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1. Introduction and Preliminaries 

Let A be a real-valued, positive definite, 
symmetric n x n matrix, and let b be a real-
valued n-vector. The problem under 
consideration here is:  

Optimize xbxxx tt Af +=
2
1)(   over 

}1|:|{1 =∈=− xx nn RS .  

For small dimensions, the well-established 
approach involving diagonalization of A, outlined 
in [Golub and Van Loan 1996] and sketched in 
the remark preceding Lemma 1, suffices for both 
maximization and minimization. For large 
dimensions, the computational cost of 
diagonalization is excessive. 

The maximization problem was encountered 
for n=4 in computations for lattice gauge 
simulations [Montero, 1999]. With A allowed 
to be indefinite, the minimization problem is 
the trust region subproblem which must be 
solved in each iteration of a trust region 
method [Conn, Gould, Toint, 2000] and 
[Hager, 2001]. The subproblem has been the 
subject of considerable attention, resulting in 
sophisticated iterative algorithms (see [Hager, 

2001], [Sorenson, 1997], and [Rendl and 
Wolkowicz, 1997]). For instance, the SSM 
algorithm described in [Hager, 2001] 
converges quadratically, using the Lanczos 
process for startup and with each iterate being 
the solution of the problem on a low-
dimensional subspace. That subspace is 
determined in part by applying Newton’s 
method at the previous iterate to the 
associated Lagrange problem. As is typical of 
these algorithms, the tradeoff for the small 
number of iterations required is that 
initialization and each iteration require a 
significant number of matrix-vector 
multiplications. See [Hager, 2001] for a 
comparison of the computational 
effectiveness of some of these algorithms. 
These minimization algorithms are adaptable 
to the maximization problem presumably 
with similar computational cost. 

Denoting the eigenvalues of A by 
021 >≥≥≥ nλλλ K , direct the 

corresponding orthonormal basis of 
eigenvectors },,{ n1 ee L  so that  

,,,1,0 njb jt
j L=≥= eb  
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and in the case that jii λλλ === + K1 , so that  

00 1 ===≥ + jii bbandb K  

and let E denote the orthogonal matrix having 
the je  as columns. Then, since the change of 
coordinates xy tE=  diagonalizes A and 
preserves the constraint set 1−nS , it can be 
observed that 
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Thus, with respect to the coordinates 

j
t

j ex x= , the problem takes the 
diagonalized form:  

Optimize )
2
1()( 2

1
jjjj

n

j

xbxf +=∑
=

λx  over 1−nS  

where jλ  and jb  are as above.  

It is convenient to adopt the following 
notations. For nR∈x , representation in 
coordinates will be with respect to the 
orthonormal eigenbasis },,,{ 1 nee L  and will 
be denoted by iix ][=x . The outer subscript 
will be omitted when no ambiguity results, 
e.g. ][ ii xA λ=x  while ][][ jijji yxyx = . 
The euclidean norm of a vector x will be 
denoted by |x|. The subset of Sn-1 consisting 
of all vectors with non-negative (non-
positive) coordinates will be denoted by 

)( 11 −
−

−
+

nn SS . 

Geometric insight into the problem follows 
from completing the square in the 
diagonalized form of )(xf  to obtain 
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Thus, for c>-k, the level hypersurface f(x) = c 

is an ellipsoid with center at ][
j

jb
λ

− . 

It is the simplicity of this geometric 
characterization that suggests the iterative 
algorithm for the maximization problem: 

)(1 ii xTx =+  where T(x) is the 
normalization of the gradient )(xf∇ . Note 
that the solution is a fixed point for T. While 
convergence in general will be established, it 
is reasonable to expect that the rate will 
improve as |b| increases, moving the common 
center of the ellipsoids further from the origin 
and thus resulting in less variation of )(xf∇  
over the constraint set 1−nS . The algorithm 
for the minimization problem (See section 4) 
is based on similar heuristic considerations. 

Characterization of the maximizing vector 
1−∈ nSw  can begin by observing in the 

diagonalized form of the problem that it must 
have non-negative coordinates because the 

jjb λ/  are positive, and furthermore must 
satisfy the Lagrange multiplier condition:  

( )f x wµ∇ =   for some  0µ ≠  (1) 

Since ][)( jjj bxAf +=+=∇ λbxx  , this 
implies  

.j
j

j
j unless

b
w λµ

λµ
=

−
=  (2) 

This leads to defining  
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and observing that the requirement that 
1−∈ nSw  means that µ must satisfy the 

secular equation g(t)=1. 

If b1>0, then the requirement that 01 ≥w  

implies that 1λµ > , and hence that all the 

iw  are defined by (2). Because g(t) is 

unbounded and decreasing on ],[ 1 ∞λ  and 
approaches 0 as ∞→t , there exists a unique 

0µ  satisfying 100 ,1)( λµµ >=g . Thus 
there is a unique maximizing point w. 

In the case that 011 === −kbb K  and 
0>kb , the requirement that 0≥kw  implies 

kλµ > , and there is a unique 0µ  satisfying 
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kg λµµ >= 00 ,1)( . Then (2) can be 
satisfied for i < k in one of two ways. First, if 

iλµ ≠ , then 0=iw . Second, if iλµ =  and 

1)( <ig λ  (in which case 0µµ > ) the unit 

vectors 1−
+∈ ni Sw  determined by the 

Lagrange condition have coordinates i
jw  

determined by (2) for ij λλ ≠ , while 

)(1)( 2
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i
j gw
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λ
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−=∑
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For 0w  the unit vector determined by 0µ  in 

(2), )()( 0
0 µhf =w , and ))(1(

2
1)(' λλ gh −=  is 

positive for 0µλ > . Thus the desired 
maximum corresponds to the largest value of µ 
satisfying (1), namely the larger of 0µ  and 1λ .  

Remark: Assuming that the problem has 
been diagonalized, i.e. the eigenvectors ie  
have been found, and that 01 >b , µ in 
equation (1) can be found by solving the 
secular equation g(t)=1 and then used in 
equation (2) to find w. This approach is 
outlined in [Golub and Van Loan, 1996] for 
the minimization problem and used in 
[Montero, 1999] to solve the maximization 
problem for n = 4. 

The resulting characterization of the 
maximizing vector is summarized as follows. 

Lemma 1  

1. If 01 >b , then the maximizing vector w 
satisfies 01 >w  and the corresponding 
Lagrange multiplier satisfies 1λµ > .  

2. If 01 =b  and 10 λµ ≥ , then 01 =w  and 

0µµ = .  

3. If 01 =b  and 10 λµ < , then 1λµ =  with 
the set S of maximizing vectors consisting of 
all w with jw  determined by (2) for 1λλ <j  

and satisfying )(1)( 1
2

1
λ

λλ
gw j

j
−=∑ =

.  

Characterization of the minimizing vector v 
as corresponding via (2) to the smallest value 
ν  which satisfies (1) is completely similar, 
and is given in Lemma 2.2 of [Hager 2001]. In 
that paper, the counterparts to cases 1, 2, and 3. 
are referred to as non-degenerate, non-
degenerate degenerate, and degenerate, and the 
literature on the trust region subproblem refers 
to cases 2 and 3 collectively as the hard case. 

It is useful to characterize the optimizing 
vectors and their multipliers for |b| large. 

Lemma 2 For 1−
+∈ nSu , let b= τ u, τ > 0. 

Then, for fixed A,  

1. 1lim =∞→ τ
µ

τ  and   uw =∞→τlim .  

2. 1lim −=∞→ τ
ν

τ  and   .lim uv −=∞→τ  

Proof: The secular equation g(t) = 1 becomes  
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To establish case 1, note first that  µo, the largest 
solution of the secular equation, satisfies 

∞=∞→ 0lim µτ . Thus for τ large 

enough, 0µµ = , and so 
j

j
j uu =−∞→ ))1/((lim

µ
λ

τ
. 

Setting t = µ  in the secular equation, multiplying 
by 2µ , and taking limits gives 
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Then 
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Case 2 is established similarly.   □ 

2. Maximizing 

The main results pertain to the convergence 
to a maximizing vector of the iterates of T, 
where  
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See figure 1. Note that the fixed points of T 

are those on Sn−1 which satisfy the Lagrange 
multiplier condition and also that 
computation of T requires only multiplication 
by A and simple vector operations. In general, 
the initial value is ||/0 bbx = . 
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Figure 1. An iteration of T 

 

Lemma 3 For 1−∈ nSx  not a fixed point of 
T, )())(( xfxTf >  

Proof: Let 1−∈ nSx  and y=T(x). Then by 
Taylor’s Theorem,  

)()(
2
1)()()()( xyxyxyxx −−+−∇+= Affyf tt

).()(
2
1))(|)((|)( xyxyxxxx −−+−∇∇+= Afff tt

The second and third terms in the sum above 
are non-negative, the former by the Cauchy-
Schwarz inequality, equaling 0 only if y=x, 
i.e. if x is a fixed point of T. □ 

Proposition 1 Let 1−∈ nSw  satisfy equation 
(1) with multiplier µ, and let P be the 
orthogonal projection onto ⊥w , the 
orthogonal complement of w. Then for 

1−∈ nSx  near w,  

).|(|))((1)( 2wxOwxwxT −+−=− AP
µ

 (3) 

Proof: It straightforward to check that  
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where ijδ  is the Kronecker delta. Then, since 

|∇f(w)|=µ and iiii wbw µλ =+ , 

( )jijiji
j

i www
x
T

λδλ
µ

−=
∂
∂ 1)( . 

Applying Taylor’s Theorem to Ti at w and 
noting that Ti(w)=wi yields 

2))()((1)( wxOwwxAwwxwxT i
t

iiiii −+−−−=− λ
µ

 (4) 
Therefore, 

{ }

)())((1)(

))(()(1)(

22 wxOwxAPwxO

wwwxAwxAwxT t

−+−=−+

−−−=−

µ

µ  

    ⁯  
The following theorem characterizes the 
convergence of the iterates of T in each of 
three cases. In case 1, which includes the 
non-degenerate case and the non-degenerate 
degenerate case of [Hager 2001], the rate of 
convergence is linear. 

Theorem 1 Let 10 −
+∈ nSx  with 00

1 >x , and 
let )( 0xTx ii = .  

1. If 01 >b  or 01 =b  and 10 λµ > , then the 

iterates xi converge to the unique maximizing 
1−

+∈ nSw . Furthermore,  

)|(|)(|| 21 wxOuwxwx −+−=−+ iii B  

where u is the normalization of )( wx −iP  

and )(1)( xx APB
µ

=  is symmetric and 

positive definite on ⊥w  with operator norm 
less than µλ /1 .  

2. If 01 =b , 1λ  has multiplicity 1, and 

10 λµ ≤ , then the iterates xi converge to the 

unique maximizing 1−
+∈ nSw .  
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3. If b1=0, λ1 has multiplicity m>1, and 

10 λµ ≤ , then the iterates xi converge to a 

maximizing 1−
+∈ nSw . 

Proof: Each of the cases will be considered 
separately. Let µ denote the multiplier 
corresponding to a maximizing vector. 

As a preliminary observation, note that 
Lemma 3 implies that any convergent 
subsequence of {xi} must converge to a fixed 
point of T. Note also that, because  

)(
)( 111

1 xf
bx

xT
∇

+
=

λ
 , 

00
1 >x  implies that 01 >ix . 

In case 1, µ>λ1, and so the maximizing 

vector w is the unique vector in 1−
+
nS  which 

satisfies the Lagrange condition (1). Since 
each 1−

+∈ ni Sx  and Lemma 3 shows that the 

sequence f(xi) is increasing, the limit of that 
sequence is f(w). Therefore, limxi=w. That 
the rate of convergence is linear follows from 
Proposition 1, whose main result can be 
rewritten 

( ).
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Let  )(1

wx
wxPu

−
−

= .  

Then, since 2

2
1)( wxwwx t −

−
=−  for any 

unit vectors x and w, it follows that 
)( 21 wxOuwxwx −+−=− . In fact, since 

|u1|=1+O(|x−w|2), u1 can be replaced by its 
normalization u in the previous statement. 
Therefore 

T(x)−w=|x−w|B(u)+O(|x−w|2)    . (6) 

It is straightforward to verify that the 

restriction of B to w⊥ is symmetric and 
positive definite and that the norm of B is less 

than or equal to 
µ
λ1 , which in this case is less 

than 1. 

In case 2, µ=λ1, and the maximizing vector w 
is unique. 

If µ0=λ1, then the maximizing vector w is 

the unique element of 1−
+
nS  which satisfies 

the Lagrange condition. Therefore, the 
iterates converge to w as in the previous case. 

If µ0<λ1, then there are other 1−
+∈ nSz  

which satisfy the Lagrange condition of (1). 
For such a vector, Lemma 1 shows that z1=0 

and that its multiplier ρ in (1) is less than λ1. 

However, no subsequence of the iterates ix  
can converge to such z. This follows from the 
equation (4) with i=1 and w=z, which implies 

).|(|)( 2
1

1
11 zxxT −+=− Oxz

ρ
λ

 

Therefore, since 01 >ix , no subsequence of 
ix1  can converge to 0. By the preliminary 

observation, wx =∞→
i

ilim . 
In case 3, recall from Lemma 1 that the m−1 
dimensional sphere S of maximizing vectors 
consists of all w satisfying 

)(1... 1
22

1 λgww m −=++ , having multiplier 
µ=λ1, and having mjwj >, , uniquely 
determined by equation (2). By the argument 
given in the previous case, 

)()(lim 0wx ff i
j =∞→  for some Sw ∈0 . 

Observe that, for j≤m, Tj(x)=sxj where 

)(/1 xfs ∇= λ . Let w now denote the vector 
determined by equation (2) for j>m, and by 

0
jj lxw =  where 

2
1

20
1 )(/))(1( 
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
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
−= ∑

=
k

m

kj
xgl λ  

for j ≤ m. Then any convergent subsequence 
of the xi must converge to some w∈S. By 
straightforward compactness considerations, 

wx =∞→
i

ilim .     □ 

Note for A fixed that as a consequence of the 
Lemma 2, part 1, the larger |b| is, the smaller 
the bound λ1 / µ in case 1 of Theorem 1. Thus 
the rate of convergence for the iterates of T 
should improve as |b|→∞. This observation is 



 Studies in Informatics and Control, Vol. 18, No. 1, March 2009 26 

consonant with the recognition that ∇f is 

nearly constant on Sn−1 for sufficiently large 
b, i.e that ∇f(x) ≈∇f(w) and so T(x)≈w. 

3. Acceleration 
In the case of linear convergence, i.e. 1λµ > , 
this section introduces an acceleration of the 
iterates which is an extrapolation based on 
heuristic considerations, and offers a partial 
analysis of its characteristics. 

From Theorem 1, it can be verified that, for x 
near w, u the normalization of P(x-w), and 

+∈ Zk , 

Tk(x)-w=|x-w| Bk(u)+O(|x-w|2) . 

Thus, the convergence of the iterates of T to 
w is equivalent to that of the iterates of B to 
0. Since the restriction of B to ⊥w  is linear, 
symmetric, and positive definite and has 
operator norm less than 1, it has a complete 
set 0...1 121 >≥≥≥> −nσσσ  of eigenvalues 
with corresponding orthonormal eigenvectors 
{ }11,...., −nvv  which are a basis for ⊥w . 

Then, for ∑
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Let uk=Bk(u) and dk=uk+1-uk. Accepting the 
approximation kk ruu ≈+1  for some constant 
0<r<1, it follows that kk urd )1( −≈  and 

that kk rdd ≈+1 . Then 01 / ddr ≈ . From 
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The term d1-rd0 can be viewed as a 
correction to the implicit, but false 
assumption of the collinearity of the uk. The 
approximation above suggests that  

0)2(
1

012 ≈−
−

+= rdd
r

ruz  

be used as an acceleration of { }210 ,, uuu . 
Expressing this approximation in terms of 
iterates of T yields an acceleration for their 
convergence to w:  
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 . 

The approximation to w given by the right 
hand side of (7) should be normalized before 
continuing to the next iteration. 

The comparison of z to u2 begins by noting that  
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useful observations can be made.  
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it follows that 10 1
1 <≤<<

µ
λ

σr  . 

2. For 2/ri >σ , the ith component of z is 

smaller than that of u2, dramatically so for σi 
near r/(r+1) or r. For σi < r/2, the  ith 
component of z is larger than that of u2, but 
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smaller than that of 0
2

1
u

r
r
−

. Since r can be 

expected to be closest to the iσ  for which the 
ci are largest, |z| can be expected to be 

smaller than |u2|.  

3. If the slower convergence for components of 
u corresponding to small iσ   is problematical, 
several iterations of B (or equivalently T) 
would yield rapid convergence in those 
components. Applying acceleration then would 
improve convergence for components 
corresponding to large iσ .  

Another approach, suggested by the SSM 
algorithm of [Hager 2001] to producing an 
improved approximation to the maximizing 
vector w from the triple )}(),(,{ 2 xTxTx  
would be to find the maximizing vector z for the 
restriction of f to the subspace W spanned by the 
triple. Specifically, if { }321 ,, vvv  is an 

orthonormal basis for W and V=[v1 v2 v3] is the 
matrix with those vectors as columns, one would 

maximize ycByyyg tt +=
2
1)(  over S2 , 

where bc tt VAVVB == ,  and 3R∈y . 
This three dimensional problem can be then 
solved by complete diagonalization, yielding 
a better approximation z=Vy than that of the 
method previously discussed in this section. 

This approach has two drawbacks. First, the 
triple )},(),(,{ 2 xTxTx  being members of a 
convergent sequence, will be nearly collinear. 
Thus calculating the orthonormal basis for W 
will be numerically unstable. Second, the 
computation of B will require one matrix-
vector multiplication in addition to the two 
needed to compute the original triple, thus 
raising the computational cost. The numerical 
tests in Section 5 indicate that improvement 
in the rate of convergence from subspace 
optimization, if any, is outweighed by the 
additional computational cost. 

4. Minimization 
To minimize ,),( 1−∈ nSf xx  a similar 
iterative algorithm is proposed, one that is 
effective mainly for large b, one that also 

requires matrix-vector multiplications and 
simple vector operations. An iterate R(x) for 

1−
−
nS  is defined as follows. In general, the 

initial value is x0 = -b/│b│. 

1. Let t(x) be the value that minimizes 
f(x+t∇f(x)). It is straightforward to show that  

)()(
)()()(

xfAxf
xfxfxt t

t

∇∇
∇∇−

=  . 

2. Fix r>0, and let V(x)=x+r t(x)∇f(x). Note 
that V(x) 1−

−∈ nS . 

3. Set 
)(
)()(

xV
xVxR =  (See figure 2.)  

 
Figure 2. An iteration of R 

Iterates of −T were not used due to 
ineffectiveness when |b| is not large. First if 
the common center of the elliptical level 

surfaces of f is inside Sn−1, then 1−
+∈− nST , 

while the minimizer 1−
−∈ nSv . More 

importantly, since the level surfaces of f are 
concave with respect to the origin near 1−

−
nS , 

their curvature for intermediate values of |b| 
will cause excessive variation of −T, whereas 
iterates of R will vary less. It may be that the 
respective iterates behave similarly when |b| 
is large. 

The discussion below of the convergence of 
iterates of R will consider the case where 
ν<λn, which assures that the minimizing 

vector v is the only fixed point of R in 1−
−
nS . 
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As was done for T, the convergence 
characteristics of R will be examined via 
Taylor’s formula applied at v, which is a 
fixed point of R. The result is: 

Proposition 2 Let 1−
−∈ nSv  satisfy the 

Lagrange condition (1) with multiplier ν, and 

let P be the orthogonal projection onto v⊥ . 
Then with 1−
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In practice, the iterates of R(x) converge, 
slowly for small |b| and rapidly for large |b|. 
The latter is confirmed as follows.  

Lemma 4 For 1−
+∈ nSu , let b=τ u , 0>τ . 

Then .lim ∞=∞→ lτ  

Proof:  

,lim

1limlim

Auu
r

Avv
r

k
rl

tt =

=





 −=

∞→

∞→∞→

τ

ττ τ
ν

ττ  

with the latter two equalities following from 
part 2 of Lemma 2. □ 

It is then clear from Proposition 2 that the 
convergence of the iterates of R is linear with 
rate decreasing to 0 as |b| increases. 

5. Numerical Results 

Preliminary tests confirmed that convergence 
properties of both algorithms were 
independent of choice of coordinates, i.e. of 
whether or not the matrix A was 
diagonalized. Thus, the algorithms were 
tested using diagonalizing coordinates. The 
spectrum of A was generated randomly 
within the interval (0,2], with the exception 
that λ1=2.02 and the coordinates of b were 
generated randomly with |b| then being set to 
a desired value. The termination criterion was 

ε<−+ || 1 ii xx  where 1010−=ε  for T and 
910−=ε  for R. (The less stringent tolerance 

for R was an expedient due to unstable 
convergence when |b| was small.) Since the 
problems were diagonalized, the optimizing 
vector w (or v) could be computed by 
solving the secular equation g(t)=1 for µ (or 
ν) and using equation (2). Except when 
|b|≤0.1, the terminal iterates differed in 
norm from those corresponding solutions by 

no more than 10−8.  

Results for iterates of T:  

Iteration started with x0 = b/│b│, two 
iterations of T were computed initially, and 
thereafter two successive iterates were used 
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in equation (7) to compute an accelerated 
iterate. Note that the major computational 
cost of a simple iteration is one matrix-vector 
multiplication, while an extrapolated iterate 
requires two. 

 

1. The simple iterates of T and the 
accelerated iterates monotonically converged 
coordinatewise to the limit, except possibly in 
the case where b1 was very small. The use of 
accelerated iteration by extrapolation 
decreased the number of matrix-vector 
multiplications, compared to simple iteration, 
with the difference being less as |b| increased. 

2. The dimension n had only a small effect on 
the rate of convergence. For example, over 10 
problems with |b|=1 the average number of 
accelerated iterates was 31.6 for n=10, 40.2 
for n=50, and 44.2 for n=100. This suggests 
that convergence with respect to the uniform 
norm, i.e. coordinatewise, was essentially 
independent of n. 

3. The dominant factor affecting the rate of 
convergence is |b|. See Table 1, which was 
generated by solving 100 problems with 
n=1000. The number of matrix-vector 
multiplications was dramatically low for |b| 
large and prohibitively high for |b| small. 

4. As Table 1 indicates computational cost of 
solving the three dimensional problem on the 
subspace determined by a pair of iterates (as 
describe at the end of Section 3) is worse than 
that of accelerating the pair.  

5. A series of "hard" problems was generated 
by setting b1=0, b2 to be the largest 

coordinate of ,02.2, 1 =λb  ,018.22 =λ  and 
1000=n  The results, given in Table 1, 

indicate that the computational cost is only 

slightly higher, again being comparatively 
worst when |b| is small. 

 

 

 

 

 

 

 

 

 

 

 

Results for iterates of R: 

Iteration started with x0=−b / |b|, two 
iterations of R were computed initially, and 
thereafter two successive iterates were used 
in equation (7) to compute an accelerated 
iterate. Note that the major computational 
cost of a simple iteration is two matrix-vector 
multiplications, while an extrapolated iterate 
requires four. 

1. As for the iterates of T, |b| was the 
dominant factor for the rate of convergence 
of the iterates of R, with the rate increasing 
with |b|. See Table 2. 

2. The rate of convergence was affected by 
the choice of the mollifier r, but did not vary 
greatly as r varied. In Table 2, the mollifier 
that resulted in the minimum of the average 
number of matrix-vector multiplications per 
trial is given, but the average varied only 
slightly over a significant range for r. 

3. Subspace optimization, as an alternative to 
extrapolation, did not perform well, 
presumably due to numerical instability. Note 
however that for |b|=0.3 convergence was 
successful using this alternative, though it 
failed using extrapolation. 

4. As might be expected from Proposition 2, 
for small |b|, the diagonalized coordinates of 
the simple iterates alternated above and 
below the limit. In those circumstances, the 
extrapolated iterates either converged slowly 
or not at all, while simple iteration 
converged very slowly. For intermediate 

n=1000, number of trials = 100 

case |b| 0.3 0.5 1 3 5 10 20 
general extrapolation 

MV 
151.9 68.7 32.1 16.0 12.0 10.0 8.0 

" subspace 
MV 

395.7 144.7 53.4 20.4 17.0 11.0 11.0 

hard extrapolation 
MV 

158.4 73.1 34.5 17.3 14.0 10.0 8.0 

" subspace 
MV 

503.6 167.1 59.4 23.0 17.0 14.0 11.0 

Table 1. Average matrix-vector products (MV) per trial for convergence of T iterates. 
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values of |b|, decreasing the mollifier r 
eliminated this alternation. 

5. A series of hard problems was generated 
by setting bn=0, λn=0.02, and randomly 

generating ],02.2,02.0(∈iλ  .1 ni <≤ . No 
appreciable degradation of performance, 
compared to the general case, occurred. 

 

6. Conclusion 

For the positive-definite quadratic problem 
that has been treated, the iterative algorithms, 
based on T for maximization and on R for 
minimization, converge reliably to a solution 
except when |b| is small relative to the matrix 
norm of A. The linear rate of convergence, 
even when enhanced by extrapolation, results 
in more iterations than the superlinear or 
quadratic algorithms developed for the trust 
region subproblem (i.e minimization with A 
indefinite), but the computational cost per 
iteration, one or two matrix-vector 
multiplications, is significantly lower than the 
more substantial cost of initialization and 
iteration of those algorithms. When |b| is 
large relative to the matrix norm of A, the 
proposed algorithms for the problem treated 
here perform well, when compared to those 
algorithms. 

Application of iterates of R, −T, or a similar 
step employing ∇f to the trust region 
subproblem may have more promise than is 
initially evident, particularly when |b| is 
large. When the spectrum of A has a number 

of values near 0, the common center of the 
level elliptical hyperboloids of f will be far 

from the constraint set Sn−1. As noted in the 
remark ending section 2, the small variation 

of ∇f over Sn−1 suggests effective  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

convergence. While no analysis has been 
done, simple numerical tests suggests that 
convergence occurs. In that case, an effective 
acceleration algorithm could be developed. It 
may also be that such a method could be used 
in conjunction with existing algorithms. For 
instance the SSM algorithm of [Hager, 2001] 
converges quadratically, but has an expensive 
initialization before the iteration phase. If that 
initialization could be replaced by a few 
gradient-based iterations, considerable 
computational savings would result. 
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n=1000, number of trials = 100 

case |b| 0.3 0.5 1 3 5 10 20 
general extrapolation 

MV 
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MV 
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MV 
* 178.7 60.0 28.0 24.0 20.0 16.0 
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MV 
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Table 2.  Average matrix-vector products (MV) per trial for convergence of R iterates. (*: 
Convergence was not successful.) 
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