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1. Introduction 

The original Markowitz model of portfolio 
selection has received a widespread 
theoretical acceptance and it has been the 
basis for various portfolio selection 
techniques. The model is known in the 
literature also, as the mean-variance portfolio 
selection model. Generally, in the classical 
mean-variance portfolio selection approach 
several realistic features are not taken into 
account.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Among these ”forgotten” aspects, one of 
particular interest is the not infinite 
divisibility of the financial asset to select, i.e. 
the obligation to buy/sell only integer 
quantities of asset lots which contain a 
predetermined number of shares.  

The portfolio selection problems with 
discrete constraints (such as buy-in 
thresholds, cardinality constraints and 
transaction roundlot restrictions) were studied 
in the literature mainly in the last decade. 
Integer programming approaches in the 
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mean-risk models were studied in [3]-[14], 
[16], [17]. Mansini and Speranza in [9] 
consider the constraint stating that assets can 
be traded only in indivisible lots of fixed size. 
In this case, the problem is formulated in 
terms of integer-valued variables — as 
opposed to real-valued ones — that represent, 
for each asset, the number of purchased lots, 
instead of the real-valued ones. 

Given that assets are normally composed by 
units, this constraint is certainly meaningful; 
its practical importance however depends on 
the ratio between the size of the minimum 
trading lots and the size of the shares 
involved in the portfolio. In [4] Corazza and 
Favaretto study the existence problem for the 
solutions of a discrete mean–variance 
portfolio selection model.  

Mansini and Speranza in [10] consider a 
single-period mean-safety portfolio selection 
problem with transaction costs and integer 
constraints on the quantities selected for the 
securities (rounds). They propose an exact 
approach based on the partition of the initial 
problem into two sub-problems and the use of 
a simple local search heuristic to obtain an 
initial solution. 

In [6], [9], [11] and [17] are presented 
heuristic algorithms for the portfolio selection 
problem with minimum transaction lots. 

In [3] is presented an approach of the mean-
variance portfolio selection with the 
nonlinear mixed-integer programming. The 
authors proposed an algorithm (which is 
based on the proposed conditions) for finding 
a “good” feasible solution and proved its 
convergence.  

In [8] the classic mean-variance framework is 
extend to a broad class of investment 
decisions under risk where investors select 
optimal portfolios of risky assets that include 
perfectly divisible as well as perfectly 
indivisible assets. The author develops an 
algorithm for solving the associated mixed-
integer nonlinear program and report on the 
results of a computational study. 

In [5] are examined the effects of applying 
buy-in thresholds, cardinality constraints and 
transaction roundlot restrictions to the 
portfolio selection problem. Such discrete 
constraints are of practical importance but 
make the efficient frontier discontinuous. The 

resulting quadratic mixed-integer (QMIP) 
problems are NP-hard and therefore 
computing the entire efficient frontier is 
computationally challenging. The authors 
proposed alternative approaches for 
computing this frontier and provided insight 
into its discontinuous structure. 

A fundamental question in the mathematical 
finance is how risk should be measured 
properly. The mean-variance models behave 
well in the case when the distribution of the 
random vector of returns is close to a 
multivariate normal distribution, and not so 
well in other cases. An important problem is 
to build portfolio selection models based on 
risk measures that capture risk adequately. In 
1952, Roy [15] suggested that investors are 
interested in selecting a portfolio so as to 
maximize the probability of achieving at least 
a given return. The idea is that if return falls 
below the threshold there will be some bad 
consequence. This model of investor 
behavior is called safety-first. Drawing the 
efficient frontier in standard deviation - 
expected return space, the portfolio which 
maximizes the probability of realized return 
being greater than the threshold, can be found 
by identifying the straight line passing 
through the expected return axis at the 
threshold that is tangent to efficient frontier. 
The portfolio at the point of tangency is the 
desired portfolio.  

The development of the theory of stochastic 
dominance had stimulated the research for 
asymmetric risk measures (downside risk 
measures) like: shortfall probability, 
expectations of loss, semi-variance and lower 
partial moments. An important class of risk 
measures considered in the literature is the 
coherent risk measures [1], [14]. 

A new tool for financial analysis is the 
Omega function [2]. If X is a random variable 
denote by XF  the cumulative distribution 
function of X. The Omega function associated 
to X and to the interval [ ]ba, is defined as 
follows: 

( )
( )( )
( )

1
b

F x dxXrr rX
F x dxXa

−∫
Ω =

∫
, [ ]bar ,∈  

The Omega function has the advantage that 
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incorporates all the information of the returns. 
The evolution of the Omega function over the 
time provides a complete picture of 
performance and risk. 

In order to consider the discrete feature, we 
build several linear integer programming 
problems. The present paper continues the 
ideas from [13]. The risk measure considered 
in this paper is the lower partial moment of 
the first order. We propose a formulation of 
this problem in terms of quantities, i.e. 
integer numbers of asset lots to buy, instead 
of starting capital percentages to invest. We 
give necessary and sufficient conditions for 
the existence of feasible solution(s) with a 
sequence of steps to be followed by the 
investor when he wants to make investment 
decisions in the presence of minimum 
transaction lots. A numerical example 
illustrating the previous points is presented.  

2. Mean-risk Models with 
Minimum Lot Constraints 

Denote by ih  the price for the minimum lot 
of asset i. In case that there are no minimum 
lots, then ih  is the price of a share of asset  i . 
The integer variable ix  represents the 
number of the minimum lots for the asset  i. 
Let a particular portfolio be defined by a 
vector nT

nx,...,x,xx Z∈= )( 21   where the 
integer variable ix  represents the number of 
the minimum lots invested in the asset i. 

Let the assets returns be represented by a 
vector of random variables 

T
n ),...,,( 21 ξξξ=ξ with means 
T

n ),...,,( 21 µµµµ = . Denote H=diag(h), that 
is H is the diagonal matrix whose diagonal is 
equal to vector h. Consider the vector 
d= ( )Tnddd ,,, 21 K , iii hd µ=  for all 

ni ≤≤1 . Denote iii xhx = , ni ≤≤1  and 

consider the vector ( )T
nx,,x,xx K21= .  

Then ix  is the sum invested by the investor 
in asset i.  

Denote by +t  the positive part of the real 
number t, that is:  

( )max , 0
2

t t
t t

+
= =+ .  

The risk of the investment in portfolio x with 
respect the target τ  is defined as the lower 
partial moment of the first order of the return 

xξT , that is ( ) ( )[ ]+τ −τ= xξx TLPM E . 
Note that the average return is 
( ) xdxµxξ TTTE == .  Let W be the 

minimum level of the expected return desired 
by the investor and M1 and M2  be the upper 
and lower bounds for the investment  sum. 

Then the purpose of the minimum risk 
portfolio selection problem with minimum lot 
constraints is to find that value of x that will  

 

( )Tminimize
( )1 T T, ,  and   01 2

E
P

nM M W

τ ξ−
+

≤ ≤ ≥ ∈ ≥

     


x

h x d x x Z x
 

The purpose of the maximum return portfolio 
selection problem with minimum lot 
constraints is to find that value of x that will 

( )
Tmaximize ( )

( )2 T T, ,  and   01 2
P nM M E rτ ξ≤ ≤ − ≤ ∈ ≥

+



     

d x

h x x x Z x
 

Here r is an upper bound for the risk accepted 
by the investor. 

In case the risk aversion of the investor is 
taken into account then we can formulate the 
trade-off mean-risk portfolio selection 
problem: 

( )3P ( ) ( )Tminimize ( 1 )

T ,  and   01 2

TE

nM M

θ τ ξ θ− − −
+

≤ ≤ ∈ ≥

     


x d x

h x x Z x

 

Here [ ]10,∈θ  is the coefficient of risk 
aversion. The case when θ  takes small 
values corresponds to a risk-avoiding investor 
who is more worried about below average 
returns than attracted by the above average 
gains. The case when θ  takes great values 
corresponds to a risk-loving investor who is 
more attracted about above-average gains 
than deterred by below-average returns. By 
varying θ   from 0 to 1 all efficient portfolios 
can be determined. 
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In the problems (P
1
), (P

2
) and (P

3
) the 

restriction 0≥x  can be replaced with the 
more realistic restriction ax ≤≤0 . The 
upper bounding constraints exist for legal, 
personal or institutional reasons. Some 
components of the vector a may be infinite. 

Suppose a previous history of asset returns is 
available at several moments of time 
t=1,2,...,m.  

Consider a time horizon composed of several 
moments t = 1,2,…,m. Denote by ( )tir=R  
the nm ×  matrix of historical rates of 
returns of the assets. tir  is the rate of return at 
moment t for asset i. Consider the matrix  

( )tir=R , HRR = . Note that ititi hrr =   

for every { }mt ,,2,1 K∈ , { }ni ,,2,1 K∈ . In 
the following we shall use the following 
estimates: 

m

r
c

m

t
ti

i

∑
== 1  is an estimation for the expected 

return iµ of asset i, 

m

hr
m

t
iti∑

=1    is an estimation for the entry id  of 

the vector d, 

m

xhr
m

t

n

i
iiti∑∑

= =1 1  is an estimation for the 

expected return ( )xξTE  of the portfolio x 

+= =
∑ ∑ 








−τ

m

t

n

i
iti xr

m 1 1

1
 is an estimation for 

the risk ( )[ ]+ξ−τ xTE  of the portfolio x  

Denote ( )nccc ,...,, 21=c . Taking into 
account the above estimations we shall 
associate to the models (P

1
), (P

2
) and (P

3
) the 

following models: 

1
minimize

1 1( )1
T T, ,  and   01 2

m n
r xti it imP

nM M W

τ −∑ ∑
= =′ +

≤ ≤ ≥ ∈ ≥

  
   

 h x d x x Z x

 

Tmaximize ( )
T ,1 2

( )2 1
,

1 1

 and   0

M M
P m n

r x rti it im
n

τ

≤ ≤
′

− ≤∑ ∑
= = +

∈ ≥




     


d x

h x

x Z x

 

( )3P′ ( ) 1
minimize ( 1 )

1 1
T ,  and   01 2

m n Tr xti it im
nM M

θ τ θ− − −∑ ∑
= = +

≤ ≤ ∈ ≥

  
   



d x

h x x Z x

 

In order to show that the above models are 
equivalent to mixed-integer linear models we 
need the following lemma. 

Lemma. Let τ  be a real number, K be a 
nonempty set and R→Kfi : , i = 
1,2,3,…,n  be a set of n functions. Denote: 

( ) ( ) ( ){ , :nL x K f xiτ τ= ∈ × − ≤+y R

( )}, 1 , 2 , . . . , , , , . . . ,1 2y i n y y yi n= =y  

Consider the problems:  

( )1Q    ( )( )








∈−τ∑
=

+

n

i
i Kxxf

1
:min  

( )2Q    ( ) ( )








τ∈∑
=

n

i
i Lxy

1
,:min y  

and their optimal values 

( ) ( )( )








∈−τ=τ ∑
=

+

n

i
i Kxxfl

1
1 :min  and 

( ) ( ) ( )








τ∈=τ ∑
=

n

i
i Lxyl

1
2 ,:min y . 

Suppose that there exist Kx ∈0  and 
( ) ( )τ∈ Lx 11 , y  such that 

( ) ( )( )∑
=

+−τ=τ
n

i
i xfl

1
01 and ( ) ∑

=

=τ
n

i
iyl

1
12  

where ( )nyyy 112111 ,...,,=y . 

Then the two problems ( )1Q  and ( )2Q  are 
equivalent, that is 

( ) ( ) ( )( )∑
=

+−τ=τ=τ
n

i
i xfll

1
121 . 

Proof. Let ( )( )+−τ= 00 xfy ii , i = 1,2,…,n  
and ( )nyyy 002010 ,...,,=y . Note that 
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( ) ( )τ∈ Lx 00 , y , hence 

( ) ( )τ=≤τ ∑
=

1
1

02 lyl
n

i
i . From 

( ) ( )( ) ( )( ) ( )τ=≤−τ≤−τ=τ ∑∑∑
==

+
=

+ 2
1

1
1

1
1

01 lyxfxfl
n

i
i

n

i
i

n

i
i  

The conclusion of the lemma follows. 

From the above lemma it follows that the 
models )(and)(,)( 321 PPP ′′′  are equivalent to 
the following mixed-integer linear models: 

1
minimize

1

, 1, 2, ,( )1 1
T T, ,1 2
,  and   , 0

m
yttm

n
r x y t mtP ti ii

M M W
n m

τ

∑
=

− ≤ =∑′′ =

≤ ≤ ≥

∈ ∈ ≥










h x d x

x Z y R x y

K  

Tmaximize ( )

, 1, 2, ,
1

T( ) ,2 1 2
1

,
1

,  and   , 0

n
r x y t mtti ii

P M M

m
y rttm

n m

τ − ≤ =∑
=

′′ ≤ ≤

≤∑
=

∈ ∈ ≥











d x

h x

x Z y R x y

K

 

( )3P ′′

( ) 1
minimize 1

1

, 1, 2, ,
1

T ,1 2
,  and   , 0

m Tyttm
n

r x y t mtti ii

M M
n m

θ θ

τ

− −∑
=

− ≤ =∑
=

≤ ≤

∈ ∈ ≥

  
   







d x

h x

x Z y R x y

K  

3. The Structure of the 
Investment Process for the 
Minimum Risk Model  

The structure of the investment process is 
presented in the following. 

Step 1. The investor chooses a set S of assets 
where he intends to invest his money and a 
sum of money M2 to be invested in the assets. 

Step 2.  The investor gathers information 
(historical data) from the stock market and 
forecasts from financial experts about the 

chosen set of assets. As a result he obtains a 
matrix ( )tir=R  where tir  is the rate of 
return at moment t for asset i. He finds also 
the vector h of minimum transaction lots of 
the assets from S. 

Step 3. Starting from the matrix R and taking 
into account some statistical hypotheses about 
the returns vector, the investor computes 
estimates for the vector µ  of mean returns. 

Step 4. Starting from M2 the investor 
computes  

{ }max : , , 00 2
T T nM M= ≤ ∈ ≥h x h x x Z x  

Step 5.  The investor chooses a lower bound 
M1 for the sum xhT  invested in the assets 
from S in the range [ ]00 M, . 

Step 6. The investor computes  

{ }min : , , 01 1 2
T T nW M M= ≤ ≤ ∈ ≥d x h x x Z x

{ }max : , , 02 1 2
T T nW M M= ≤ ≤ ∈ ≥d x h x x Z x

Step 7.  The investor compares 2W , that is 
the greatest mean rate of return to the risk-
less rate of return and makes a decision. 

In case he decides not to make an investment 
in the assets from S then he returns at step 1. 
and chooses another set of assets S’. 

In case he decides to make an investment in 
the assets from S then he goes to the next step. 

Step 8. The investor chooses a lower bound 
W, for the return of his investment, in the 
range [ ]21 W,W . 

Step 9. The investor computes  

1 1 2
1

min : 1,2, , , ,
n

T
ti i

i
r x t m M Mτ

=


= = ≤ ≤


∑ h xK

       }T ,  and   0nW≥ ∈ ≥d x x Z x  

{max : 1,2, , , ,2 1 21

n Tr x t m M Mti ii
τ = = ≤ ≤∑

=
h xK  

       }T ,  and   0nW≥ ∈ ≥d x x Z x  

and chooses τ  in the range [ ]21 , ττ . 

Step 10. The investor solves model ( 1P ′′ ) and 



 

 Studies in Informatics and Control, Vol. 18, No. 1, March 2009 68 

find an optimal portfolio ∗x . In case the 
investor wants to continue his research he can 
start again from step 1. If this is not the case 
then the investor stops. 

Numerical Results  

In the following we shall illustrate how the 
minimum risk model works. We shall 
consider n = 7 assets and m = 8 moments of 
time (the years 2000,2001,…,2007). Take 

=2M 1000000 euros. The entries of the 
matrix  R= ( )tir  of historical rates of return 
are displayed in table 1. 

 

 

 

The prices of the minimum lot of assets, that 
is the components of the vector h, are 

101 =h  euros, 72 =h euros, 53 =h  
euros, 24 =h  euros, 125 =h  euros, 

46 =h  euros, 137 =h  euros. 

One can easily see that 0M = 1000000 euros. 

The investor chooses 1M =500000 and 
computes the range for the parameter W. He 
finds 1W =124380 euros and 2W =450000 
euros. Then the investor chooses W=230000 
euros and computes the range for the 
parameter τ . He finds 1τ = 92463 euros, 

2τ =659000 euros. We divide the range 
[ ]21 , ττ  in ten equal intervals [ ]1, +τ′τ′ ii , i = 
1,2,…,10. The composition of the optimal 
portfolios for the minimum risk problem ( )1P ′′ , 
for various values of parameter τ  are 
displayed in table 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. Conclusions 

We have presented several nonlinear integer 
programming models for the portfolio 
selection with minimum transaction lots. The 
risk in the models is measured by the lower 
partial moment of the first order. We 
determine all the steps the investor must 
perform in order to make an optimal 

Table 1. Matrix R= ( )tir  of historical rates of return. 

Year Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 
2000 0.30 0.30 0.55 0.36 0.34 0.39 0.30 
2001 0.54 0.26 0.44 0.31 0.30 0.26 0.44 
2002 0.25 0.43 0.51 0.32 0.34 0.43 0.51 
2003 0.20 0.68 0.61 0.52 0.24 0.23 0.61 
2004 0.10 0.53 0.61 0.52 0.54 0.53 0.51 
2005 0.13 0.44 0.71 0.68 0.66 0.25 0.21 
2006 0.17 0.34 0.51 0.48 0.56 0.55 0.51 
2007 0.30 0.34 0.50 0.47 0.55 0.56 0.51 

 

Table 2. Composition of the optimal portfolio for various values of parameter τ  

 Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 

1τ′ =  92463 92463 0 0 0 0 0 0 

2τ′ =149116,7 86074 0 0 0 1478 0 9347 

3τ′ =205770,4 75960 0 0 0 20033 0 0 

4τ′ =262424,1 60234 0 0 0 22660 0 9672 

5τ′ =319077,8 12809 0 0 0 0 0 67070 

6τ′ =375731,5 33548 0 80622 1 21784 0 0 

7τ′ =432385,2 23974 0 100000 6 0 36085 8916 

8τ′ =489038,9 3154 0 100000 33575 0 0 30870 

9τ′ =545692,6 0 0 100000 10376 14063 0 23884 

10τ′ =602346,3 0 0 100000 100000 1 0 23076 

11τ′ =659000 0 0 100000 100000 1 0 23076 
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investment for the minimum risk model. The 
composition of the optimal portfolio for 
various values of parameter τ  is computed. 
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