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1. Introduction 
This paper explores the feasibility of carrying 
out a modular structured variational data 
assimilation (VDA) using a finite-element 
method of the nonlinear shallow water 
equations model on a limited area domain, in 
which we improve the methodology(Courtier 
and Talagrand 1987; Zhu et al. 1994) and  

 

addresses issues in the development of the 
adjoint of a basic finite-element model. 
Specific numerical difficulties in the adjoint 
derivation, for example, the treatment of the 
adjoint of the iterative process required for 
solving the systems of linear algebraic 
equations resulting from the finite-element 
discretizations using Crank-Nicholson time 
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differencing scheme (see Wang et al. 1972; 
Douglas and Dupont 1970) are explicitly 
addressed. The systems of algebraic linear 
equations resulting from the finite-element 
discretizations of the shallow-water equations 
model were solved by a Gauss-Seidel 
iterative method. To save computer memory, 
a compact storage scheme for the banded and 
sparse global matrices was used (see 
Hinsman, 1975). We emphasize the 
development of the tangent linear (TLM) and 
the adjoint models of the finite-element 
shallow-water equations model and illustrate 
its use on various retrieval cases when the initial 
conditions are served as control variables. 

The plan of this paper is as follows. The finite-
element Galerkin method for the shallow-
water equations model on an f plane, the 
derivation of its tangent linear model and its 
adjoint are briefly described in section 2. The 
full finite element discretizations of the model 
of the nonlinear shallow-water equations 
model is described in section 3. Section 4 
introduces the optimal control methodology 
including the development of the tangent 
linear model and its adjoint as well as 
formulation of the cost functional aimed at 
allowing the derivation of optimal initial 
conditions reconciling model forecast and 
observations in a window of data assimilation 
by minimizing the cost functional measuring 
lack of fit between model forecast and 
observations. Particular attention is paid to the 
development of adjoint of iterative Gauss-
Seidel solver. Verification of the correctness 
of the adjoint is carried out in a detailed 
manner for all stages of the calculations (i.e. 
TLM, adjoint and gradient test). 

Set-up of numerical experiments and the 
experimental design are detailed in Section 5. 
Basic assimilation experiments using a random 
perturbation of the initial conditions as 
observations and their results are presented. 
Particular attention is paid to the effectiveness 
of limited memory Quasi-Newton method L-
BFGS for minimizing the cost functional in 
retrieving optimal initial conditions. 

Various scenarios involving mesh resolution, 
different time steps as well as various lengths of 
the assimilation windows are tested and 
numerical conclusions are drawn. Finally 
Section 6 presents Summary and Conclusions. 
A detailed description of the entire optimal 

control set-up code organization is provided 
and illustrated in Appendix A. 

2. Description of Problems 

2.1 Shallow-Water equations model on 
an f plane 

The shallow-water equations model is one of 
the simplest forms of the equations of motion 
for incompressible fluid for which the depth is 
relatively small compared to the horizontal 
dimensions, which can be applied to describe 
the horizontal structure of an atmosphere. They 
describe the evolution of an incompressible 
fluid in response to gravitational and rotational 
accelerations (See Tan 1992 and Vreugdenhil 
1994 Galewsky 2004). 

The shallow-water equations can be written as: 
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where L and D are the dimensions of a 
rectangular domain of integration, vr  is a 
vector function: 

( )),,(),,,( tyxvtyxuv =
r

 (3) 

where u and v are the velocity components in 
the x and y axis respectively, gh=φ  is the 
geopotential height, h is the depth of the 
fluid and g is the acceleration of gravity. The 
vector k

r
 is the vertical unit vector pointing 

away from the center of the planet. The 
scalar function f is the Coriolis parameter 
defined by the β-plane approximation: 







 −+=

2
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The Coriolis parameter 

θsin2ˆ Ω=f  (5) 
is defined at a mean latitude 0θ , where Ω  is 
the angular velocity of the earth’s rotation 
and θ  is latitude. 

2.2 Initial and boundary conditions 
The shallow-water equations require 
specifying appropriate initial and boundary 
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conditions. An initial condition is imposed as: 

),,()0,,( yxyxw ϕ=  (6) 

where state variables are 
( )),,(),,,(),,( tyxftyxvtyxww r

==  with 
periodic boundary conditions are assumed in 
the x-direction: 

),,,0(),,0( tDwtLw =  (7) 

while solid wall boundary condition in y-
direction is: 

.0),,(),0,( == tDxvtxv rr
 (8) 

The geopotential ),( yxϕ  will be specified 
later in the numerical experiments. 

2.3 Linearization of the Shallow-Water 
equations model 

The linearization of the shallow-water 
equations model (1) - (2) can be written as: 
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where the prime denotes a perturbation 
around the basic state variables. 

The form above can also be written 
explicitly (Jacques Blum, François-Xavier 
Le Dimet, I. Michael Navon 2008) as 
continuous tangent linear model (TLM): 
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and its first order continuous adjoint model with 
weighting forcing terms may be written as: 
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with final conditions equal to zeros: 
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By integrating the first order continuous 
adjoint model reversely in time, the gradient 
of a given cost functional J is obtained by 
the adjoint model solutions as follows: 
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where ),,( ∗∗∗∗ = φvuw  is the first order 
adjoint variable vector, uW , vW , φW  are 
weighting factors which are chosen to be the 
inverse of estimates of the statistical root-
mean-square observational errors on 
geopotential and wind components 
respectively. In our test problem, values of 

44410 smW f
−−=  and 22210 smWW vu

−−==  
are used. 

The operator form of the discretized (9)-(10) 
can be written as (see Navon et al. 1992) 

( ) )0,,('),,(),,(' yxwtyxwtyxw P=   (11) 

where the control variable )0,,( yxw′  is 
the random perturbation variable of the 
initial state variable w(x, y, 0), while 
( )),,( tyxwP  represents the tangent linear 

operator, so that we can obtain the control 
variable ),,( tyxw ′  that contains the 
values of wind fields and geopotential field 
at the final time step. 

Generally speaking, there are two 
approaches which could be employed for 
calculating the gradient of the cost functional 
with respect to the initial conditions of 
shallow water equations. The first approach 
is called continuous adjoint, in which we 
need to differentiate the nonlinear shallow 
water equations model with respect to its 
initial conditions first and then discretize its 
adjoint PDE to compute the approximate 
gradient of the given cost functional. 
Another approach is called discrete 
approach, in which we need to approximate 
the nonlinear PDE by a discretized nonlinear 
system of equations first and then 
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differentiate the discretized nonlinear system 
with respect to the parameters. The discrete 
adjoint approach is easy to implement with 
the help of automatic differentiation tools, 
such as ADIFOR and TAMC. In the 
following sections, we demonstrate the 
methodology of discrete adjoint to carry on 
the VDA. 

3. Discretization of the Shallow-
Water Equations Model  

3.1 Formulation of Galerkin Finite-
Element model 

We employ linear piecewise polynomials on 
triangular elements in the formulation of 
Galerkin Finite-Element model (1) - (2) for 
the sake of of simplicity. Over each given 
element, a variable ξ can be written as (see 
Zienkiewicz 2005) 

∑
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1
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j
jjel yxVtξξ  

where )(tjξ  represents the scalar node value 

of variable jξ  at the node of the triangular 

element, and jV  represents a basis 
function(interpolation function) defined by 
the coordinates of the nodes. 

The advection terms in the continuity 
equation (2) are usually integrated by parts 
using Green’s theorem to shift the derivative 
from the variable to the basis function, which 
yields: 
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defines the inner product when a function is 
multiplied by the trial function Vi. where · 
represents the inner product between two 
real vectors. In Galerkin FEM method, we 
choose the trial function to coincide with the 

test function. Taking into account the 
boundary conditions (see Navon 1979), the 
second term of equation (13) vanishes so that 
we obtain the final expression for the 
continuity equation: 
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Following the Galerkin FEM, the momentum 
equation (1) becomes: 
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Over each element, we denote wind fields 
and geopotential fields 
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where )(tv j
r

 and )(tjφ  are the time-
dependent nodal values of wind fields and 
geopotential fields respectively. 

Upon substituting (17) into (15)-(16), one 
obtains: 
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According to the definition (14), we may 
write (18) explicitly as: 
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We may also write (19) explicitly as: 
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3.2 Time integration 
A time-extrapolated Crank-Nicholson time 
differencing scheme was applied for 
integrating in time the system of ordinary 
differential equations resulting from the 
application of the Galerkin FEM (see Navon 
1979, 1987). The shallow-water equations 
system was then coupled at every time step 
so that the equations become quasi-
linearized (see Wang et al. 1972; Douglas 
and Dupont 1970), since an average is taken 
at time level n1 and time level n of 
expressions, while the nonlinear advective 
terms are linearized by estimating them at 
time level 

2
1

+n  using the following second-

order approximation in time: 
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where the state variables 
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At each time step the shallow-water 
equations system was coupled, i.e. the 
solution of each equation after one iteration 
at a given time step was used to solve the 
other two equations for the same iteration for 
the same time step. 

Upon introducing a finite difference 
discretization in time into the continuity 
equation (20), which is the first to be solved 
at a given time step, one obtains 
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In this continuity equation, we need to use 
Crank-Nicholson to extrapolate ∗u  and ∗v  
at the current time step so that we can 
proceed to solve 1+nφ  at the next time step 

from ( )nvu φ,, ∗∗  . 

By introducing the same finite difference 
scheme into the u-momentum equations (21), 
one obtains: 
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In this u-momentum equation, since we 
already know the most recent solution 1+nφ  
from solving the continuity equation above, 
we only need to extrapolate ∗v  at the current 
time step so that we can proceed to solve 

1+nu  at the next time step from 
( )1,, +∗ nn vu φ . 

Finally, from the v-momentum equation 
(22), one obtains: 
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In this v-momentum equation, since we 
already know the most recent solution for 
both f n+1 and u n+1 at the current time step, 
we don’t need any extrapolations at the 
current time step and we can proceed          
to solve v n+1 at the next time step from 
( )11 ,, ++ nnn vu φ . 

3.3 Gauss-Seidel iterative method for 
the compact matrix of the Galerkin 
finite-element model 

In this Galerkin finite-element model, a 
compact matrix form was adopted due to the 
local support property over the triangle 
mesh. In particular, the N x N global matrix, 
assembled from each small element matrix, 
has at most seven nonzero elements at each 
row of the matrix. Hence, we can store the 
global matrix into a compact matrix of size  
N x 7. (see Zhu, Navon and Zou 1994). 

In order to implement boundary conditions in 
the Galerkin finite-element model, we have 
adopted the approach suggested by Payne and 
Irons (see Payne 1963) and mentioned by 
Huebner (see Huebner1975). This approach 
consists in modifying the diagonal terms of the 
global matrix associated with the nodal 
variables by multiplying them by a large 
number, say 1610  (chosen with a view to the 
significant number of digits possible with the 
given computer and the size of the field 
variables), while the corresponding term in the 
right-hand vector is replaced by the specified 
boundary nodal variable multiplied by the 
same large factor times the corresponding 
diagonal term. This procedure is repeated until 
all prescribed boundary nodal variables have 
been treated (see Navon 1979). variables have 
been treated (see Navon 1979). 

4. Optimal Control of Galerkin 
Finite-Element Model 

4.1 Brief descriptions of Discrete TLM 
and Adjoint Techniques 

The S-W equations model can be written as: 

))(()( t
t
t XFX
=

∂
∂

 (35) 

and the discretized form of the numerical S-
W equations model can be written as: 

0r0 XMX →=)( rt  (36) 

where initial condition 0X  is the control 
variable for the given numerical S-W equations 
model, r0M →  is the predefined discretized 
nonlinear S-W equations model forecast 
operator, mapping the initial condition 0X  into 

the model solution rX  at time rt  

In its general form, the 4D-Var data 
assimilation, is defined as the minimization 
with respect to the initial condition 0X  of 
the following discrete cost functional: 
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subject to the strong constraint, assuming 
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that the model is perfect, so that the 
sequence of model states rX  at time rt  
must be a solution for the given model 
equations, where B is the background 
covariance matrix, rX  is the S-W equations 
model solution at time rt , rO  is the 
observation error covariance matrix at time 

rt , rH  is the observation operator at time 

rt , representing projection of model 
variables into the observational variables. 
Since the )( 0r0 XM →  is a nonlinear 
operator, the 4D-Var data assimilation 
method becomes a nonlinear constrained 
optimization problem, with respected to the 
control variable 0X  and it is very difficult to 
solve. Fortunately, it can be greatly 
simplified with two hypotheses. 

The first hypothesis is the causality, in which 
the forecast model can be expressed as the 
product of intermediate forecast steps, so 
that the nonlinear S-W equations model 
forecast operator r0M →  can be factorized 

into 11 MMM rr L−→ =r0M , where each 
operator rM  denotes the discretized 
nonlinear forecast operator step from time r 1 
to r and we have 1rr XX −= rM . Hence, by 
recurrence, we have 0r XX 11 MMM rr L−= . 

Another hypothesis is that, at each time step 
from both from r-1 to r, we obtain that the 
linearization of observation operator rH  can 
be written as ,rH  and that forecast operator 

rM  can also be linearized so that the the 
predefined discretized nonlinear S-W 
equations model forecast operator can be 
differentiated(perturbed) to obtain a so-
called tangent linear model(TLM) : 

')(' 0r XMtX r=  (38) 

where rM  represents the linearization of the 
discretized nonlinear S-W equations model 
forecast operator. 

4.2 Adjoint of Galerkin Finite-Element 
model 

Under those hypotheses, the quadratic cost 
functional above can be written as a 
summation as: 
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where bJ  and oJ  are the background and 
observation terms respectively. 

In order to obtain the optimal initial 
conditions of shallow water equations model 
that minimizes J above, the gradient of J 
needs to be calculated with respect to the 
control variable 0X  as: 

ob JJJ ∇+∇=∇  (40) 

where the first term bJ∇  can be easily 
obtained as: 

( )b
1 XXB −=∇ −bJ  (41) 

and the second term oJ∇  requires the 
adjoint model integration which shall be 
briefly derived as follows: 

On the one hand, consider the change in the 
cost functional J resulting from a small 
perturbation '

0X  in the initial condition , 
which can be written as: 
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On the other hand, to first order we can write 
the Taylor expansion of J as: 

( )( ) ( )( ) ( ).
2

'
0

'
0 00 XXXX oJJ Too +∇=  (43) 

Furthermore, we are capable to find the gradient 
of the cost function by using the adjoint of the 
Tangent Linear Model of the given nonlinear 
time-dependent discrete Galerkin FEM model 
(see Navon et al. 1992). 

By comparing (41) (42) (43) together, we obtain 

( ) ( )

( )rrr
1

r
T
r

T
r

b
1

YXHOHM

XXBX

−+

−=∇

−

=

−

∑ )(
0

0
n

r

J
, (44) 

where T
rM  represents the adjoint of model 

at the thr  time step while the weighted 
differences ( )rrr

1
r

T
r YXHOH −− )(  are 

forcing terms which can either be added to 
the adjoint variables whenever an 
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observational time is reached or can be 
initialized at the initial time stage if they are 
available at that time. 

The basic techniques in coding the adjoint 
model above involves:  

• Reset some temporary variables to zeros 
when using them in different statements;  

• Saving and loading the state variables 
calculated in the forward model;  

• Identifying the reused adjoint control 
variables in all the subroutines; 

- Reset the accumulations of reused 
adjoint variables to zeros when one 
period of accumulation is finished;  

- Finish the accumulations of reused adjoint 
variables only when calculating backwards 
into its first use;  

• Handle the adjoint of iterative solver 
such as Gauss-Seidel;  

• Handle the adjoint of boundary 
conditions;  

• Identifying the inputs and outputs of 
each subroutine and the whole program;  

• Make adjoint subroutines and parameters 
generic so that they can be reused for 
different adjoint variables without 
rewriting them over and over again.  

4.2.1. Adjoint of iterative solver 

The challenging part in the development of 
adjoint for nonlinear time-dependent discrete 
Galerkin Finite-Element model consists in the 
treatment of the Gauss-Seidel iterative 
procedure to solve the continuity equation 
systems and u-momentum equation systems as 
well as v-momentum linear systems, because 
some of the control variables to be solved at 
the current iteration level are reused while 
some are not (see Zhu, Navon and Zou 1994). 

The key issues related to developing the 
adjoint of Gauss-Seidel iterative procedure 
are as follows: 

We need to record the maximum number of 
the iterations when we integrate the nonlinear 
model forward in time, then, in order to obtain 
the adjoint of the Gauss-Seidel iterative 
procedure, the relationship of being reused 
among all the control variables must be 
analyzed. Finally, since the piecewise linear 
triangular Galerkin Finite-Element model has a 

local support of at most six nodes, while the 
minimum number of nodes is four when the 
node is on the boundary. Hence, the variable 
value at any given node inner or boundary is 
related to no more than six neighboring nodes 
surrounding it, and sometimes they are input 
variables and sometimes they are output 
variables. We are only concerned with the 
input variables when we speak about the 
reused variables, in other words, some of input 
variables in the iterative procedure are reused 
while other input variables are not, depending 
on the position in the grid as well as level of 
the iterations itself. 

In addition, some control variables are firstly 
used in the setup of the continuity system and it 
will be used later twice in the setup of the u-
momentum system. When dealing with 
situation to reuse adjoint variables in the 
adjoint code, we need to save the accumulated 
reused adjoint variables when calculating 
backwards into its first use. In other words, 
when we write the adjoint code, we need 
restore all the following accumulations into its 
first use when we finish the accumulation of 
reused adjoint variables. 

4.3 Verification of correctness of the 
TLM and adjoint 

The space increments used in this section are 
kmyx 200=∆=∆ , while in the section 5, we 

will adopt kmyx 400=∆=∆  for convenience. 

4.3.1. TLM test 

Prior to checking the correctness of the adjoint 
model, we need to check the correctness of the 
discrete TLM (Figure 1). One idea is to 
consider a state vector X and a perturbation X' 
so that we can use Taylor expansion to verify 
the correlation between nonlinear Galerkin 
FEM and its corresponding TLM: 

( ) ),(1
)'(

)(')( α
α
αψ Oa +=

−+
=

XP
XGXXG  (45) 

where G denotes the nonlinear Galerkin FEM 
and P represents its TLM operator, α  defines 
the perturbation factor. Both the nonlinear 
Galerkin FEM and its TLM are integrated for a 
5-hours period with various α  values 
decreasing, and the results show that the 
correlation between Nonlinear Galerkin FEM 
model and its TLM is almost equal to one as 
α  tends to zero. 
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Therefore, if the TLM test can be correct, we 
only need to code the adjoint model directly from 
the discrete TLM by rewriting the code of TLM 
statement by statement in the opposite direction. 
This simplifies not only the complexity of 
constructing the adjoint model but also avoids the 
inconsistency generally arising from the 
derivation of the adjoint equations in analytic 
form followed by the discrete approximation(due 
to non-commutativity of discretization and 
adjoint operators). 

 
Figure 1. Correlation between Nonlinear 

Galerkin FEM model and its TLM, where α  
defines the perturbation factor 

In addition, we also use an alternative idea to test 
the TLM (and thus the adjoint). It’s called the 
complex-step derivative approximation. It is 
reasonably straightforward to implement, and it 
requires only slight modifications in the forward 
model code. The feature of this method is that it 
can avoid some cancellations in the finite 
difference calculation that will result in the loss of 
digit accuracy (see Martins 2003). 
4.3.2. Transpose test 

The correctness of the adjoint model checked by 
following the algebraic expression: 

( ) ( ) ( )( )PXPXPXPX TTT = , (46) 

where X represents the perturbation of input of 
the Galerkin FEM model, while the TLM 
denoted by P represents either a single DO loop 
or a subroutine. Each of them has its adjoint 
image DO loop or a subroutine, respectively. The 
left hand side involves only the tangent linear 
code, while the right hand side involves also the 
adjoint code. When we implement it, we first run 
the TLM code and use the output vector as the 
input vector of the adjoint calculation. There are 

some issues where we need to be careful, when 
running the test. First, we need to make sure all 
the state variables have been saved when we 
integrate TLM forward and restored or loaded 
when we integrate its adjoint backward. Second, 
we may need to run the different inputs to make 
sure we go through a rigorous check of the 
adjoint code into each single part of it. Finally, 
the results obtained illustrated that a 13 digits 
accuracy can be achieved in the input/output tests 
by using DOUBLE PRECISION. 
4.3.3. Gradient test 

We also tested the accuracy of the gradient of the 
cost function by using the so-called α  test as 
follows (Figure 2):  

( )
( ) ( )

)(1)(')( α
α

αα O
JJ
JJF T +=
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−+

=
XXX

   (47) 

and the results show that the vector we obtained 
from the adjoint model is almost equal to the 
gradient as α  decreasingly tends to zero, if α  is 
not too close to the machine accuracy(see Navon 
1992).  
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Figure 2. Gradient Test: (a) variation of F(α) 
with respect to log α and (b) variation of 
( )1)(log −αF  with respect to log α, where α 

defines the perturbation factor 
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5. Numerical Experiments 
5.1 Description of problem 
The test problem used here adopts the initial 
conditions (Figure 3) from the initial height 
field condition No.1 of Grammeltvedt (see 
Grammeltvedt 1969): 
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where this initial condition has energy in wave 
number one in the x-direction. 

The initial velocity fields were derived from 
the initial height field using the geostrophic 
relationship: 
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The dimensional constants used here are: 
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and the space increments used here are 

kmyx 400=∆=∆  (51) 
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Figure 3. Initial condition:(a) Geopotential field for the Grammeltvedt initial condition. (b) 
Wind field calculated from the geopotential field by the geostrophic approximation. 
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Figure 4. 5% random perturbation of geopotential and as well as the wind fields of the 
shallow-water equations model 
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5.2. Perturbation of initial conditions 

We applied a 5% uniform random perturbations 
(Figure 4) on the initial conditions in order to 
provide twin-experiment “observations” and we 
also computed the errors between the retrieved 
initial conditions related to the perturbed data 
and the reference state variables. 

5.3 Retrieving the optimal initial 
conditions by applying  

L-BFGS 

The accuracy of a short-range numerical 
weather prediction greatly depends on the 
initial and boundary conditions. The following 
experiments illustrate the technology to retrieve 
the optimal initial condition from a noisy initial 
conditions. First, we randomly perturb the 
initial conditions to generate the so-called 
observations at each time step. Second, we 
generate another rondom perturbations of the 
initial conditions to obtain a initial guess of the 
initial conditions in the optimization. In this 
paper, we tried limited quasi-Newton method of 
Liu and Nocedal (1980,1989) and Richard and 
Nocedal (1995) to minimize the misfit between 
model solutions and artificial observations. The 
code is written in FORTRAN90 modularized 
with the control variables allocatable, so that 
any different mesh size can be tested in this 
code with a high accuracy. We also tested the 
different time steps as well as different data 
assimilation windows. The control variables are 
all defined as DOUBLE PRECISION so that a 
very high accuracy of approximation of the 
gradient of the cost functional with respect to 
the initial conditions can be achieved. In L-
BFGS, we setup the number seven as the 
number of corrections (M=7) (See Liu and 
Nocedal 1989). 

5.3.1. Testing different observations 

The first experiment (Figure 5 and Figure 6) is 
performed on a short assimilation window for 
12 hours with a small mesh size consisting of 
15 x 15 grid points and we use a unconstrained 
minimization algorithm L-BFGS to minimize 
the cost functional. The adjoint model is 
integrated backward in time, with a forcing 
term being added, consisting of the difference 
between forecast and observation, interpolated 
at the same time and space location every time 

when an observation is encountered. We found 
out (Table 1) if we use 5% perturbation for both 
observations and initial guess, the L-BFGS 
converges in 31 iterations with 108 function 
evaluations to converge to prescribed tolerance 

1110−=ε  (Figure 7), but if we use 1% random 
perturbations, it will only take 28 iterations with 
99 function evaluations to converge, which 
means both good observations and good initial 
guess will reduce the assimilation time required. 

Table 1. L-BFGS: Data assimilation window = 
12h, kmyx 400=∆=∆ , t∆  = 1800s, and 

minimization convergence tolerance. 

Random 
perturbations 

Iterations Function 
evaluations 

5% 31 108 
1% 28 99 

Furthermore, if we extend the assimilation 
window from 12 hours to 48 hours, the L-
BFGS minimization fails to achieve the 
prescribed tolerance no matter how accurate the 
observations and initial guess we choose for the 
optimization algorithms. If the mesh size is too 
coarse, say 5 x 5 grid points, even if we use 12 
hours assimilation window, we will still fail to 
converge by using L-BFGS, which means 
either a too large assimilation window or a too 
small mesh size will affect the ability of the L-
BFGS algorithm to converge to achieve the 
prescribed tolerance. 

5.3.2. Testing different mesh resolutions 

By increasing the mesh resolution from 15 x 15 
to 30 x 30 (Figure 8) and still using L-BFGS, 
we found out that we can achieve a stricter 
tolerance 1610 −=ε , although it requires more 
iterations and function evaluations to converge 
(Table 2). Hence, it can be observed that the 
rate of the convergence of the cost functional 
associated with the coarse mesh is faster than 
the rate of convergence corresponding to the 
fine-resolution models, however, the value of 
the cost functional associated with the fine 
mesh can be reduced to achieve a higher level 
of tolerance that is by five orders of magnitude 
better than minimization of the cost functional 
achieved for the coarse mesh. 
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Table 2. Results of using L-BFGS: data 
assimilation window = 12h, kmyx 200=∆=∆ , 

mesh resolution= 30 x 30, t∆ = 1800s, and 
minimization convergence tolerance 1610−=ε  

Random 
perturbations 

Iterations Function 
evaluations 

5% 42 162 
1% 38 149 

 

5.3.3. Testing different time steps 

By decreasing the time length from 1800s to 
900s while keeping an identical data 
assimilation window of 12 hours, which 
requires more time steps, we can achieve a 
convergence of minimization with tolerance 

1510−=ε  by using a coarse mesh size=15x15, 
which is beneficial especially when there are 
not enough observations of a fine mesh in space 
available everywhere but we could have the 
ability to measure them for every short time 
step length, we may still retrieve a very high 
accuracy of optimal initial conditions by 
shrinking each time step length and expanding 
number of data assimilation steps (Table 3). 

 

Table 3. Results of using L-BFGS: data assimilation 
window = 12h, kmyx 400=∆=∆ , random 

perturbations = 5%, t∆ = 900s, and tolerance of 
convergence of minimization is 1510−=ε . 

mesh size Iterations Function 
evaluations 

15 x 15 28 97 
30 x 30 35 140 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This can also be explained by noting that the 
results from the fine mesh integrated contain more 
small-scale features than the corresponding ones 
from the coarse mesh integrated, and the 
dimension of the control variables also impacts 
upon the convergence rate so that the retrieval 
with fine-mesh model data becomes more 
difficult. The presence of small-scale features in 
an increase in the condition number of the Hessian 
of the cost function of the fine-mesh resolution 
model due to the introduction of small 
eigenvalues in the spectrum of the Hessian(see 
Axellson and Barker 1984). This situation 
becomes more apparent when the data 
assimilation is carried after a long time window of 
assimilation allowing reflections from limited 
boundaries thus causing short wave number noisy 
contaminations.
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Figure 5. Data assimilation window = 12h, kmyx 400=∆=∆ , random perturbation = 5%. 

The contours of difference between retrieved initial geopotential and true initial 
geopotential are plotted. 
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(b) The contour of difference between retrieved initial v-momentum and true initial           

v-momentum 
 

Figure 6. Data assimilation window = 12h, kmyx 400=∆=∆ , random perturbation = 5%, (a) The 
contours of difference between retrieved initial u-momentum and true initial u-momentum from -

0.5 to 0.5 by 0.2 are displayed. (b) The contours of difference between retrieved initial v-
momentum and true initial v-momentum from -0.3 to 0.3 by 0.05 are also displayed. 
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Figure 7. L-BFGS minimization: Data assimilation window = 12h, kmyx 400=∆=∆ , mesh 
resolution= 15 x 15, random perturbation = 5%, (a) Normalized cost function scaled by initial cost 

function versus the number of minimization iterations (b) The norm of gradient scaled by initial 
norm of the gradient versus the number of minimization iterations. 
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Figure 8. L-BFGS minimization: Data assimilation window = 12h, Mesh resolution = 30 x 30, 

random perturbations = 5%, (a) Normalized cost function scaled by initial cost function versus the 
number of minimization iterations.(b) The norm of gradient scaled by initial norm of the gradient 

versus the number of minimization iterations 
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6. Summary and Conclusions 

In this paper, we developed a modularized 
code written in FORTRAN90 to present a 
VDA scheme using Galerkin FEM and its 
adjoint to generate minimization algorithms 
used to minimize cost functional so as to 
yield optimal initial conditions using model 
forecast with observations. The challenging 
part in this paper is how to handle the reused 
variables especially in constructing the 
adjoint of Gauss-Seidel iterative procedure 
for the Finite-Element Shallow-Water 
equations model over a limited area domain. 

The large-scale unconstrained minimization 
limited-memory quasi-Newton method written 
by Liu and Nocedal (1989) was used to 
minimize the cost functional consisting of 
difference between model solutions and 
observations over the large assimilation window. 
We used the full random perturbation of the No. 
1 of Grammeltvedt initial conditions (1969) to 
generate the observations and initial guess of the 
true initial conditions. We then carried the VDA 
numerical experiments using the adjoint model 
to assimilate the noisy observations. 

The minimization of the cost functional was 
able to retrieve the true initial conditions 
when a coarse mesh size was employed. We 
also found out that the more accurate the 
observations as well as the initial guess of the 
initial conditions, the faster the rate of 
convergence of the minimization of the cost 
functional and the more accurate was the 
retrieval of the true initial conditions. 

However, when carrying the L-BFGS to 
implement the VDA, it took a very long time 
to converge when applied to a very fine mesh 
and it failed to converge when a coarse mesh 
was employed. When we employed a coarse 
mesh in the model while using L-BFGS 
minimization and when observations were 
inserted frequently while shorter time steps 
were employed, we obtained similar accuracy 
results as in the case of fine mesh retrieval of 
the optimal initial conditions. 

As we extended the length of the time 
window of the data assimilation of the 
forecast model, we impacted on the validity 
of the TLM model assumption and it became 
more and more difficult to employ the VDA 
scheme, since both effects of nonlinearity as 
well as limited area boundary conditions 
reflections impacted on the data assimilation 
procedure. To retrieve a high accuracy of 
optimal initial conditions, a fine mesh size is 
therefore required. 

 

7. Appendix 

7.1 Code organization 

The nonlinear Galerkin FEM Model, TLM test 
(Figure 9), transpose test (Input/Output test), 
Gradient Test, and L-BFGS optimization were 
all written by a modularized FORTRAN90 
language. In the graphs as follows, we only 
show the modularized Galerkin FEM code as 
well as the modularized L-BFGS optimization 
code flowchart. 

In nonlinear Galerkin FEM model (Figure 10), 
four different modules are written as Mesh, 
Assemble Matrix, Nonlinear Forward Model, 
and solver. For example, in Module Mesh, we 
encapsulated a large amount of information 
such as the mesh size, the local and global 
element, compact local support, the area of each 
element, the coordinate and derivative of each 
node, and special geometries of the boundary 
structure. 

In the graph of modularized L-BFGS 
optimization flowchart (Figure 11), we 
encapsulated the nonlinear Galerkin FEM 
model as well as its corresponding adjoint 
model. In the calls graph of L-BFGS 
implementation (Figure 12), we briefly list the 
function calls and subroutine calls to each other 
within each of the relevant modules. 
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Figure 9. Flowchart of the Test of Tangent Linear Galerkin Finite-Element Model 
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Figure 10. Modularized Galerkin FEM code organization 
 

 
 

Figure 11. Modularized L-BFGS VDA code organization 
 



 Studies in Informatics and Control, Vol. 18, No. 1, March 2009 60 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 12. Calls graph of L-BFGS implementation 
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