
Studies in Informatics and Control, Vol. 18, No. 1, March 2009 33

1. Introduction

We shall consider in this paper the
(stationary) 2D convection-diffusion-reaction
problem

Ω∂=

=Ω=+
∂
∂

+∆−

onu

infu
x
uu

,0

)1,0(, 2δγ , (1)

where 0,0 ≥> δγ and f are such that a
unique solution exists. For 2≥k a fixed

integer, we discretized the domain Ω ,

Figure1. Domain discretization.

Sparse Matrix Techniques in Scientific Computing
Aurelian Nicola, Constantin Popa

Ovidius University, Blvd. Mamaia 124, 900527 Constanta, Romania

{anicola, cpopa}@univ-ovidius.ro

Abstract. Although the most important and relevant part of the scientific activity of Dr. Neculai Andrei is
related to the design of efficient algorithms and software products for optimization problems, his first book,
written in 1983 was devoted to sparse matrices and some of their applications in scientific computing. This
is why we decided to present in our contribution some developments that we made in this direction, in the
context of Matlab software, and 25 years after Neculai Andrei’s book. The paper presents the design and
efficient implementation of some sparse matrix codes for numerical solution of a 2D convection-diffusion-
reaction problem, by a preconditioned CG algorithm.

Keywords: sparse matrices, scientific computing, convection-diffusion-reaction problems, multigrid algorithms,
preconditioned CG algorithm

Aurelian Nicola was born on August 17, 1973 in Constanta, Romania. He graduated from University of
Constanta - Faculty of Mathematics and Computer Science in 1996 and obtained his PhD in 2005. Since 2006 he
has held a lecturer position in Applied Mathematics at Ovidius University of Constanta, Romania - Faculty of
Mathematics and Computer Science. His current research interests are: preconditioning techniques for finite
element and finite differences discretizations of boundary value problems and iterative methods for solving sparse
linear systems. He published 1 book, 1 paper in ISI quoted journal and more than 6 papers in other refereed
journals or international conferences proceedings.

Constantin Popa was born on October 10, 1956 in Bucharest, Romania. He graduated the Faculty of
Mathematics from University of Bucharest in 1981 and obtained his PhD in 1995. Since 2000 he has been a full
professor in Applied Mathematics at the Faculty of Mathematics and Computer Science from Ovidius University
of Constanta, Romania, where he is also heading the Department on Computer Science and Numerical Methods.
His current research interests are: algebraic reconstruction techniques in Computerized Tomography,
preconditioning techniques for finite element and finite differences discretizations of boundary value problems,
iterative methods for least-squares formulations of linear systems of equalities and inequalities (projection
algorithms), inverse problems - regularization techniques and methods for approximating the minimal norm
solution of first kind integral equations. He published 4 books, 25 papers in ISI quoted journals and more than 40
papers in other refereed journals or international conferences proceedings. Some of his results have been cited in
more than 25 papers.

 Studies in Informatics and Control, Vol. 18, No. 1, March 2009 34

with 2)12(−= k
kn uniformly distributed

grid points and
kh

2
1

= the mesh size of the

discretization (see Figure 1(a) for k=2). We
discretized the problem (1) by the Finite
Element Method, using standard piecewise
linear functions)(k

iϕ as in Figure 1 (b) (see

also for details [5, 6]). The kk nn × associated
linear system

kkk bxA = (2)

is nonsymmetric, positive definite, big
(because the approximation error is of order

)(2hO , which means that we need an enough
big value of k - and thus of kn , for an
enough good approximation) and sparse
(because of the special discretization of the
problem domain in Figure 1(a) the matrix kA
has at most 7 nonzero entries on each row).
From these view points, direct methods are
not recommended for solving (2). And,
unfortunately, the ‘’ill-conditioning’’ of the
system matrix kA produces a (very) slow
convergence for classical iterative solvers (as
e.g. CG; see for details [2, 3, 4]). One way to
overcome this difficulty is to consider
preconditioning techniques for (2). Such a
method will be described in the next section
of the paper.

2. The Multilevel Preconditioning
Method

The multilevel based preconditioning
technique that we shall describe in this
section is based on the results first proposed
for symmetric elliptic boundary value
problems by M. Griebel in [3]. In the paper
[7] we extended them to the general
nonsymmetric case for (1). In what follows
we shall use the presentation and notations
from this paper. The main idea comes from
the field of multigrid methods (see e.g. [2,
4]). In this respect, we consider coarser
discretization levels for Ω , with qn nodes

kqn q
q ,,2,1,)12(2 K=−= . (3)

For each q , },,{)()(
1

q
n

q
q q

B ϕϕ K= is a basis

of standard finite element functions, similar
with)(k

iϕ from Figure 1(b), but
corresponding to the discretization level q .
Let kqVq ,,1, K= be the vector space

generated by qB , and kB̂ , km given by

ˆ ,
1 2 1 2

B B B B m n n n
k k k k
= = + + +K KU U U (4)

The functions from kB̂ are linearly

dependent and generate the subspace kV .

Each function 1
)(

+⊂∈ qq
q

j VVϕ has a unique

representation as an element of 1+qV , of the
form (see [2, 5])

∑
+

=

+ ==
1

1

)1()(,,1,
qn

i
q

q
iij

q
j njc Kϕϕ . (5)

With the coefficients ijc from (5) we can

construct the qq nn ×+1 grid transfer matrices
1+q

qI by

ijij
q
q cI =+)(1

 (6)

and define the qk nn × matrices qS by

11
21

+−
−−= q

q
k
k

k
k

k
q IIIS K , 1,,2,1 −= kq K . (7)

Then, the preconditioning kk mn × matrix

kS for the system (2) is given by (in block
notation)

1
1

...1 2 1
1

1

k k kS S S Sk k= −

K
 (8)

in which the right last block is the kk nn ×
unit matrix. The preconditioned version of
the system (2) will be defined as

ˆ ˆˆ ,where ,T TA x b A S A S b S bk k k k k k k k k= = = (9)

It results that the kk mm × matrix kÂ is still
nonsymmetric and positive semidefinite, but
singular.

Studies in Informatics and Control, Vol. 18, No. 1, March 2009 35

Remark 1. The system (9) is compatible,
with an infinity of solutions. But, for any of
its solutions kx̂ we can recover the unique
exact solution from (2) by the formula

kkk xxS =ˆ . (10)

In [7] we proved that the generalized spectral
condition number of kÂ from (10), defined by

1/2
ˆ ˆmax{ ,ˆ()
ˆ ˆmin{ ,

Tnonzero eigenvalue of A Ak kcond Ak Tnonzero eigenvalue of A Ak k

λ λ

λ λ

=
=

=

 (11)

is bounded independently on the mesh size

kh
2
1

= . This allowed us in [7] to efficiently

solve (9) by the CGLS algorithm from [2].
But all these results may become usefull in
practical applications only with an efficient
sparse matrix implementation of the
construction of kS and kÂ in (8) and (9).
This will be described in the next section of
the paper.

3. Sparse Matrix Implementa-
tion of the Preconditioning
Technique

In the following we shall present the
construction of the preconditioned linear
system. In this respect we designed a class of
subroutines for organizing our problem data
according to the sparse matrix commands of
Matlab. The command to store a matrix in a
Compressed Sparse Row format (CSR) in
Matlab is S = sparse(i, j, s, m, n, nzmax),
where i and j are vectors indices which
provide the positions and s is the vector of
real entries which contains the stored values.
Remaining quantities m, n and nzmax are
scalar values which contain the number of
rows, columns and maximum values for the
nonzero entries. Matlab provides sparse
matrix operations as concatenation, addition
and matrix-vector multiplication which we
will use to form the preconditioned matrix.

Starting from our data, i.e., discretization
type which yields entries for ijkA)(and

ijkb)(and also the structure of the intergrid

transfer matrices 1+q
qI , we will describe how

to determine parameters for the above sparse
matrix command in order to store the
preconditioned matrix kÂ in CSR format. For
a better understanding, we shall illustrate the
presentation with an example in the 1D case
of the problem (1). In this case, the intergrid
operators from (8) are created as indicated in
Figure 2 below.

Figure 2. Three levels of discretization.

The finest level has 7 interior points, the next
coarse level has 3 interior points and the
coarsest level has 1 interior point. Thus, the
structure of the preconditioning matrix kS
will be the one from Figure 3 below.

1000000
0100000
0010000
0001000
0000100
0000010
0000001

2/100
100
2/12/10

010
02/12/1
001
002/1

4/1
2/1
4/3

1
4/3
2/1
4/1

Figure 3. Structure of the matrix kS for two grids
in 1D case.

where the first matrix from the right is the
identity matrix, next is 7

3I , and the last

matrix is 3
1

7
3 II . In the two dimensional case

the construction of intergrid operators is more
complex. Again, we will explain the
construction of kS using a particular case
with three grids for a better understanding.
Using discretization as in Figure (1), the
preconditioning matrix kS will be produced
by repeating the 9-stencil shape

 Studies in Informatics and Control, Vol. 18, No. 1, March 2009 36

02/12/1
2/112/1
2/12/10

 (12)

in suitable positions corresponding to the
discretization from Figure 1(a). We generate
the matrix transfer operators defined in (6) in
a recursive fashion and taking in account the
simplified structure. Let ia and ja be the
vectors of indices, that we used to create the
sparse matrix 1+q

qI for an arbitrary fixed

}1,,1{ −∈ kq K , and ma, na its dimensions.
The following routines generate the vectors
ia and ja respectively.

1. Generating the ia vector.

for k=1:na
 iaux = k*ones(1,9);
 ia(9*(k-1)+1: 9*(k-1)+9) = iaux
endfor

where iaux is an auxiliary vector of 9
components used to fill ia.

2. Generating the ja vector.

where jaux is the matrix in which we keep the
values for ja. Furthermore, in the algorithm
described for the computation of ja we have
the three component vector vaux which is used
to generate the the consecutive values in the
jaux. When we increment the value of t we
begin to build the corresponding ja for
another matrix transfer operator. Furthermore,
at this point we are ready to completely put
together the vectors of indices by,

for k=1:na,

 ja(9*(k-1)+1: 9*(k-1)+9)=jac(k,:);

endfor

where for the entries of ja we exploit from
jac each column stored in the previous
sequence. As an example, in the particular
case of three grid levels, with the finest one
with 4949× mesh points, in the Table 1
below we present the result provided by the
two above presented subroutines for the
intergrid matrix 3

2I of dimensions 949× .

Table 1. The vectors ia and ja for the 2D

integrid operator 3
2I of dimensions 949× .

ia 1 1 1 1 1 1 1 1 1

ja 1 2 3 8 9 10 15 16 17

ia 2 2 2 2 2 2 2 2 2

ja 3 4 5 10 11 12 17 18 19

ia 3 3 3 3 3 3 3 3 3

ja 5 6 7 12 13 14 19 20 21

Finally, we are prepared to build the sparse
matrix from the vector of entries sa which is
formed using Matlab command repmat,
which repeats the 9-stencil defined in (12) .

The sparse matrix mS is build using sparse
command and then is added to the kS in a
recursive fashion using the following
sequence

mS = sparse(ia,ja,sa,ma,na);

Sk = [mOld*mS’,Sk];

mOld = mOld*mS’;

t=1;
for k=1:sna

vaux=[1+2*(n-1)*sma,2+2*(k-1)*sma,3+2*(k-1)*sma];
 jaux =[vaux, vaux+sma,vaux+2*sma];
 for k1 = 2:sna ;

 t = t+ j ;
 jac(t, :) = jac(t-1, :)+2 ;

 endfor
 t = t+1;

 endfor

Studies in Informatics and Control, Vol. 18, No. 1, March 2009 37

4. Numerical Experiments

The computations were done using a Pentium
4 at 3Ghz processor, with 2 GB of RAM. In
our first numerical experiment we have
measured the time spent to assemble kS in
the case it was considered as a
“noncompressed” matrix and compared this
with the time spent to construct kS as a
sparse matrix for a fixed value nlevel=6
which yields a matrix of size 39695214×
(see Table 2). The time spent to form the
uncompressed matrix kS is 9.58e+02
seconds, compared with 4.21e-01seconds
corresponding to the sparse matrix
construction. In Table 2 we present for
different values of nlevel (the number of
multigrid levels used), the size of kS , the

time (in seconds) F
St used to build kS as a

noncompressed matrix, and the time (in
seconds) S

St used to build kS as a sparse
matrix. We can see the very big differences
between the two values F

St and S
St .

Moreover, starting from the value nlevel=7
the matrix kS cannot anymore be built as a
noncompressed matrix in the computer
memory because it is too large.

Table 2. Times computed for uncompressed (F

St)

and sparse (S
St) allocation of kS .

nlevel Size of kS F
St S

St

3 59x49 7.81e-02 6.25e-02

4 284x225 2.81e-01 3.21e-02

5 1245x961 1.38e+01 1.09e-01

6 5214x3969 9.58e+02 4.21e-01

7 21343x16129 Out of
memory

3.01e+00

8 86368x65025 Out of
memory

2.93e+01

In the second numerical experiment we did
the same comparisons, but with respect to the
construction of the preconditioned matrix

kÂ from (9). In Table 3 F
At and S

At represent

the time (in seconds) for an “uncompressed”
construction of kÂ and a sparse one,
respectively. Again we can see the big
differences between F

At and S
At . Moreover,

starting with the value nlevel=7 we were “out
of memory”, as in the first numerical
experiment (see Table 2, for the construction
of kS).

Table 3. Times computed for uncompressed (F
At)

and sparse (S
At) allocation of kÂ .

nlevel Size of kÂ F
At S

At

3 59x59 1.25e-01 8.25e-02

4 284x284 3.59e-01 1.21e-01

5 1245x1245 2.38e+01 4.09e-01

6 5214x5214 10.64e+02 5.34e-01

7 21343x21343 Out of
memory

3.91e+00

8 86368x86368 Out of
memory

4.12e+01

With kÂ and kb̂ constructed as before in
CSR format, we were able to write the CGLS
code to solve the preconditioned system (9)
up to the value nlevel=9 (which is enough
for a good approximation of the solution of
(1); see for details [7]). The CGLS algorithm
uses in each iteration computations of type

zAk
ˆ or zA T

k
ˆ which were implemented in

terms of CSR Matlab’s format.

REFERENCES

1. ANDREI, N., C. RASTURNOIU, Sparse
matrices and applications (in romanian),
Editura Tehnica, Bucuresti, 1983.

2. BJORCK, A., Numerical Methods for
Least Squares Problems, SIAM
Philadelphia, 1996.

 Studies in Informatics and Control, Vol. 18, No. 1, March 2009 38

3. BRIGGS, L. W. et al., A Multigrid
Tutorial, SIAM Philadelphia, 1987.

4. GRIEBEL, M., Multilevel algorithms
considered as iterative methods on
semidefinite Systems, SIAM J. Sci.
Comput., 15(3) (1994), pp. 547-565.

5. HACKBUSCH, W., Elliptic Differential
Equations. Theory and Numerical
Treatment, Springer-Verlag, Berlin, 1987.

6. MARCHOUK, G., V. AGOCHKOV,
Introduction aux Methodes des Elements
Finis, Editions MIR, Moscou, 1985.

7. ODEN, J. T., J.N. REDDY, An
Introduction to the Mathematical
Theory of Finite Elements, John Wiley
and Sons, Inc., 1976.

8. NICOLA, A., C. POPA, Preconditioning
by an extended matrix technique for
convection-diffusion-reaction equations,
to appear in Rev. Roum. d’Analyse
Numer. et Theorie d’Approx.

