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1. Introduction 

We shall consider in this paper the 
(stationary) 2D convection-diffusion-reaction 
problem 
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where 0,0 ≥> δγ  and f  are such that a 
unique solution exists. For 2≥k  a fixed 

integer, we discretized the domain Ω , 

 

 
Figure1. Domain discretization. 
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with 2)12( −= k
kn  uniformly distributed 

grid points and 
kh

2
1

=  the mesh size of the 

discretization (see Figure 1(a) for k=2). We 
discretized the problem (1) by the Finite 
Element Method, using standard piecewise 
linear functions )(k

iϕ  as in Figure 1 (b) (see 

also for details [5, 6]). The kk nn ×  associated 
linear system 

kkk bxA =  (2) 

is nonsymmetric, positive definite, big 
(because the approximation error is of order 

)( 2hO , which means that we need an enough 
big value of k  - and thus of kn , for an 
enough good approximation) and sparse 
(because of the special discretization of the 
problem domain in Figure 1(a) the matrix kA  
has at most 7 nonzero entries on each row). 
From these view points, direct methods are 
not recommended for solving (2). And, 
unfortunately, the ‘’ill-conditioning’’ of the 
system matrix kA  produces a (very) slow 
convergence for classical iterative solvers (as 
e.g. CG; see for details [2, 3, 4]). One way to 
overcome this difficulty is to consider 
preconditioning techniques for (2). Such a 
method will be described in the next section 
of the paper. 

2. The Multilevel Preconditioning 
Method 

The multilevel based preconditioning 
technique that we shall describe in this 
section is based on the results first proposed 
for symmetric elliptic boundary value 
problems by M. Griebel in [3]. In the paper 
[7] we extended them to the general 
nonsymmetric case for (1). In what follows 
we shall use the presentation and notations 
from this paper. The main idea comes from 
the field of multigrid methods (see e.g. [2, 
4]). In this respect, we consider coarser 
discretization levels for Ω , with qn  nodes 

kqn q
q ,,2,1,)12( 2 K=−= . (3) 

For each q , },,{ )()(
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q
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q
q q

B ϕϕ K=  is a basis 

of standard finite element functions, similar 
with )(k

iϕ  from Figure 1(b), but 
corresponding to the discretization level q . 
Let kqVq ,,1, K=  be the vector space 

generated by qB , and kB̂ , km  given by 
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The functions from kB̂  are linearly 

dependent and generate the subspace kV . 

Each function 1
)(

+⊂∈ qq
q

j VVϕ has a unique 

representation as an element of 1+qV , of the 
form (see [2, 5])   
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With the coefficients ijc  from (5) we can 

construct the qq nn ×+1 grid transfer matrices  
1+q

qI  by 

ijij
q
q cI =+ )( 1

 (6) 

and define the qk nn × matrices qS  by 
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Then, the preconditioning kk mn ×  matrix 

kS for the system (2) is given by (in block 
notation) 

1
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in which the right last block is the kk nn ×  
unit matrix. The preconditioned version of 
the system (2) will be defined as  

ˆ ˆˆ ,where ,T TA x b A S A S b S bk k k k k k k k k= = =  (9) 

It results that the kk mm × matrix kÂ is still 
nonsymmetric and  positive semidefinite, but 
singular.  
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Remark 1. The system (9) is compatible, 
with an infinity of solutions. But, for any of 
its solutions kx̂  we can recover the unique 
exact solution from (2) by the formula 

kkk xxS =ˆ . (10) 

In [7] we proved that the generalized spectral 
condition number of kÂ  from (10), defined by  
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ˆ ˆmax{ ,ˆ( )
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is bounded independently on the mesh size 

kh
2
1

= . This allowed us in [7] to efficiently 

solve (9) by the CGLS algorithm from [2]. 
But all these results may become usefull in 
practical applications only with an efficient 
sparse matrix implementation of the 
construction of kS  and kÂ  in (8) and (9). 
This will be described in the next section of 
the paper. 

3. Sparse Matrix Implementa-
tion of the Preconditioning 
Technique 

In the following we shall present the 
construction of the preconditioned linear 
system. In this respect we designed a class of 
subroutines for organizing our problem data 
according to the sparse matrix commands of 
Matlab. The command to store a matrix in a 
Compressed Sparse Row format (CSR) in 
Matlab is S = sparse(i, j, s, m, n, nzmax), 
where i and j are vectors indices which 
provide the positions and s is the vector of 
real entries which contains the stored values. 
Remaining quantities m, n and nzmax are 
scalar values which contain the number of 
rows, columns and maximum values for the 
nonzero entries. Matlab provides sparse 
matrix operations as concatenation, addition 
and matrix-vector multiplication which we 
will use to form the preconditioned matrix. 

Starting from our data, i.e., discretization 
type which yields entries for ijkA )(  and 

ijkb )( and also the structure of the intergrid 

transfer matrices 1+q
qI , we will describe how 

to determine parameters for the above sparse 
matrix command in order to store the 
preconditioned matrix kÂ in CSR format. For 
a better understanding, we shall illustrate the 
presentation with an example in the 1D case 
of the problem (1). In this case, the intergrid 
operators from (8) are created as indicated in 
Figure 2  below.   

 

 

Figure 2. Three levels of discretization. 

The finest level has 7 interior points, the next 
coarse level has 3 interior points and the 
coarsest level has 1 interior point. Thus, the 
structure of the preconditioning matrix kS  
will be the one from Figure 3 below.  
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Figure 3. Structure of the matrix kS for two grids 
in 1D case. 

where the first matrix from the right is the 
identity matrix, next is 7

3I  , and the last 

matrix is 3
1

7
3 II . In the two dimensional case 

the construction of intergrid operators is more 
complex. Again, we will explain the 
construction of  kS  using a particular case 
with three grids for a better understanding. 
Using discretization as in Figure (1), the 
preconditioning matrix kS will be produced 
by repeating  the 9-stencil shape  
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in suitable positions corresponding to the 
discretization from Figure 1(a). We generate 
the matrix transfer operators defined in (6) in 
a recursive fashion and taking in account the 
simplified structure. Let  ia and ja be the 
vectors of indices, that we used to create the 
sparse matrix 1+q

qI  for an arbitrary fixed 

}1,,1{ −∈ kq K , and ma, na its dimensions. 
The following routines generate the vectors 
ia  and ja respectively. 

1. Generating the ia vector.  

for k=1:na 
   iaux = k*ones(1,9); 
   ia(9*(k-1)+1: 9*(k-1)+9) = iaux 
endfor 

where iaux is an auxiliary vector of 9 
components used to fill ia.  

 

2. Generating the ja vector. 

 

 

 
where jaux is the matrix in which we keep the 
values for ja. Furthermore, in the algorithm 
described for the computation of ja we have 
the three component vector vaux which is used 
to generate the the consecutive values in the 
jaux. When we increment the value of t  we 
begin to build the corresponding  ja for 
another matrix transfer operator. Furthermore, 
at this point we are ready to completely put 
together the vectors of indices by, 

for k=1:na, 

       ja(9*(k-1)+1: 9*(k-1)+9)=jac(k,:); 

endfor 

where for the entries of ja we exploit from 
jac each column stored in the previous 
sequence. As an example, in the particular 
case of three grid levels, with the finest one 
with 4949×  mesh points, in the Table 1 
below we present the result provided by the 
two above presented subroutines for the 
intergrid matrix 3

2I of dimensions 949× . 

Table 1. The vectors ia and ja for the 2D 

integrid operator 3
2I of dimensions 949× . 

ia 1 1 1 1 1 1 1 1 1 

ja 1 2 3 8 9 10 15 16 17 

ia 2 2 2 2 2 2 2 2 2 

ja 3 4 5 10 11 12 17 18 19 

ia 3 3 3 3 3 3 3 3 3 

ja 5 6 7 12 13 14 19 20 21 

 

 

 

 

 

 

 

 

 

 

Finally, we are prepared to build the sparse 
matrix from the vector of entries sa which is 
formed using Matlab command repmat, 
which repeats the 9-stencil defined in (12) . 

The sparse matrix mS is build using sparse  
command and then is added to the kS in a 
recursive fashion using the following 
sequence 

mS = sparse(ia,ja,sa,ma,na); 

Sk = [mOld*mS’,Sk]; 

mOld = mOld*mS’; 

t=1; 
for k=1:sna 

vaux=[1+2*(n-1)*sma,2+2*(k-1)*sma,3+2*(k-1)*sma];  
        jaux =[vaux, vaux+sma,vaux+2*sma]; 
       for k1 = 2:sna ;  

                 t = t+ j ; 
                 jac(t, :) = jac(t-1, :)+2 ; 

       endfor 
       t = t+1; 

       endfor  
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4. Numerical Experiments 

The computations were done using a Pentium 
4 at 3Ghz processor, with 2 GB of RAM. In 
our first numerical experiment we have 
measured the time spent to assemble kS in 
the case it was considered as a 
“noncompressed”  matrix and compared this 
with the time spent to construct kS  as a 
sparse matrix for a fixed value nlevel=6 
which yields a matrix of size 39695214×  
(see Table 2). The time spent to form the 
uncompressed matrix kS  is 9.58e+02  
seconds, compared with 4.21e-01seconds 
corresponding to the sparse matrix 
construction. In Table 2 we present for 
different values of nlevel  ( the number of 
multigrid levels used), the size of kS , the 

time (in seconds)  F
St   used to build kS  as a 

noncompressed matrix, and the time (in 
seconds) S

St used to build kS  as a sparse 
matrix. We can see the very big differences 
between the two values F

St  and S
St . 

Moreover, starting from the value nlevel=7 
the matrix  kS  cannot anymore be built as a 
noncompressed matrix in the computer 
memory because it is too large.  

 
Table 2. Times computed for uncompressed ( F

St ) 

and sparse ( S
St ) allocation of kS . 

nlevel Size of kS  F
St  S

St  

3 59x49 7.81e-02 6.25e-02 

4 284x225 2.81e-01 3.21e-02 

5 1245x961 1.38e+01 1.09e-01 

6 5214x3969 9.58e+02 4.21e-01 

7 21343x16129 Out of 
memory 

3.01e+00 

8 86368x65025 Out of 
memory 

2.93e+01 

 

In the second numerical experiment we did 
the same comparisons, but with respect to the 
construction of the preconditioned matrix  

kÂ  from (9). In Table 3  F
At  and S

At  represent 

the time (in seconds) for an “uncompressed” 
construction of  kÂ  and a sparse one, 
respectively. Again we can see the big 
differences between F

At  and S
At . Moreover, 

starting with the value nlevel=7 we were “out 
of memory”, as in the first numerical 
experiment (see Table 2, for the construction 
of kS ). 

 

Table 3. Times computed for uncompressed ( F
At ) 

and sparse ( S
At ) allocation of kÂ . 

nlevel Size of kÂ  F
At  S

At  

3 59x59 1.25e-01 8.25e-02 

4 284x284 3.59e-01 1.21e-01 

5 1245x1245 2.38e+01 4.09e-01 

6 5214x5214 10.64e+02 5.34e-01 

7 21343x21343 Out of 
memory 

3.91e+00 

8 86368x86368 Out of 
memory 

4.12e+01 

With kÂ and kb̂  constructed as before in 
CSR format, we were able to write the CGLS 
code to solve the preconditioned system (9) 
up to the value nlevel=9 (which is enough  
for a good approximation of the solution of 
(1); see for details [7]). The CGLS algorithm 
uses in each iteration computations of type 

zAk
ˆ  or zA T

k
ˆ which were implemented in 

terms of CSR Matlab’s format. 
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