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1. Bayesian Networks and Chain 
Graphs 

Let S and S’ two structures of Bayesian 
Networks (abridged BNs) on V. Then, we say 
that S is equivalent to S’: S Χ S’, if S can 
represent every probability distribution which 
S’ represents and vice versa. 

An essential graph of a structure of BN, S, is 
a PDAG such that their skeleton is the same 
that of S, and the essential edges (and only 
these) are directed. 

Let C be a class of DAGs Markov equivalent 
among them. Then, their essential graph 
would be the smallest graph greater than 
every DAG that belongs to the class. If we 
denote the essential graph as G*, this is 
equivalent to saying G* = ∪ {G: G∈C}, 
where such graph union is reached by the 
union of the nodes and edges of G:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V (G*) = ∪ V (G), E (G*) = ∪ E (G) 

So, G* will be the smallest of upper bound for 
all graphs of the represented class. A Chain 
Graph (denoted CG) is a generalization of both 
classical types: Undirected and Directed 
Graphs, that is, it includes UGs and DAGs, 
being represented by undirected and directed 
edges. Therefore, they are mixed graphs, 
composed by directed and undirected edges.  

Two CGs are Markov Equivalent, if they 
represent the same statistical model.  

2. Some New Algebraic Tools 

Milan Studený introduces an integer valued 
function, on the power set of a finite set, N, 
of integer numbers. It is called Imset (from 
Integer-valued MultiSET), and denoted by u, 
being defined by: 
u:℘(N) → Ζ 
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Given any A, subset of N, that is, 
∀A ∈℘(N), we will introduce the symbol δA 
to denote a particular and useful imset which 
identifies this set, 

 

δA (B) = 

 

Studeny (2001, 2005) ultimately introduce 
two new and usefulness subclasses of 
mathematical objects: 

Structural Imsets (Sl I) and Standard Imset (Sd I) 
Every structural imset defines a collection of 
Conditional Independence (abridged CI) 
restrictions. 

When we need to describe BN models, its 
very convenient to restrict us to a certain 
subclass of structural imsets, the collection of 
Standard Imsets, Sd I. 

Let G a DAG. Then, their Sd I, is given by: 

uG = δN - δ∅  + Σ ( δ pa(G) -  δ a ∪ pa(G) ) 
where pa(G) is the set of parents of the node a.  

Observe the uniqueness of Sl I as 
representative of an equivalence class of BNs 
or CGs, respectively.  

So, we will reach to the subsequent 
characterization of independence equivalence 
between G and H, two CGs or BNs: 

G  ∼  H ⇔  uG   =  uH 

Such result permits to identify, given an 
equivalence class, another CG or BN belongs 
or not to such class. 

A matroid, also called independence 
structure, is an attempt to reach a 
generalization of the known linear 
independence in linear spaces. 

It will be defined as a pair M = (S, I), where 
S is a finite set, and I ⊂ P(S) is a collection of 
subsets of S (named independent sets), being 
P (S) the power set of S. And verifying these 
three properties: 

∅ is independent, that is, ∅ ∈ I (∴ at least 
one subset of S is independent) 
If A ∈ I and B ⊂ A ⇒ B ∈ I (Hereditary 
Property) 
Let A and B be independent sets (A, B ∈ I), 
with c(A) > c(B) 

⇒ ∃ a∈A \ B: B ∪ {a} ∈ I (Augmentation 
Property) 

Being c the cardinal (or number of elements, 
in finite case). 

It result a very useful tool when we need to 
infer probabilistically consequences of input 
information about CI (conditional 
independence) structures. 

3. Final Considerations 
The first algebraic tool (Imset) is being 
developed and applied to more and more 
aspects of LBNs, searching new ways to 
improve their efficiency.  

But in parallel works (and in some cases in 
the same paper), some other constructions are 
being introduced, as the aforementioned 
Graphoids, Semigraphoids,  Pseudographoids 
and Matroids (see, for instance, the classic 
Oxley´s book). An advantage is that classic 
score criteria are linear functions of the 
standard imsets. There exists a relationship 
between both representations, by EGs.  

But it remains some open problems, as the 
adequate characterization of neighbours in 
terms of standard imsets, and many others. 
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1, if B = A 
 
0, otherwise,  
that is,  when B ≠ A 


