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1. Introduction 

Pattern separation, also known as pattern 
recognition, is one of the main machine 
learning problems, originally developed by 
Vapnik and co-workers [16,17]. It is also one 
of the fundamental problems in data mining 
[2,3,7]. The support vector machine 
approach, and sophisticated optimization 
techniques, have been proved to be very 
efficient for solving this problem, as shown 
by the pioneering work of O. L. Mangasarian 
and others [2,4,7,8,9,10,11]. In the machine  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
learning process, we need to consider set 
separation problems where each set contains 
only one pattern, which is assigned by the 
supervisor. It is known that the multi-set 
separation problem can be tackled by solving 
a sequence of two-set separation problems 
[14], so that in this paper, we limit our 
attention to the two-set separation problem, 
which can be stated as follows: Suppose we 
have two sets of points },,,{ )()2()1( kxxxX K=  
and },,,{ )()2()1( lyyyY K=  in the n -
dimensional real space nR . We want to find 
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a partition of Rn, that separates the points in 
X from the points in Y. This separation is then 
used for predictive purposes. Our numerical 
experiments have been performed on two 
breast cancer data sets. In those examples, X 
represents patients with malignant tumors, 
and Y represents patients with benign tumors. 
The coordinates of the vectors in X and Y 
represent different measurements. For 
example in the data set [1,11,12,20,18] 
considered in section 5 of the present paper, 
we have 9 such attributes: Clump Thickness, 
Uniformity of Cell Size, Uniformity of Cell 
Shape, Marginal Adhesion, Single Epithelial 
Cell Size, Bare Nuclei, Bland Chromatin, 
Normal Nucleoli, and Mitosis, which makes 
our problem a two-set separation problem in 
a 9-dimensional real space. 

An elegant approach to separating X and Y, is 
by finding a separating hyperplane in Rn, 
such that all vectors in X lie on one side of 
this hyperplane and all the vectors in Y lie on 
the opposite side. A separating hyperplane is 
defined by a pair (a,γ ), where a is an n-
dimensional vector and γ  is a scalar, such 
that  

γ<xaT  for all Xx ∈  (1) 

γ>yaT  for all Yy ∈  (2) 

If the convex hulls of X and Y are disjoint, 
such a separating hyperplane always exists. 
Finding the vector a and the scalar γ  may be 
important for predictive purposes. Relations 
(1) and (2) say that a certain linear 
combination of the coordinates of all vectors 
in X is below a certain threshold, while the 
same linear combination of the coordinates of 
the vectors in Y is above this threshold. For 
the first breast cancer example, this would 
imply that a certain linear combination of the 
9 attributes can separate malignant from 
benign tumors. 

The coefficients of the linear combination 
(i.e., the coordinates of the vector a) may 
reveal important facts for cancer research. 
Once a and γ  are obtained from the existing 
data base, they can be used for predictive 
purposes: after determining the attributes z of 

a new patient we may deduce that the patient 
is likely to have a malignant tumor if 

γ<zaT , and a benign tumor if γ>zaT . 

We have to mention that conditions (1) and 
(2) do not determine the separating 
hyperplane (a,γ ) in a unique way. An 
optimal way of determining a and γ , 
suggested in previous work [4,7,16], is to 
compute them as the solution of the following 
minimization problem 

||min , aa γ  (3) 

s.t.    
 

1−≤ γxaT  for all Xx ∈  (4) 

1+≥ γyaT  for all Yy ∈  (5) 

The solution of this optimization problem, 
which is known as the maximal margin 
classifier [16,4], provides the strongest 
possible separation, in a certain sense. It 
maximizes the distance, in the dual norm . ', 

between the hyperplanes (a, 1−γ ) and 
(a, 1+γ ), which is the geometric margin [4]. 
If we choose .  to be the l1-norm (and 

therefore . ' the ∞l -norm), the exact solution 
of (3) can be obtained by solving 2n linear 
programs. 

Unfortunately, in most practical applications 
the convex hulls of X and Y intersect, so that 
no separating hyperplane exists. 
Generalizations of the above approach were 
made in order to deal with this situation 
[9,16]. A hyperplane (a, γ ) is determined in 
such a way that most points of X satisfy (2), 
most points of Y satisfy (1), and the distance 
of the misclassified points (i.e., the points of 
X that do not satisfy (1) and the points of Y 
that do not satisfy (2)) to the hyperplane is 
minimized. A similar approach is used in 
dealing with the formulation (3)-(5), by 
adding to the objective function in (3) a 
multiple of the distance of the misclassified 
points (i.e., the points of X that do not satisfy 
(4) and the points of Y that do not satisfy (5)) 
to the corresponding hyperplane). 
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In the present paper, rather than directly 
trying to minimize the number of the 
misclassified points to a single hyperplane, 
we propose to separate the sets X and Y by 
using two parallel hyperplanes H1 and H2 
with the following properties: 

(P1) All points of X lie on one side of H1. 

(P2) All points of Y lie on the opposite side 
of H2. 

(P3) The intersection of the convex hulls of X 
and Y is contained in region C between the 
hyperplanes H1 and H2. 

The points in C are called unclassified points. 
We would like to determine the hyperplanes 
H1 and H2 such that the number of 
unclassified points is small. Mangasarian [11] 
and Falk [5] proposed similar approaches for 
the two-set separation problem, with 
hyperplanes having the same partition 
properties. In the present paper, the two 
hyperplane separation is only used for 
predictive purposes: after taking 
measurement z of a new patient, we conclude 
that the patient is likely to have a malignant 
tumor if z is on one side of H1, or we 
conclude that the patient is likely to have a 
benign tumor if z is on the other side of H2. If 
z is between H1 and H2, we conclude that the 
patient needs further investigation. For the 
purpose of pattern separation, we construct a 
hyperplane H3, parallel to (and lying 
between) H1 and H2, such that most of the 

points of X lie on the same side (H
+
3) of H3 

and most of the points of Y lie on the opposite 

side (H
-
3) of H3 . A point that fails to do so, 

i.e., belonging to )()( 33
+− ∩∪∩ HYHX , is 

called a misclassified point. We want to 
construct H3 so that the number of 
misclassified points is minimized. 

In section 3 we propose several approaches 
for obtaining hyperplanes satisfying (P1)-
(P3), and the hyperplane lying between that 
minimizes the number of misclassified 
points. All our formulations are solvable and 
require the solution of at most 2n linear 

programs [15] plus a linear search 
procedure, where n is the dimension of the 
underlying space. 

In section 4 we investigate the possibility of 
using ellipsoids, instead of hyperplanes, for 
solving the separation problem. More 
precisely, in the first part of our construction, 
which is used for predictive purposes, we 
want to determine two similar ellipsoids (in 
the sense that they have the same center and 
shape) 21 εε ⊂ , such that either all points of 
X lie inside 2ε  and all points of Y lie outside 

1ε , or all points of Y lie inside 2ε  and all 
points of X lie outside 1ε . In either case, the 
intersection of the convex hulls of X and Y is 
contained between 1ε  and 2ε . The points 
lying between 1ε  and 2ε  belong to either X 
or Y and are called unclassified points. The 
objective is to determine the ellipsoids 1ε  
and 2ε  such that the number of unclassified 
points is small. The second part of our 
construction, which is used for pattern 
separation, is to find a third ellipsoid, with the 
same shape and center, lying between the two 
ellipsoids found in the first part, so that the 
number of misclassified points is minimized. 
Francois Glineur, in his master thesis [6], had 
a similar approach for the two ellipsoids 
separation problem. He claimed that his 
formulation is not convex and cannot be 
solved using SQL conic programming. Then, 
he used some elegant transformations to 
change the it into a  n+1-dimensional problem 
using homogeneous ellipsoids, and solved the 
problem. In the present paper, we use a 
different formulation of the ellipsoids, and 
reformulate the problem in the first part of our 
construction into a semidefinite problem, 
which can be solved in polynomial time by 
interior point methods. The availability of 
polynomial time solvers for the resulting 
problem, was in fact our main motivation for 
using ellipsoids for the separation problem. 
Moreover, the availability of reliable interior 
point methods for semidefinite programming 
[21], makes this approach feasible for 
moderate to high dimensional problems. For 
the second part of our construction, we use 
linear search techniques to obtain the third 
ellipsoid, for which the number of 
misclassified points is minimized. 
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We note that an ellipsoid ε  can be 
determined by a triple (A,a,γ ), where A is a 
positive semidefinite matrix, a is a vector, 
and γ  is a scalar. A point x is inside ε  if  

.γ≤+ xaAxx TT  

If A has entries aij, and a has coordinates ai, 
then the above relation can be written as  

.
,

γ≤+ ∑∑ ii
i

jiij
ji

xaxxa  

If the matrix A is the zero matrix, then the 
ellipsoid reduces to a hyperplane. Thus, 
separation by ellipsoids is more general. The 
coefficients aij and ai may contain important 
information about our data. As mentioned 
before, we will choose 1ε  and 2ε  to be 
similar in the sense that ),,( 11 γε aA=  and 

),,( 22 γε aA= , with 21 γγ ≤ . Thus, 
separating by ellipsoids implies that a certain 
quadratic combination of most vectors in X is 
less than (or greater than) the same quadratic 
combination of most vectors in Y. 

We should also notice that according to our 
constructions, the problem is always feasible. 
The two hyperplanes (or ellipsoids), to be used 
for prediction purposes, always exist, since in 
the worst case scenario all the points from both 
X and Y are between the hyperplanes (or the 
ellipsoids). Once we have the two hyperplanes 
(or the two ellipsoids), it is obvious that there is 
an optimal solution between them, which can 
be found by linear search. 

We note that by using the classical support 
vector machine approach, we could obtain 
different types of separation surfaces 
(decision boundaries). However, we feel that 
it is very important to be able to give an 
intuitive meaning of the separation surface 
for predictive purposes. We choose to work 
on hyperplane and ellipsoid separations, not 
only because they can be solved efficiently 
by sophisticated modern optimization 
techniques, but also because the meaning of 
these separation surfaces is easier understood 
by doctors and biologists. A high value for a 
coefficient ai in the vector defining the 
separating hyperplane may imply that the 

corresponding feature of the patient is 
relevant for breast cancer diagnosis. Similarly 
a high value for the coefficient aij in the 
matrix defining the separating ellipsoid, may 
mean that the interaction between features i 
and j is relevant for breast cancer. 

In the last section of this paper we will apply 
both separation by hyperplanes and ellipsoids 
to two breast cancer data sets. The cross-
validation results for all the formulations will 
be given. 

2. Separating by Hyperplanes via 
Misclassification Minimization 

2.1 Formulation I 

In [9], Mangasarian proposes to find a 
hyperplane (a,γ) with 1=

∞
a , such that 

most points of X satisfy (1), and most points 
of Y satisfy (2), as the solution of the 
following optimization problem:  

y
T

x
T

qpzza
zeze

yx

+
,,,,,

min
γ

 (6) 

s.t.  xi
iT zxa +≤ γ)( ,  ki ;;2;1 K=  

yj
jT zya −≥ γ)( ,  lj ;;2;1 K=  

eaezz yx ≤≤−≥≥ ;0;0 , 

q
pa )1(−= , 

},.,2,1{ np K∈   }2,1{∈q , 

where e is the vector of all ones. 

The solution of the above optimization 
problem can be obtained by solving 2n linear 
programs (one for each choice of 
(p,q)∈{1,2,…,n}×{1,2}. From the solution 

),,,( yx zza γ  of (6), we can obtain two 

hyperplanes ),( 11 σγ += aH  and 
),( 22 σγ −= aH  satisfying (P1)-(P3), where  

{ },.,2,1|max1 kizxi K==σ   
{ },.,2,1|max2 liz yi K==σ  (7) 

We then solve the following minimization 
problem using linear search.  
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∑∑
+

∗
=

∗ −+−
l

j

jT
k

i

iT

b
yabbxa

1

)(

1

)( )()(min  (8) 

s.t.  12 σγσγ +≤≤− b  , 

where ()* is the step function: R→R  as:  





≤
>

=∗ 00
01

)(
tif
tif

t  (9) 

By using formulation I, we can get not only a 
set of solutions (a,b) for the purposes of 
pattern separation, but also two hyperplanes 
which can be used for predictive purposes. 
Moreover, it is guaranteed that the solution 
(a,b) is at least as good as the solution (a,γ), 
which is a well known linear classifier [9]. 

2.2 Formulation II 

In [7, 16], one proposes to find a hyperplane 
(a,γ), such that most points x in X satisfy (4) 
and most of the points y in Y satisfy (5), by 
solving the following optimization problem, 
which attempts to maximize the l∞-distance 

in between the hyperplanes (a,γ − 1) and 
(a,γ +1), as well as to minimize the sum of 
violations of the misclassified points:  

sezze T
yx

T

zzsa yx

++ )(min
,,,,

ν
γ

 (10) 

s.t. ,1)( −≤− γxi
iT zxa   i = 1,2,…,k  

 ,1)( +≥+ γyj
jT zya  j = 1,2,…,l  

 0,0, ≥≥≤≤− yx zzsas  . 

Here ν>0 is a given (penalty) parameter. 

This formulation is the l1-norm version of a 
classic support vector machine: the maximal 
margin classifier using soft margin 
optimization [4]. Obviously, from the solution 
of the above optimization problems, we can 
obtain two hyperplanes )1,( 11 σγ +−= aH  and 

)1,( 22 σγ −+= aH , with σ1, σ2 given by (7), 
satisfying (P1)-(P3). 

We then solve the following minimization 
problem using linear search.  

∑∑
=

∗∗
=

−+−
l

j

jT
k

i

iT

b
yabbxa

1

)(

1

)( )()(min (11) 

s.t.  12 11 σγσγ +−≤≤−+ b  . 

3. Direct Methods for Determining 
Separating Hyperplanes 

3.1 Formulation III 

In this formulation we want to find two 
hyperplanes ),(1 βaH =  and ),(2 τβ −= aH , 
with 1=

∞
a  and τ ≥ 0 as small as possible, 

so that conditions (P1)-(P3) are satisfied. We 
note that the l1-distance between the two 
hyperplanes is equal to τ. The hyperplanes 
are obtained via the following algorithm: 

(i) For each (p,q)∈{1,2,…,n}×{1,2}, solve 
the following program:  

τ
τβ ,,

min
a

 (12) 

s.t. 0)( ≤− βiT xa   i = 1,2,…,k 

 0)( ≥+− τβjT ya  j = 1,2,…,l  

 eae ≤≤−≥ ,0τ  

 q
pa )1(−=  

(ii) Compare the number of unclassified 
points for each linear program above. 

(iii) Return the solution (a,β,τ) from the 
linear program that gives the minimum 
number of unclassified points.  

We then solve the following minimization 
problem using linear search.  

∑∑
=

∗∗
=

−+−
l

j

jT
k

i

iT

b
yabbxa

1

)(

1

)( )()(min  (13) 

s.t.       βτβ ≤≤− b  

3.2 Formulation IV 
As in the above formulation, we want to 
determine two hyperplanes ),(1 βaH =  and 

),(2 τβ −= aH , with τ ≥ 0 as small as 
possible, so that conditions (P1)-(P3) are 
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satisfied. However, instead of normalizing 
1=

∞
a , we just take β = −1 and obtain a 

and τ via the following algorithm: 

(i) Solve the following two linear 
programming problems:  

τ
τ,

min
a

 (14) 

s.t.  01)( ≤+iT xa    i = 1,2,…,k 

 01)( ≥++ τjT ya   j = 1,2,…,l 

 0≥τ  

τ
τ,

min
a

  (15) 

s.t. 01)( ≤+jT ya   j = 1,2,…,l  

 01)( ≥++ τiT xa  i = 1,2,…,k  

 0≥τ  

 (ii) Compare the number of unclassified 
points for each linear program above. 

(iii) Return the solution (a,τ) from the linear 
program that gives the minimum number of 
unclassified points.  

Depending on whether the optimal solution 
(a,τ) comes from (14) or (15), we solve one 
of the following minimization problems 
correspondingly using linear search:  

∑∑
=

∗∗
=

−+−
l

j

jT
k

i

iT

b
yabbxa

1

)(

1

)( )()(min  (16) 

s.t.−1−γ≤b≤−1; 

and  

∑∑
=

∗∗
=

−+−
l

j

jT
k

i

iT

b
byaxab

1

)(

1

)( )()(min  (17) 

s.t.−1−γ≤b≤−1. 

3.3 Formulation V 

In this formulation we determine two 
hyperplanes of the form )1,(1 −= γaH  and 

)1,(2 += γaH  satisfying (P1)-(P3), and 
such that the l1-distance between them is 
minimized. This is accomplished by the 
following algorithm: 

(i) For each p=1,2,…,n, solve the following 
two linear programs:  

pa
a

γ,
max  (18) 

s.t. 1)( +≤ γiT xa   i = 1,2,..,k 

 1)( −≥ γjT ya   j = 1,2,…,l 

 pqp aaa ≤≤−  q =1,2,…,n 

pa
a−

γ,
max  (19) 

s.t. 1)( +≤ γiT xa   i = 1,2,..,k 

 1)( −≥ γjT ya   j = 1,2,…,l 

 pqp aaa −≤≤  q =1,2,…,n 

 (ii) Compare the number of unclassified 
points for each linear program above. 

(iii) Return the solution (a,γ) from the linear 
program that gives the minimum number of 
unclassified points.  

We then solve the following minimization 
problem using linear search.  

∑∑
=

∗∗
=

−+−
l

j

jT
k

i

iT

b
yabbxa

1

)(

1

)( )()(min  (20) 

s.t.γ−1≤b≤γ+1; 

4. Separation by Ellipsoids 

4.1 Formulation VI 

We look for separating ellipsoids of the form 
),,(1 τβε −= aA  and ),,(2 βε aA= , 

where A is a positive semidefinite matrix 
(which we denote by A≥0) of unit trace, and 
τ ≥ 0 is as small as possible. The ellipsoids 
are obtained via the following algorithm: 

(i) Solve the following two semidefinite 
programming problems:  

τ
τβ ,,,

min
aA

 (21) 

s.t. 0)( )()()( ≤−+ βiTiTi xaAxx , i=1,2,…,k 

0)( )()()( ≥+−+ τβjTjTj yaAyy , j= 1,2,…,l 
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Trace(A) = 1 

A≥0,  τ≥0  

τ
τβ ,,,

min
aA

 (22) 

s.t. 0)( )()()( ≤−+ βjTjTj yaAyy   j= 1,2,…,l 

0)( )()()( ≥+−+ τβiTiTi xaAxx   i=1,2,…,k 

Trace(A) = 1 

A≥0,  τ≥0  

(ii) Compare the number of unclassified 
points for the above two problems. 

(iii) Return the solution (A,a,β,τ) from the 
problem that gives the minimum number of 
unclassified points.  

Here by trace(A) we denote the sum of the 
diagonal entries of the matrix A. 

Depending on whether the optimal solution 
(A,a,β,τ) comes from (21) or (22), we solve 
one of the following minimization problems 
correspondingly using linear search.  

∑

∑

=
∗

=
∗

−−+

−+

l

j

jTjTj

k

i

iTiTi

b

yaAyyb

bxaAxx

1

)()()(

1

)()()(

))((

))((min
  (23) 

s.t.β−τ≤b≤β; 

and  

∑

∑

=
∗

=
∗

−++

−−

l

j

jTjTj

k

i

iTiTi

b

byaAyy

xaAxxb

1

)()()(

1

)()()(

))((

))((min
  (24) 

s.t.β−τ≤b≤β. 

4.2 Formulation VII 

In this formulation, we use the previous 
construction except that this time we 
normalize β. By taking β=1 and β=−1, we 
have the following algorithm: 

(i) Solve the following four semidefinite 
programming problems: 

τ
τ,,

min
aA

 (25) 

s.t. 01)( )()()( ≤++ iTiTi xaAxx    i=1,2,…,k 

01)( )()()( ≥+++ τjTjTj yaAyy    j= 1,2,…,l 

A≥0,  

 τ≥0  

τ
τ,,

min
aA

  (26) 

s.t. 01)( )()()( ≤−+ iTiTi xaAxx     i=1,2,…,k 

01)( )()()( ≥+−+ τjTjTj yaAyy     j=1,2,…,l 

A≥0,  

 τ≥0  

τ
τ,,

min
aA

  (27) 

s.t. 01)( )()()( ≤++ jTjTj yaAyy      j=1,2,…,l 

01)( )()()( ≥+++ τiTiTi xaAxx    i=1,2,…,k 

A≥0,   

τ≥0  

τ
τ,,

min
aA

  (28) 

s.t. 01)( )()()( ≤−+ jTjTj yaAyy     j=1,2,…,l 

01)( )()()( ≥+−+ τiTiTi xaAxx    i=1,2,…,k 

A≥0,  

 τ≥0  

(ii) Compare the number of unclassified 
points for the above four problems. 

(iii) Return the solution (A,a,τ) from the 
problem that gives the minimum number of 
unclassified points. 

Depending on whether the optimal solution 
(A,a,τ) comes from (25), or (26), or (27), or 
(28), we solve one of the following 
minimization problems correspondingly 
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using linear search.  

∑

∑

=
∗

=
∗

−−+

−+

l

j

jTjTj

k

i

iTiTi

b

yaAyyb

bxaAxx

1

)()()(

1

)()()(

))((

))((min
  (29) 

s.t.−1−τ≤b≤−1; 

∑

∑

=
∗

=
∗

−−+

−+

l

j

jTjTj

k

i

iTiTi

b

yaAyyb

bxaAxx

1

)()()(

1

)()()(

))((

))((min
  (30) 

s.t.1−τ≤b≤1; 

∑

∑

=
∗

=
∗

−++

−−

l

j

jTjTj

k

i

iTiTi

b

byaAyy

xaAxxb

1

)()()(

1

)()()(

))((

))((min
 (31) 

s.t.−1−τ≤b≤−1; 

∑

∑

=
∗

=
∗

−++

−−

l

j

jTjTj

k

i

iTiTi

b

byaAyy

xaAxxb

1

)()()(

1

)()()(

))((

))((min
  (32) 

s.t.1−τ≤b≤1. 

5. Numerical Results for the 
Breast Cancer Data Set 

In this section we apply the seven 
formulations for the separation problem on 
the following breast cancer data sets: 

Data set 1 is from the Wisconsin Breast 
Cancer Database, collected in 1991 by Dr. 
William H. Wolberg, University of 
Wisconsin, Madison [1, 11, 12, 20, 18]. 
Samples were collected periodically as Dr. 
Wolberg reported his clinical cases. The 
database therefore reflects this chronological 
grouping of the data. The samples consist of 

visually assessed nuclear features of fine 
needle aspirates (FNAs) taken from patients’ 
breasts. There are 699 data points in total, 
including 458 benign points and 241 
malignant points. Malignancy is determined 
by taking a sample tissue from the patient’s 
breast and performing a biopsy on it. A 
benign diagnosis is confirmed either by 
biopsy or by periodic examination, depending 
on the patient’s choice. Each single patient 
was assigned to a 9-dimensional vector, 
where the components of the vector are the 
corresponding 9 attributes of the patients. 

Data set 2 is the Wisconsin Diagnostic 
Breast Cancer (WDBC) data set created in 
1995 by Dr. William H. Wolberg, and Olvi 
L. Mangasarian [19]. There are 569 data 
points in this database, including 357 benign 
points and 212 malignant points. Each 
patient was assigned to a 30-dimensional 
vector. All the features are computed from a 
digitized image of a fine needle aspirate 
(FNA) of a breast mass. 

We used a PC Inter Celeron 1.0 GHz 
processor with 512 MB syncDRAM for the 
numerical experiments. All the codes use the 
MATLAB environment and the SeDuMi 
solver [13], for both linear programming and 
semidefinite programming. In Formulation II, 
we took ν equally distributed in log space 

from 10−3 to 10+4, and selected the best 
result from 100 values.  

Table 1 compares the old solutions (a,γ), and 
the new solutions (a,b) from formulation I. 
As we mentioned in earlier sections, our 
solution in formulation I is guaranteed to be 
at least as good as the linear-classifier in [9], 
which is shown in Table 1, although there is 
only a slight difference between the two. 
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Table 1. Comparison of the solutions of formulation I using data set 1 - for the purposes of 
pattern separation 

 pct. error Old solution (a, γ) 

in formulation I 

Our solution (a,b) 

in formulation I 

20% training data error from training data 0.11% 0.11% 

 error from test data 4.19% 4.19% 

50% training data error from training data 1.00% 1.00% 

 error from test data 2.32% 2.32% 

100% training data error from training data 2.86% 2.72% 

 error from test data 0 0 

 

 

 

Table 2. Comparison of the solutions of formulation II using data set1 - for the purposes of 
pattern separation 

 Old solution (a,γ) Our solution (a,b) 

 
pct. error 

in formulation II in formulation II 

20% training data error from training data 0.70% 0.39% 

 error from test data 7.57% 3.76% 

50% training data error from training data 2.22% 0.97% 

 error from test data 4.72% 2.15% 

100% training data error from training data 6.27% 2.72% 

 error from test data 0 0 
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 Table 3. Separation Results 

Formulations 20% training 50% training 20% training 50% training 

I - VII data set 1 data set 1 data set 2 data set 2 

pct. of unclassified points 6.85 18.06 0 0 

(I) pct. error of prediction 3.76 1.00 5.22 1.89 

pct. of misclassified points 4.30 3.32 5.22 1.89 

(sum of training and test data)     

pct. of unclassified points 6.14 11.62 0 0 

(II) pct. error of prediction 3.33 0.75 5.55 3.16 

pct. of misclassified points 4.15 3.12 5.55 3.16 

(sum of training and test data)     

pct. of unclassified points 3.19 10.94 0 0 

(III) pct. error of prediction 4.43 0.82 4.52 2.55 

pct. of misclassified points 5.52 4.04 4.52 2.55 

(sum of training and test data)     

pct. of unclassified points 2.00 13.45 0 0 

(IV) pct. error of prediction 4.23 1.68 5.71 2.64 

pct. of misclassified points 5.06 5.19 5.71 2.64 

(sum of training and test data)     

pct. of unclassified points 10.19 10.23 9.28 8.39 

(V) pct. error of prediction 4.09 1.65 4.89 2.46 

pct. of misclassified points 6.37 5.97 8.89 6.28 

(sum of training and test data)     

pct. of unclassified points 0 0 0 0 

(VI)pct. error of prediction 5.97 3.54 6.92 2.07 

pct. of misclassified points 5.97 3.54 6.92 2.07 

(sum of training and test data)     

pct. of unclassified points 0 0 0 0 

(VII) pct. error of prediction 4.96 3.76 8.15 2.90 

pct. of misclassified points 4.96 3.76 8.15 2.90 

(sum of training and test data)     
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Table 2 compares the old solutions (a,γ), and 
the new solutions (a,b), from formulation II. 
Although we don’t have any proof so far to 
guarantee that our solution is better, (i.e. b is 
always between γ+1−σ2 and γ−1+σ1), we 
observe a much better performance from our 
solution, compared to the old solution (a,γ), 
which is the l1-norm version of the maximal 
margin classifier using soft margin 
optimization [4]. 

The comparisons in Table 1 and Table 2 are 
only for the purpose of pattern separation. In 
order to assess the predictive value of our 
approach, in Table 3, we show the percentage 
error of prediction and the percentage of 
unclassified points. In order to assess the 
quality of separation we also list the 
percentage of misclassified points during the 
learning process. 

We compare the results of all separations by 
hyperplanes, that is, formulations I to V. 
They are almost equally good, although 
formulation III seems to be slightly better 
than the rest of the formulations. It is very 
stable, even if only 20% of the data is used 
for training. Moreover, if we use 100% data 
for training , which would not make sense for 
the cross-validation test, but only for the sake 
of comparison, it gives the best separation 
result for predictive purposes. We notice that 
the error of prediction decreases if we 
increase the portion of the training data. 
However, we cannot observe an obvious 
change regarding the percentage of 
misclassified points. Sometimes the 
percentage is higher if we use more training 
data. This shows that for the purpose of 
pattern separation, 20% training data is good 
enough for our formulations, since we may 
have overfitting problems if we use too much 
training data, and this causes a larger 
percentage of misclassified points. 

We compare the results of separation by 
ellipsoids (formulation VI and VII) and we 
could not see much difference. Formulation 
VI is slightly better than formulation VII. For 
the purpose of pattern separation, neither has 
obvious advantages over formulations I to V. 
But for predictive purposes, both are very 
good if we compare the percentage error of 
prediction and the percentage of unclassified 

points. As we discussed in the previous 
section, separation by ellipsoids is a 
generalization of separation by hyperplanes, 
so that we should expect better separation 
results.  
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