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1. Introduction 

Chemical plant safety is an issue that affects 
a large number of plants in the United States. 
Currently, more than 15,000 chemical plant 
sites in the United States are required to file a 
risk management plan with the U.S. 
Environmental Protection Agency [3]. Such 
plans consider both worst-case scenarios and 
alternative case scenarios. Such alternatives 
include the moderately abnormal release of 
controlled materials or illegal plant 
interference [17]. While sudden, massive 
release is likely detectable by safety measures 
in place, the same cannot be said of long-
term, slow releases that can be confused with 
measurement noise or other uncertain 
information. In this paper, we present a novel 
framework that uses the plant model and 
prior statistical information about the 
uncertainty for estimating the risk posed by a 
diverting agent to a chemical plant. The 
diverting agent can be damage, an 
insufficient design, or an individual engaged 
in the illegal activity [3, 17]. 

For this initial application of our framework, 
we will assume that the chemistry is 
described by nonlinear equations, that is, that 
the reactions involved are in steady state [27]. 
This approximation is reasonable in the case 
where the chemical reactions have time 
constants that are much smaller than the 
typical frequencies in the input [9, 27]. 
However, to preserve a dynamical aspect of 
the inputs, which is essential for our work, 
we will employ a description of the chemical 
process whereby, due to our assumption of 
the chemical process having much smaller 
reaction times compared to the characteristic 
times over the input, the equilibration 
following the introduction of additional feed 
and extraction of the reaction products is 
instantaneous [9]. Therefore, our model will 
have discrete dynamics due to the progressive 
introduction of additional feed and extraction 
of the reaction products, but it will have no 
dynamics due to the chemistry. The equations 
of state are obtained by requiring that the 
reaction rates be zero and that the total mass 
of the individual components be conserved. 

The key question that we are interested in 
answering is the following: Given the 
uncertainty in the input of a plant and in 
the physical parameters of the reaction, 
how confident can one be of the estimate 
of the amount of reaction product diverted 
from the plant? 

2. Description of the Setup 

Our scheme is depicted as in Figure 1, with 
the notations therein. The input X(t) 
represents the amount of feed (number of 
mols, for example) at time t. The amount 
cannot be exactly determined, and this is 
modeled by the influence of noise, E(t) which 
is combined (“modulated") with the input, to 
obtain the stochastic feed signal X̂ . In all 
our simulations, we will consider additive 
noise, but other types of modulation can be 
accounted for in similar fashion. In Section 4, 
we colored noise to model uncertainty in the 
input. This reflects the fact that the reactant 
feeds have large amounts of temporal 
correlation. This is indeed a valid 
assumption, for example, in a reprocessing 
plant where successive amounts of feed 
originate in the same area of a nuclear reactor 
and are therefore significantly correlated. 

)(ˆ tX  constitutes the plant input. After )(ˆ tX  
is processed in plant, Y(t) is produced. In this 
paper, we assume a steady-state operation, 
and the modeling of this is done by a 
multivariate nonlinear function, in a manner 
that we describe in Section 2.1. 

However, we now assume that there is an 
interference in the system. This can occur 
either because some output is diverted 
unbeknownst to the plant operator. We will 
call the mechanism by which this is done a 
“divertor”, whether human (illegal 
interference) or technological (such as 
unaccounted-for technological losses). The 
amount that is so diverted we call D(t). 
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In addition, we assume that the output cannot 
be faithfully measured, that is, that the 
measuring instruments have some amount of 
error. To achieve that, we will assume that 
the output has an additive noise in it, N(t). 
Similarly, for the input noise we assume that 
we have sufficient data to determine its 
correlation and average faithfully. We thus 
have the relationship 

D(t)=Y(t)−O(t)+N(t). 

In this work, we assume that the noise models 
N(t) and E(t) have a simple quasi-stationary 
behavior, originating in stationary filtered 
and perhaps non-stationarily scaled white 
noise. Nonetheless, our approach can be 
easily modified to account for non-stationary 
noise both in the input and in the output. On 
the other hand, subsequent study is needed to 
determine appropriate models for such a 
noise, since the numbers of degrees of 
freedom in the representation of the noise 
increases tremendously for non stationary 
processes, making it difficult to find enough 
data for calibration. In this work we do not 
address the parameter identification of the 
noise models; this is a well-covered topic in 
previous research [6, 11, 16], and only a 
marginal topic of this work. 

2.1 Plant Model 

The steady-state plant model we will use is 
obtained from a multivariate nonlinear 
function that has two components. One 
originates in the condition of the reaction 

 

 

 

 

 

 

 

 

 

rates being 0, the steady state; the other 
originates in the condition that we preserve 
mass balance in the plant. 

We introduce the effective reactant input in 
the plant, which we call ),(tX NI  and we 
split the output vector Y into two parts: the 
part that denotes the reaction product OUTY  
and the part that denotes what is left of the 
reactants after equilibration, .XY  First, we 
assume that the reaction product is always 
obtained under equilibrium conditions. 
Therefore, we write the equation  

,0);,(1 =αXOUT YYF  

where the left-hand side of the equation 
represents the algebraic expression of the 
reaction rate. The parameters α represent the 
physical parameters on which the reaction 
rates or equilibrium equations depend. An 
important example of such parameters is the 
equilibrium parameters [22, 20]. The second 
equation models the mass balance. That is, 
we write  

.0),,(2 =OUTXNI YYXF  

The effective input vector, NIX , models the 
total reactant quantity that exists in the 
reactor. It therefore has two parts: the amount 
of that is put into it, X̂ , and the amount that 
remains after equilibration, XY . Our 
rationale is as follows. We model the reactor 
as a burst and equilibrate device. In the case 
of a pulsed distillation column, this is 
achieved if we average the equations over the 
length of the column. That is, we feed X̂  

 
 
               E(t)                                                                                 N(t) 
 

            X0(t)                   )(ˆ tX                                 Y(t)                   O(t) 
                                                                                                    
            INPUT      

                                                                                                      D(t) 
 
 

Figure 1. Block Description of the Chemical Plant 

PLANT α 
DETECTOR 
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into the reactor, which already has about XY  
reactant in it after the prior equilibration, and 
we let the reactor equilibrate, producing 

OUTY  as the reaction product. 

If we consider continuous time, the relations 
above can be written as a function of the feed 
in the following manner:  

.
))();();()(ˆ(

));();((

));(),(ˆ(0

2

1









+
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 (1) 

If we consider discrete time, we have two 
options. Either we use the relationship above 
to write  
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
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or, as an alternative, we consider that the 
effective input in the plant at time lt  is 

)()(ˆ)( 1−+= l
X

ll
IN tYtXtX , that is, that the net 

input in the reactor includes the product of the 
last equilibration, which results in the model 

0= ));(),(),(ˆ(ˆ
1 α−lll tYtYtXF  
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
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 (3) 

Of course, in the limit of small time steps and 
short bursts, the two models will give the 
same behavior. For relatively large time 
steps, however, it may be more beneficial to 
use the latter, since it is a more accurate 
description of the dynamical process. 

In case (2), we have that F(X, Y; α) = 0 
uniquely determines Y for a given X. In case 
(3), we have that );,,(ˆ 21 αYYXF  uniquely 

determines Y1 as a function of 2,YX . Here, 
21 ,YY  stand for )(),( 1−ll tYtY  respectively 

as in (3). To simplify notation, however, we 
will use only the notation F(X, Y; α) = 0, 
even if we mean an operation brought  
about by F̂ .  

The case where we have intermediate 
reaction products is modeled in our 
framework by considering a part of the input 
X with 0 feed. 

2.2 The Problem to Be Solved 

The task before us is to estimate the 
probability that the diverted amount exceeds 
a certain value. This has to be done 
accounting for the uncertainty in the input 
and for measurement noise. The data used in 
the determination of the uncertainty model of 
the input feed can originate in quality control 
data sheets or, in the case of waste processing 
plants, can be obtained from simulation 
packages on waste state. 

On the other hand, the availability of well-
defined and properly quantified uncertainties 
for principal thermochemical properties, 
such as enthalpies of formation, that 
properly convey the inherent degree of 
confidence that may be placed in these 
values is an often-neglected (and hence 
generally underutilized) but equally 
important aspect that significantly 
contributes to the overall reliability and 
consistency of thermochemical knowledge. 
Active Thermochemical Tables (ATcT, 
described in more detail in [19], [20], [21] 
and [22]) provide the information about the 
uncertainties. For example, ATcT provides a 
full covariance matrix between the 
enthalpies of formation of all species 
described in reaction (5) and (6), but it also 
provides entirely correlated Monte Carlo 
manifolds (normal distribution) that explore 
the uncertainty in the equilibrium constants 

1eqk  and 2eqk , which in our framework (3) 

are components of the parameter set α. We 
use ATcT to provide the distribution 
information for α. 

The formal problem is stated as follows: 
evaluate the probability  






 ∈≥∫ ],0[),()(

0 0 TttOdtDtDP
T

 (4) 

for a given value of 0D , given the statistics 
of α and of the noise signals N(t) and E(t). 
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3. Example Chemical Problem: 
Steam Methane Reforming 

As an example of the application of our 
technique, we have used the steam methane 
reforming (SMR) process. This process is 
important in the petrochemical industry for 
the production of hydrogen used in oil 
refining. Our framework is applicable for 
virtually any chemical process that satisfies 
the assumptions in Section 2. We have 
nonetheless chosen SMR as an example 
because it is one of the few that are 
important, yet simple enough to describe, and 
for which the data are publicly available. 

In this case, we have considered as the 
variable of interest that may be diverted the 
amount of hydrogen. Several hazards are 
associated with hydrogen, ranging from 
respiratory ailment to component failure, 
ignition, and burning. The primary hazard with 
hydrogen is the production of a flammable 
mixture, which can lead to a fire or explosion. 
Because its minimum ignition energy in air at 
atmospheric pressure is about 0.2 mJ, 
hydrogen is easily ignited. In addition, 
hydrogen gas is colorless, odorless, and not 
detectable by human senses. It is lighter than 
air and hence difficult to detect where 
accumulations cannot occur. Nor is it 
detectable by infrared gas-sensing technology. 

Therefore the tracking of hydrogen in SMR is 
a good example of an application for model-
based assessment of diversion. We now 
present in detail the way the chemistry is 
inserted in our framework, which can serve as 
an example for any other chemical process. 

3.1 The Description of the Steam 
Methane Reforming Reaction 

The study of kinetics for SMR process can be 
traced back to early 20th century [12, 23]. 
Many kinetic models for SMR have been 
proposed afterwards [1, 2, 4, 14, 30]. 

The reaction equations chosen here for SMR are  

224 3HCOOHCH +↔+ , (5) 

222 HCOOHCO +↔+ . (6) 
 

We need to derive the rate equations to derive 
the kinetics for chemical reactions. The rate 
equation is used to link the rate of a reaction 
to the concentration of the various chemical 
reactants [13]. According to [25], the rate 
equations of (5) and (6) can be computed as  

),()/exp(
2

2
4

1

23

111
OH

CH
zk

Pzz
zPRTEaar

eq

HCO−−= (7) 

),()/exp(
2

22

2
222

OH

HCO

zk

zz
zPRTEaar

eq
CO −−=  (8) 

where R=0.73024 ft3atm˚ R-1 lb-mol-1, 
T=1800˚R=1000 K, a1=127 lb-mol/h lb of 

catalyst atm, )02.8exp(2 =a  lb-mol/h lb of 
catalyst atm, Ea1=15800 Btu/lb-mol, 
Ea2=25000Btu/lb-mol, P is the total pressure 

and },,,,{, 2224 COOHHCOCHizi ∈  is the 
mole fraction for gas i, in other words,  

.
i

i

i
i y

y
z

∑
=  

Here },,,,{, 2224 COOHHCOCHiyi ∈  are 
moles for the gases. According to the ideal 
gas law [24], we have  

.i
i

yRTPV ∑=  

Note that the equilibrium constants 1eqk  and 

2eqk  at  1800˚R (1000 K)  for  reaction  (5) 

and (6) are 25.6961±0.22 atm2 and 
1.4263±0.0064 by considering the variations 
due to the uncertainties in the equilibrium 
constants (where the uncertainties are given 
as 95% confidence intervals, as is the norm in 
thermochemistry. The uncertainties in the 
two equilibrium constants are not entirely 
independent; their correlation coefficient   
is 0.221.). 

Assume volume V=1, and replace P with 
.i

i
yRT∑  Then, we have     
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If the input feed at time t of OH 2  and 4CH  
are )(ˆ

2
tx OH  and ),(ˆ

4
txCH  respectively, the 

dynamic equations then are  

,21 rr
dt

dyCO −=  (11) 

,3 21
2 rr

dt
dyH +=  (12) 

,2
2 r

dt
dyCO =  (13) 

),(ˆ
2

2
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OH
OH +−−=  (14) 

).(ˆ
4

4
1 txr

dt
dy

CH
CH +−=  (15) 

The initial value for this dynamics system is 
the initial input. The solution of the above 
system should be positive. If any of the 
chemicals goes to zero, then the RHS of 
equation representing the chemicals variation 
will be positive; that is, the mole of it would 
be increasing and away from zero. This 
dynamics system preserves the law of 
conservation of mass when it comes to the 
moles of C, H, and O. Denote the moles of C, 
H, and O by Cx , Hx  and 

2Ox  respectively. 
We then get  

),(ˆ
4
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dt
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CH
C =  (16) 

),(ˆ2)(ˆ4
24

txtx
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Now we consider the steady-state process. 
That is, we are requiring that 1r  and 2r  both 
be zero. We therefore obtain that  
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Suppose ][ˆ
4

lxCH  and ][ˆ
2

lx OH  to be the feed 

of 4CH  and OH 2  at the time ,lt  
respectively. 

We will explain the mass balance equations 
in the case of discrete time and lagging of the 
equilibration reaction product, as in the 
second discrete time case in Section 2. We 
also assume that the product 2H  and 
byproduct 2CO  are taken out at each time 

,lt  leaving only 4CH  and H2O, and with 
newly added CH4 and H2O participating in 
reaction at next step. Define 
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We have another three equations from 
decomposing and reaction products in their 
fundamental components and doing the mass 
balance:  
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],[][2][2][4
224

lxlylyly H
HOHCH =++  (25) 

].[][][2][
22

lxlylyly O
OHCOCO =++      (26) 

Combining (19) – (26) together with the 
condition that y is always positive gives the 
nonlinear system. 

3.2 Description of the Problem in Our 
Modelling Framework 

We now describe the problem in the language 
of Section 2. The input or feed vectors are the 
moles of 4CH , CO , and OH 2  (the feed of 
carbon monoxide, which is an intermediate 
product, will be taken to be zero, but the 
input would be whatever is in the plant at that 
moment). The plant output vector, Y, contains 
the plant output components 2CO  and ,2H  
in addition to the feed components, 4CH , 
CO , and .2OH  That is,  
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with the vector XY  having the same type of 
components as X. The only part that is left is 
to define the functions 1F  and 2F  from 
which any of the formulations from Section 2 
can be found. We have  
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Here the vector of reaction parameters is 
),( 21 eqeq kk=α . Suppose the effective input is  
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From the mass balance equations, we have 
(recall, CO  feed is 0, i.e., 0ˆ =COX )  
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It can be seen that equations (21) and (26) are 
immediately obtained by applying the second 
discrete time approach in Section 2. From 
here on, we will use the abstract format with 
the definition of X, Y, 1F , 2F  above and the 

definition of the functions F and F̂  from 
Section 2. 

4. Discrete Time Model 

We denote by l=0,1,2,L,L−1 the output time 
indices and by lt , for the same indices, the 
output times (generally equally spaced). 

The output noise N(t) and the input noise E(t) 
are modeled as quasi-stationary, colored 
noise processes or, equivalently, as filtered 
white noise processes (see [5,28]). In most 
applications of interest, there is correlation 
between successive input and output samples, 
which is responsible for the coloring. 

To obtain them, we use the white noise 
signals (random numbers vectors) 

],[ 10 −= Lξξξ L  and ],,[ 10 −= Lηηη L . 
Components in ξ and η are uncorrelated. 
Suppose ],,,[ 0 Mggg L=  and 

],,[ 0 Mhhh L=  are filtering parameters and 

)(0 ltw , and )( lN tw , l=−M,L,L−1, are 
intensity parameters. Furthermore, let 

0)()(0 == lNl twtw  if l<0. With these 
notations, we have that the noise vectors 

)( ltE  and )( ltN  are defined as  

)( ltE = ,0,)(0 Lltwh jjjl

l
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−=
∑ ξ    (27) 

)( ltN = .0,)( Lltwg jjNjl

l

Mlj
<≤−

−=
∑ η    (28) 

Note that, if 0w  and Nw  do not depend on t, 
then the noise signals E(t) and N(t) are 
properly stationary. 
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We assume that this can be carried out by the 
linear filter with intensity parameters 

1,,),(1 −−= LMltw l L  with 0)(1 =ltw    
if l<0, and filtering parameters 

],,,[ 0 Meee L=  which result in the 
following input-intermediate rule:  

,0),()()( 0 LltEtXtX lll <≤+=       (29) 

.0),()()(ˆ
1 LltXtwetX jjjl

l

Mlj
l <≤= −

−=
∑  (30) 

Here, ,1,,2,1,0),(0 −= LltX l L  is the 
deterministic part of input data. 

The plant is modeled by (2) or (3). For the 
purpose of discussion we use (3), which 
results in  

.0));(),(),(ˆ(ˆ
1 =− αlll tYtYtXF  

We measure the output datum: 
,1,,2,1,0),( −= LltO l L , subject to the 

output noise N(t) described above. 

The problem (4) in the discrete time 
framework is as follows: Compute  









≥−+∑

−

=
0

1

0
))()()((/1 DtOtNtYLP lll

L

l

   (31) 

for any 0D . 

If we know the density functions of lξ  and 
,lη  we can get the density functions of 

)( ltE  and )( ltN  after applying [10, 
Theorem 12.7, Theorem 15.3] repeatedly. We 
can therefore obtain the density function for 

).(ˆ
ltX  Suppose that we have an explicit 

expression of the solution of the nonlinear 
system in (3). If we know the density 
functions of the elements of )(ˆ

ltX  and 
),( 1−ltY  we then can get the density function 

of )( ltD  We therefore can compute the 
probability required in (31). Usually, 
however, the probability cannot be calculated 
this way. because it is always very difficult to 
find the density functions and get the explicit 

expression of the solution even when L is 
moderately large. 

Thus, we need to use Monte Carlo sampling 
(see [7, 18]) of the noise E(t) and N(t) and of 
the physical parameters α in order to 
numerically estimate the probability in (4). 

4.1 Computation of the Upper Bound 
of the Probability by Using 
Chebyshev Inequality  

To shorten the length of the formula, define 

),(/1
1

0
l

L

l
tDLD ∑

−

=

=  ),(/1
1

0
l

L

l
tYLY ∑

−

=

=   

)(/1
1

0
l

L

l
tNLN ∑

−

=

=  and ).(/1
1

0
l

L

l
tOLO ∑

−

=

=  

To compute the estimation of the probability, 
we need to know estimation of variance σ 
and mean µ of ,ii NY +  that is, the sample 

variance 2S  and sample mean .µ  Here i is 
the index of the component of the output, iO , 
that is targeted for the diversion assessment. 
In this subsection we describe an approach 
for computing the probability form (4) and 
(31). Of course, one can try to compute the 
probability by doing simulations and 
counting the number of times the diverted 
output exceeds the value D0, and dividing by 
the total number of scenarios. The difficulty 
is that the approach is well known to be slow 
to converge if the entire distribution, for all 

0D  values, is required. This situation may be 
acceptable if one has a reliable functional 
error estimate: an error estimate for the entire 
distribution. The problem is that the error 
estimates usually available assume either that 
one is close to the asymptotic regime of the 
normality, which would be unrealistic if 
one stops well before convergence, or that a 
good prior distribution is available, which 
would introduce extra nonquantifiable risk 
in the assessment. 

In addition, for multiple output stream 
diversion, the density of the samples drops 
with the inverse power of the number of the 
streams, which is known as the curse of 
dimensionality [8]. This may result in real 
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power estimates for some 0D  values. We 
defer assessment of multidimensional output 
stream diversion to future research. 
Nonetheless, we want to consider only 
approaches that are known to scale well. We 
thus decided on the following compromise 
approach. The average and standard deviation 
of the diverted output is computed by 
sampling and estimation using an asymptotic 
normality assumption. As described by Fact 1 
and the sufficient conditions before Lemma 
2, these are known to converge for moderate 
K. Therefore fast and good ways to accelerate 
them exist. When estimating the probability, 
however, we will use a Chebyshev-theorem 
approach, which makes no assumption about 
the normality of the convergence of the 
estimate of the probability in (4), but only 
about the mean and standard deviation. 

To estimate the required probability, we use 
the following lemma.  

Lemma 1. Assume that )(xf  is a monotonic 
and increasing function, α≤≥ ))(( xfDP  and 

.)ˆ( β≤≥ xxP  Then .))ˆ(( βα +≤≥ xfDP  

Proof: Obviously, it follows that  

I I ]).ˆ[)]ˆ(([]ˆ[
)]ˆ(([))ˆ((

xxxfDPxx
xfDPxfDP

<≥+≥

≥=≥
 

For the first term on the left of the equal sign, 
it can be easily verified that  

I .)ˆ(])ˆ[)]ˆ(([ β=≥≤≥≥ xxPxxxfDP  

If ,x̂x < then )ˆ()( xfxf ≤ because f(x) is a 
monotonic and increasing function. Thus  

I ,))((])ˆ[)]ˆ(([ α=≥≤<≥ xfDPxxxfDP
 

which proves the claim.  □ 

To provide the actual probability estimates, 
we need to identify statistics 

( )βµ ,k
i

k
i YNg +  and ( )β

σ
,2

k
i

k
i YNg +  

such that ( )( )βµ µ ,k
i

k
i YNgP +≤  and 

( )( )βσ σ ,2
2 k

i
k
i YNgP +≤  are bounded 

above with a high level of confidence. 

To have a high level of confidence in the 
probability levels of such statistics, we need 
to use a minimum of assumptions in deriving 
them. In our derivation of µg  and 2σ

g , we 
use the following fact (see [10, 31]). 

Fact 1 (central limit theorem) If the data, 
KXX ,...,1  are i.i.d. with mean µ and finite 

variance ,2σ  then )/()(
1

σµ KKXZ k
K

k
n −= ∑

=

 

converges in distribution to Z, which is a 
random variable with standard normal 
distribution. 

Assume that observable data KXXX L,, 21  
satisfy following conditions:  

•  KXXX ,,, 21 L  are i.i.d, 

•  KXXX ,,, 21 L  are nonnegative. 

The first condition on the data is required by 
the central limit theory. The second condition 
on the data implies 0>µ ; hence, by 

increasing K, we can make ,0>−
K
Szβµ  

which will be used in derivation of .2σ
g  

Obviously, the data k
i

k
i NY +  we obtained in 

the pseudo-code in Section 4.2 through the 
Monte Carlo method satisfy the first property. 
Because the example models the chemical 
process, k

iY  must be positive and k
iN  is at 

noise level; hence, the second property will 
also be satisfied by our sampling method. 

Because KXXX ,,, 21 L  are i.i.d, if the 
sample size K is large enough, then 

)//()( KSµµ −  is approximately a N(0,1) 
random variable based on central limit 
theory. Hence, practically, if K≥30, we can 
estimate the one-sided confidence interval of 
mean µ at β confidence level as below (see 
[31])  

( ) ,1/ βµµ β −≈+≤ KSzP   (32) 

where βz  can be found in the standard 
normal table [31]. Equation (32) also implies  
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( ) ./ βµµ β ≈+≥ KSzP  (33)  

Therefore,  

./),( KSzXg k
βµ µβ +=  (34) 

Let 2m ′  be equal to ;/)( 2

1

KX k
K

k
∑
=

 let the 

expectation of 2)( kX  be ,'2m  which is also 
called the second raw moment; and let the 
sample variance of it be 2S ′  According to 
central limit theory, we have  

( ) ,2//''' 22/22 ββ ≈+≥ KSzmmP  (35) 

For the variance  2σ  we have  

( ) .2//'' 22/
2

2
2 βµσ β ≈+−≥ KSzmP   (36) 

Because Xk’s are all nonnegative, we also can 
obtain for large enough K that  

( ) .2/)/( 2
2/

2 βµµ β <−−≥− KSzP  (37) 

Applying Lemma 1, we have  

( ) ./')/(' 22/
2

2/2
2 βµσ ββ <+−−≥ KSzKSzmP

 (38) 

Hence, for the second statistic, we can use  

./')/('),( 22/
2

2/22 KSzKSzmXg k
ββσ

µβ +−−=
 (39) 

To make the use of the central limit theorem 
valid, K needs to be large enough. Sufficient 
conditions for K being large enough for the 
asymptotic regime to hold are:  

•   ,30≥K  

•   ,02/ >−
K
Szβµ  

•   .0),(2 >β
σ

kXg  

We are now ready to state the second result 
we will use. 

Lemma 2  Given a positive number ,0P  if  

( ) 4/)4/,( 00 PPYNgP kk <+≥ µµ  

and  

( ) ,4/)4/,( 00
2

2 PPYNgP kk <+≥
σ

σ  

then the probability defined in (31) is  

( )
( ),1,2/),(2/min

)(,),(),(
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tOtOtODP L

Γ+≤

Γ≥ −

ψ

L
 (40) 

where  
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Proof: Let .20 1 ≤< P  According to the one-
sided Chebyshev’s inequality (see [29]), it 
follows that  

.2//)2( 111 PPPODP ≤







−≥

+−
σ
µ

 

Applying Lemma 1 twice, we have  

110 /)2)(4/,(( 2 PPPYNgDP kk −+≥
σ

  

2/2/))4/,( 100 PPOPYNg kk +≤−++ µ
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OPYNg
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−+=Γ
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σ .  

We then can solve if  

,)4/,( 0 OPYNg kk −+>Γ µ   

.
)4/,(
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1
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2
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1
2

−


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


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
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+

++−Γ
+=

PYNg
OPYNg

P kk
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σ

µ

If ,)4/,( 0 OPYNg kk −+≤Γ µ  let .21 =P  

Replacing 1P  with ),( OΓψ  completes the 
proof.  □ 
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4.2 Assessment Algorithm 

We use Monte Carlo sampling to compute the 
sample mean µ and sample variance S2 
together with the estimation of second raw 
moment 2m ′  and its sample variance, (S'2)2. 
In our SMR example, we are concerned about 
how much of the hydrogen stream, ,2H  is 
diverted. A pseudo-code is provided below. 

 

4.3 Numerical Results for Monte Carlo 
Methods for SMR 

We simulate the SMR reaction described in 
Section 3. When simulating ,jα  we use the 
active table software ATcT. In addition, in 
the case of SMR, ( )j

eq
j

eq
j kk 21,=α . 

In terms of parameters described in the 
beginning of Section 4, we use 1.00 =w  and 

10 =w , where )(1 ltw  and )( lN tw  are also 
constants, for l=0,2,…,L-1 (the stationary 
noise case). The filters used correspond to 
white noise, that is, 0=mh , 0=me , and 

0=mg , for m ≠ 0, and 1 otherwise. We look 
for the diverted amount of hydrogen, 2Hi = . 

We sampled j
eqk 1  and ,2

j
eqk  j = 1,…, 200 by 

choosing from normal distributions. We then 
run Monte Carlo simulation described in the 
above pseudo-code for each j

eqk 1  and j
eqk 2  

and get  ,
2

j
Hu  ,

2

j
HS  j

Hm
2,2  and .'

2,2
j

HS   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By averaging the RHS of (40), we then have 
the results shown in Figure 2 for the average 
surface of ,2/),(2/

220 HH OP Γ+ψ  for two 
input noise variance level (1, and 10). We 
read the results as follows: Given the 
measured output of 2H , the probability that 
the diverted quantity of 2H  exceeds the 
value Γ  is no larger than the value of the 
surface at the coordinates O  and Γ . We see 
that for certain values of Γ  the result is 
noninformative (i.e., the probability is 1). But 
the value of the probability surface drops 
quickly, and the probability drops sharply, a 
sign that we can guarantee the estimate very 
sharply, even for large variance in the input 

Sample uniformly k
lξ  and ,k

lη  Kk ,,1L=  by Monte Carlo methods. 

Sample ,jα  Jj ,,1L=  from Monte Carlo manifolds by ATcT. 
for Kk :1=  
              for 1:0 −= Ll  

                           Compute ),( l
k tX  )(ˆ

l
k tX  and ).( l

k tN  

                            for Jj :1=  

                                          Solve nonlinear system (3) with parameter jα  at lt  
                             end 
              end 

              Compute ∑ −
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0
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(almost 10% relative uncertainty!). As expected, 
larger input variance results in a smoother and 
less sharp probability estimate surface.  
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Figure 2. Average probability surface 
)1,2/),(2/min(

220 HH OP Γ+ψ  of our 

experiment for 2H , where ,02.00 =P  

1.00 =w  (top) and 10 =w  (bottom) 

The experiment well verified that when K is 
moderately large, the average and standard 
deviation of the diverted quantity are in the 
Fact 1 asymptotic regime, that is, they are 
close to be standard normal. In this model we 
do not include the possible control loops in a 
plant. We point out, nonetheless, that this is 
not essential for employing the proposed 
assessment framework. The equations in 
Section 2 could be easily modified to include 
feedback, and they already do to the extent 
where unconsumed reactant is refilled, as 
described in (3). In addition, we point out that 
for waste reprocessing plants, where the 
reactants are difficult to measure on a 
continuous basis, online control is not 
implemented in many circumstances in any case. 

5. Conclusions and Future 
Research 

We have presented a model-based framework 
for assessing the risk of diversion of a given 

reaction product in a chemical plant in the 
presence of uncertainty. We have accounted 
for both feed and model parameter 
uncertainties. We have shown how the 
framework can be applied to chemical 
reaction models by tracking of hydrogen in 
the steam methane reforming reaction. 

In future research, we will address the issue 
of obtaining superior estimates where we 
consider the entire covariance matrix that is 
obtained by our simulation. Therefore, in the 
language of this application, correlations 
between outputs would provide 
asymptotically sharper estimates than the one 
we have already obtained. In addition, we 
will be interested in formulating and solving 
the problem for the case with dynamics and a 
more faithful description of the input/output 
mechanism in the chemical plant (rather than 
all in - equilibration - all out, as we do at the 
moment). We will also apply quasi-Monte 
Carlo methods [15, 26] to sample the 
parameter α to speed up the algorithm. 
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List of Notations 

• L: Number of knots in time space  
• M: Length of filter  
• K: Number of trials  
• J: Number of samples for physical 

parameters α 
• 0w : Intensity parameter  
• 1w : Intensity parameter  
• Nw : Intensity parameter  
• h, g, e: Filters  
• ξ, η: Random variables 
• X0: Determinant part of input 
• X̂ : Real input 
• Y: Calculated output 
• N: Measurement Noise 
• D(t): Diverted part at time t 
• D0: Threshold parameter of the 

probability as shown in (4) 
• O: Observed output 
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• )(:
222 HHH NYE +=µ  

• )(:
222

2
HHH NYVar +=σ  

• :µ  Sample mean  

• S2: Sample variance  
• 2m : Second raw moment 

• (S'2)2: Sample variance of i.i.d 2
iX  

• P0, P1: temporary notations to derive 
the upper bound of the probability as 
in (4)  


