]. As mentioned in the introduction, 
because of the linearity of Volterra model 
with respect to its parameters, we proceed in 
this paragraph to the decomposition of 
Volterra kernels of the Volterra model on the 
Generalised Orthogonal Base GOB. This 
decomposition will be done on the same 
GOB basis. The output of the model ys(k)  is 
then written as: 
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With  ( )l

klxs k  is the filtered input given by: 
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are the coefficients of 

the kernels on the GOB base. 

Taking into account the truncating order K of 
the GOB base, relation (13) can be written in 
triangular form as: 
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The total number of parameters is: 
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In Table 1, for a double output double input 
system we vary the truncating order K of a 

reduced quadratic Volterra model with memory 
M = 5 and we note the parameter number.  

Table 1. Parameter number of the reduced and 
classical Volterra models 

Reduced Volterra Model Volterra 
Model 

Truncating 
order 

Parameter 
number 

Parameter 
number 

K = 1 14 
K = 2 34 
K = 3 62 
K = 4 98 

 
142 

It resorts that the decomposition of Volterra 
kernels on GOB reduces efficiently the model 
parameter number if the truncating order is low. 

Pole optimisation:  

The complexity reduction is then very 
depending on the choice of poles that 
characterize the GOB basis. Poles can be 
optimized by means of a gradient-type 
algorithm [16] and [24] or to use the 
experimental method which selects poles that 
minimise the Normalized Mean Square Error 
(NMSE) between the real output  and 
the output of the model 

( )sy k
$ ( )sy k . In this paper 

we adopt the latter to optimise the GOB poles 
for a MIMO Volterra model. 

( ), min ( ) ; 1, ,
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s
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Where is the Normalised Mean 
Square Error relative to the subsystem s. 
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Nm is the observation number 

4. Supervised Equalization of a 
Non Linear Communication 
Channel 

The received signal depends on the number 
of the channel inputs and outputs i.e. sources 
and antennas. In this section the case multiple 
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inputs multiple outputs non linear 
communication channels will be addressed so 
that the users number corresponds to the 
channel input number and the antenna 
number is related to the output number. 

4.1 Transmission channel (SISO case) 

The numerical transmission systems carry the 
information from the source to the destination 
using a transmission channel composed [18], 
as shown in Figure 1, of a modulator, a 
physical support which serves as a 
transmission medium and a demodulator. 

 

 

 

 

 

 

 

 

 

 

 

 

The source generates the analogue signal to 
be transmitted which is converted by the AD 
converter to yield a numerical word. This 
word is converted, using an encoder, in a 
coded word, then to an amplitude modulated 
signal the frequency of which depends on the 
transmission medium. The channel output is 
that signal after being demodulated. The 
equaliser, composed of the decision element 
and a filter, has to resituate the coded 
symbols sent to the channel. The resulting 
signal is then decoded before being sent to its 
destination. However from the source to the 
destination the signal may have many 
perturbations which influence its quality. In 
fact, the channel often introduces an additive 

noise or attenuates some frequencies because 
of its frequency selectivity. To avoid these 
imperfections and generate the source signal, 
many techniques have been proposed in 
literature such as supervised equalisation. 

4.2. Supervised equalization of nume-
rical communication channels 

The equalization is a processing operation 
carried out in the receiver of a 
communication system to reduce the inter 
symbol interferences. The supervised 
equalization is based on the emission of a set 
of symbols  

 

 

 

 

 

 

 
Source AD Convertor Encoder Modulator 

Transmission Medium 

Demodulator Equalizer Decoder Destination 

x(n)  

u(n) x̂(n)

 
Figure 1. Numerical SISO Communication system 

 

 

 

 

 

C G D(.) 
x(n) 

Decision 
element 

Equalizer 
filter 

Channel b(n) 

y(n) 

+ 
u(n) 

x̂ (n )  
 

Figure 2. Outline of a communication system 

known by the destination and called learning 
sequence to identify the channel and to 
initialise the equalizer [18], [2]. Figure 2 
gives an outline of a communication system. 

u(k) represents  the discrete sequence of data 
transmitted time instant k ; b(k) are the 
additive noise samples to the channel output, 
yC(k) the disturbed samples at the channel 
output, y(k) the discrete sequence at the 
equaliser filter output and the estimated 
sequence at the decision element output. The 
equaliser filter and the decision element form 
together the reconstruction bloc which 
accommodates the signal y

û(k)

C(k) by 
minimising the distortions effects on x(k) so 
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that the provided sequence  be as close 
as possible to the channel input u(k).  

û(k)

 

 

 

 

 

 

The decision element is generally a non linear 
function which transforms the filter equalizer 
output into symbols to yield , example 
the sign function  

û(k)

1      if y 0
( ) ( )

1      if y < 0
D y sign y

+⎧
= = ⎨−⎩

≥  (19) 

The supervised equalization of a linear 
communication channel using Laguerre 
function has been  proposed in [18] and [2] 
this work has been tackled using of 
Generalized Orthogonal Basis in [27]. 

4.3 MIMO channel 

Consider a MIMO non linear channel 
characterised by n sources (users) and S 
the received antenna. This channel can be 
modelled by a MIMO Volterra given by: 
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Where ys (s = 1, …, S) is the signal received 
by the sth antenna at time instant k, P is the 
non linearity order of the channel and M is 
the channel memory. 
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j j jh mL L im
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are the kernel 
coefficients of the sth subchannel and vs(k) is 
the additive white Gaussian noise to the sth 
antenna, it is assumed that the noise 
components are zero mean. 

The MIMO non linear channel equalization 

task can be outlined by Figure 3. 

 

 

 

 

 

 

 

 
 

Figure 3. MIMO channel equalization 

As the considered communication system is 
non linear its description will be more 
accurate once it uses a non linear model. 
Therefore we adopt the MIMO GOB-Volterra 
models to synthesise a supervised equalizer 
of a non linear multiple input multiple output 
communication channel. In fact, in a 
transmission system, the receiver antennas 
which collect the information signal collect 
perturbations as well which may cause the 
Inter Symbol Interferences: ISI that is 
responsible of transmission errors. To 
improve the performances of transmission 
systems, the receiver has to identify the 
distortions introduced by the channel.  

The equalizer is composed of a MIMO filter 
G described by a reduced (GOB) quadratic 
Volterra model. Using its input output 
observations, the filter coefficient 
identification is ensured by the RLS 
(Recursive Least Square) algorithm and the 
basis pole optimisation is achieved by the 
minimisation of the Normalised Mean Square 
Error NMSE. The decision error for the ith 
input of the channel (ith output of the 
equalizer) is defined as: 
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i
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if u k u k
e k

⎧
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The performance criteria used to evaluate 
the equalization quality is the NMSE 
between the filter output yFi(k) and the 
information signal ui(k).  
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This NSME is due to the Inter Symbol 
Interferences and the additive noise evaluated 
by the signal to noise ratio SNR(s) for the sth 
output of the channel.  
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With Nm the observation number, Sy and 
Sv are the mean values of the sth channel 

output ys(k) of and the sth noise value vs(k) 
respectively. 

4.4. Simulation results 

Consider the non linear Multiple Input 
Multiple Output MIMO Volterra channel [31] 
described by: 
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Where { }1 1,  1u ∈ − and { }2 2,  2u ∈ −  are the 
channel inputs, y1 and y2 are its outputs and 

and are additive white noises. 1v 2v

4.4.1 Identification of the Channel: 

This MIMO non linear channel can be 
modelled by a GOB MIMO Volterra model 
with P = 2 and a truncating order K = 2.  

The total parameter number of the reduced 
model is 34 and the number of poles is 4.  

• First output of the channel: 

The optimal poles for the first subsystem 
optimised by the minimisation of the NMSE, 
are 01 0.1ξ = − and 11 0.1ξ = . We plot in Figure 
4 the validation of the first output of the 
channel and the output of the model; we note 
the concordance between both outputs. 
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first output of the channel

 

 
real output of the channel
output of the model

 

Figure 4. Validation of the first output of the 
channel 

The NMSE for the first subsystem is 2.08%. 

 

• Second output of the channel: 

The optimal poles for the second subsystem 
are 02 0.3ξ =  and 12 0.3ξ = − . In Figure 5 we 
plot the second output of the channel and the 
output of the model we note the concordance 
between both outputs. The NMSE is 0.03%. 
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Figure 5. Validation of the second output of the 

channel 
 
 

4.4.2 Supervised equalization of the Channel 

The equalizer can be modelled by a GOB 
MIMO Volterra model with two inputs and 
two outputs, a non linearity degree P = 2 and 
a truncating order K = 2. The total parameter 
number of the equalizer model is 34 and the 
number of GOB poles is 4. First we assume 
that the equalizer inputs are noise free and we 
proceed to the equalization of both 
subsystems describe the MIMO channel. 
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• First input equalization: 

The poles of the first subsystem of the 
equalizer are 01 0.2ξ = −  and 11 0.1ξ = − and the 
NMSE is 3.36%. In Figure 6 we plot the first 
source of the channel and the first output of 
the equalizer we note the similarity between 
both signals. 
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 Input of the channel 
Output of the equalizer 

Figure 6. Validation of the first equalizer output 
 

• Second input Equalization: 

The poles of the second equalizer subsystem 
are  02 0ξ =  and 12 0.3ξ = − , the NMSE is equal 
to 0.11%. Figure 7 plots the second channel 
input and the second output equalizer and 
both signal fit each other. 
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Figure 7. Validation of the second equalizer output 
 

To test the effect of additive noise to the 
equalizer input on the equalizer behaviour we 
assume that the channel outputs are 
composed of an additive noise and a signal 
with SNR(s)=20.  

For the first subsystem, the GOB poles 
are 01 0.1ξ =  and 11 0.1ξ = − . The NMSE is 
14.62%, Figure 8 draws the first channel 

input and the first equalizer output. 
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Figure 8. Validation of the first equalizer output 
 
 
The second subsystem poles 02 0.1ξ =  
and 12 0.3ξ = −  and the corresponding NMSE is 
1.88%. Figure 9 displays the second channel 
input and the second equalizer output. 
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Figure 9. Validation of the second equalizer output 
 

5. Conclusion 

In this paper we have proposed a MIMO 
supervised equalizer based on GOB MIMO 
Volterra model for a Multi Input Multi 
Output non linear communication channel. 
The equalizer synthesised is tested in 
simulation on numerical example to resituate 
inputs of two input two output non linear 
communication channel and results are 
satisfactory. Simulations are carried out to 
evaluate the equalizer performances and the 
influence of an additive noise on these 
performances. 
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