Cyclic Hilbert Spaces

Florin Rădulescu

Universita Roma "Tor Vergata"

Institute of Mathematics, Romanian Academy

Email: radulesc@mat.uniroma2.it

Dedicated to Professor Andrei Neculai to his 60th birthday

Abstract: We analyse in this paper a concept related to the Connes Embedding Problem [Co]. A type II₁ algebra is an algebra with a trace, and CEP requires for the multiplication to be approximated by matrices. Here we start the analysis of four products, which is the study of cyclic Hilbert spaces.

Florin Rădulescu - Born 15.08.1960 in Bucharest. Studies University of Bucharest, PhD in Mathematics Univ. of California at Los Angeles 1991. Positions held: Full Professor Univ of Iowa (1996- 2008, associate 1994-1996), Full Professor Univ of Rome Tor Vergata since 2002. Member of Institute of Mathematics Romanian Academy since 1985 (CP1 since 2002). 5 PhD students at the Univ of Iowa that graduated before 2005. Presently supervising two Ph.D students at Uni. Rome. Principal investigator for three consecutive three years NSF grants, director of a CEEX grant 2006-2008. Price Simion Stoilow of the Romanian Academy for the paper "Fundamental group of the von Neuman algebra of a free group with infinitely many generators is R_+\{0}". 33 papers published, the most cited being "Random Matrices, Amalgamated Free products and subfactors published In Inventiones Matematicae. Interest: Operator Algebras in connection with Number Theory.

In this paper we introduce the notion of a cyclic Hilbert space, which is by definition a Hilbert space, that carries a special cyclic scalar product on $H \otimes H$. We prove that such spaces can be embedded into finite unbounded (separable) von Neumann algebras.

Given are arbitrary II₁ factor M, and V a subspace of selfadjoint elements, the Connes embedding Problem is reducible ([Ra]) to the problem to approximation of four products: that is if V is a finite dimensional real vector space of M, find an approximate embedding (that preserves approximately τ (abcd), $a,b,c,d \in V$) into $M_n(C)$ with the normalized trace.

This consists into proving that every cyclic Hilbert Space, as defined bellow is embeddable into a II_1 factor.

Definition. (Cyclic prehilbertian space) Let V be a real prehilbertian space, with pointed vector 1, of norm 1 and assume that there is an additional bilinear complex valued, positive form <<,>> $(<<\alpha,\beta>>=<<\beta,\alpha>>)$ on $(V \otimes_R V) \otimes_R C$ with the following properties:

- 1) V embeds isometrically into $V \otimes V$, via the map $v \to v \otimes 1 = 1 \otimes v$;
- 2) <<,>> is cyclic in the following sense << $a \otimes b, c \otimes d >> = << c \otimes a, d \otimes b >>$ for all $a,b,c,d \in V$;
- 3) <<,>> is autoadjunct in the sense that for all *a,b,c,d* in *V*

$$\langle \langle a \otimes b, c \otimes d \rangle \rangle = \overline{\langle \langle b \otimes a, d \otimes c \rangle \rangle}.$$

Such a space will be called a cyclic space.

Note. Such a cyclic space will also have the following additional property:

$$(2') << a \otimes b, c \otimes d >> = << b \otimes d, a \otimes c >>$$
.

Moreover 2') and 3) are equivalent to 2) and 3).

4) The map from $V \otimes V \rightarrow V \otimes V$ (extended then by antilinearity to $(V \otimes V) \otimes_R C$ by $J(\otimes b) = b \otimes a$ is an involution.

Proof. Assume 2), 3) are true. Then because of 2) we have

$$<< b \otimes d$$
, $a \otimes c >> = << a \otimes b$, $c \otimes d >>$

Clearly,

$$\langle\langle J(a \otimes b), J(c \otimes d) \rangle\rangle = \langle b \otimes a, d \otimes c \rangle$$

= $\overline{\langle\langle a \otimes b, c \otimes d \rangle\rangle}$.

Note also that

$$<< a \otimes b, c \otimes d >>= \overline{<< a \otimes c, b \otimes d >>}$$
 which follows by aplly iteratively properties 2) and 3).

In the next proposition we prove that the cyclic structure on V, can be extended to a larger space W, such that if y is an element in $V \otimes V$, the product identification in the scalar product given by <<,>>, we have $y \in W (= W \otimes 1)$.

Proposition. Let V be a finite dimensional cyclic vector space. Let y be a selfadjoint element in $(V \otimes V) \otimes_R C$ (that is J y = y) of length I and that is not identified (via <<,>>) with an element in $V \otimes I$ (or equivalently $1 \otimes V$).

Fix an orthonormal basis x_1, x_2, \dots, x_n of V, and assume that $x_1=1$, the pointed vector of V.

Then for every $\varepsilon > 0$, there exists an ε -perturbation $<<,>>_{\varepsilon}$ of the original structure <<,>> that is

$$\left| << x_j \otimes x_j, x_k \otimes x_l >> - << x_i \otimes x_j, x_k \otimes x_l >> \right| < \varepsilon$$
 for all $i,j,k,l=1,2,...,n$, with the following properties:

Let Y be an undeterminate and let $W = V \otimes RY$. Consider a scalar product on W such that $W, X_1, X_2, \dots, X_n, Y$ as an orthonormal basis.

Then, W has cyclic vector space structure $<<,>>_W$, such that

- 1) $<<,>>_W$ extends the structure $<<,>>_\varepsilon$ on $V\otimes V$;
- 2) $y = Y \otimes 1 \pmod{<<,>>_W}$.

Proof. We will use in the proof the notation $x_i x_j, x_i Y, Y x_i, Y^2$ for $x_i \otimes x_j$, $x_i \otimes Y, Y \otimes x_i, Y \otimes Y$

We need to define $\langle\langle Y \otimes x_i, x_i \otimes x_l \rangle\rangle$,

for i,j,l. Note that $\langle\langle Y \otimes x_i, 1 \otimes x_l \rangle\rangle$ is already defined and required to be equal to $\langle\langle y, x_l x_i \rangle\rangle$, as is $\langle\langle Y, x_l x_i \rangle\rangle$ required to be $\langle\langle y, x_l x_i \rangle\rangle$.

We consequently will start by constructing the vector ξ_a in $(V \otimes V) \otimes_R C$, which will correspond to the projections of the vectors Yx_a in $(W \otimes_R W) \otimes_R C$ onto $(V \otimes V) \otimes_R C$ (projection with respect to the scalar product induced by <<,>>).

The vector,
$$\xi_a$$
 $a=2,...,n$, are subject to $<<\xi_a,x_bx_c>>=< J\xi_b,x_cx_a>$ $=<< J\xi_b,Jx_ax_c>>= \overline{<<\xi_b,x_ax_c>>}$ (1)

for all a,b,c=2,...,n, conform with properties 2), 3). We will use the notation <<, >> for <<, $>>_\varepsilon$ until we define the requirements on the deformation.

We also require that the projection of $x_a Y$ to be $J\xi_a$, and hence properties 2), 3) will be satisfied at least for the projections of the vector ξ_a .

Let P be the projection of $(V \otimes_R V) \otimes_R C$ onto $(W \otimes_R C)^{\perp}$. Note that quantities $\lambda_{ab}^c = \langle \xi_a, (1-P)x_bx_c \rangle$ are predetermined (as the numbers $\langle \xi_a, \xi_l \rangle > = \langle y, x_lx_a \rangle$ are all determined).

Hence to verify relations (1) we have to determine vectors η_a in $(V \otimes V) \otimes_R C - V \otimes_R C$ (that will be equal to $P\xi_a$) that verify the equations

$$\langle \eta_a, x_b x_c \rangle - \langle J \eta_b, x_c x_a \rangle = \theta_{ab}^c = -\lambda_{ab}^c + \overline{\lambda}_{ba}^c,$$

$$a, b, c = 2, ..., n, b > a.$$
 (2)

(Note that in relations (1) the a,b are interchangable and that for b=a the relations are redundant.)

We denote by $R(\eta_a)$, $I(\eta_a)$ the real and imaginary part of η_a with respect to J.

Then let v_0 be the real part with respect to J of the complex Hilbert space $[(V \otimes_R V) \otimes_R C - V \otimes_R RC]$. The problem to

solve the equations (2) reduces to finding 2(n-1) vectors $R(\eta_a)$, $I(\eta_a)$, a=2,...,n, in ν that verify the following conditions:

$$<< R(\eta_a), R(x_b x_c) >> + << I(\eta_a),$$
 $I(x_b x_c) >> + << R(\eta_b), R(x_b x_c) >> + << I(\eta_b), I(x_b x_c) >> = \text{Re}(\theta_{ab}^c),$ (3)

$$<< I(\eta_a), R(x_b x_c) >> + << R(\eta_a),$$
 $I(x_b x_c) >> + << I(\eta_b), R(x_c x_a) >> + << R(\eta_b), I(x_c x_a) >> = \text{Re}(\theta_{ab}^c),$ (4)

 $a < b, a,b,c \in \{2,...,n\}.$

We will do so by showing that the equations (3), (4) are non-contradictory. We consider the vectors $(R(\eta_a), I(\eta_a))_{a \in \{2, \cdots, n\}}$ as vectors in ν_0^{n-1} , and hence, we have to verify that the relations

 $\langle (...R(\eta_a), I(\eta_a), ..., R(h_b), I(\eta_b), ...), v_{ab}^c \rangle = \text{Re}\theta_{ab}^c$ and similar set for the imaginary part are non-contradictory. The corresponding vectors are

$$v_{ab}^{c} = (0...R(x_b x_c), I(x_b x_c)...0 - R(x_c x_x), I(x_c x_a)...)$$

$$w_{ab}^{c} = (0...-I(x_b x_c), R(x_b x_c)...0 \ I(x_c x_a), R(x_c x_a)...)$$

where the non-components are exactly on the components corresponding to a and b.

We will choose the deformation so that the vectors v_{ab}^c , w_{ab}^c are linearly independent so that one can solve equations (3), (4).

Having a linear combination that gives 0 would correspond to

$$\sum_{\substack{2 \le a < b \le n \\ 2 < c < n}} \alpha_{ab}^c v_{ab}^c + \sum_{\substack{2 \le a < b \le n \\ 2 < c < n}} \beta_{ab}^c w_{ab}^c = 0.$$

We fix an a and look what this relation correspond on the real imaginary components in the a-components. There are two possible situations. We have a contribution to this column for some b>a, or it may be obtained from a b'< a (roles beeing switched in this last case).

Thus it may happen that (for the real component)

$$\sum_{\substack{2 \le a < b < n \\ c}} (\alpha_{ab}^{c} R(x_{b} x_{c}) + \beta_{ab}^{c} (-I(x_{b} x_{c})))$$

$$+ \sum_{\substack{2 \le b' < a \le n \\ 2 \le c' \le n}} (\alpha_{b'a}^{c'} - R(x_{c'} x_{b'}) + \beta_{b'a}^{c'} I(x_{c'b'})) = 0$$
(5)

and for the imaginary component:

$$\begin{split} & \sum_{\substack{2 \leq a < b \leq n \\ c}} (\alpha_{ab}^{c} I(x_{b} x_{c}) + \beta_{ab}^{c} R(x_{b} x_{c})) \\ & + \sum_{\substack{2 \leq b' < a \leq n \\ c'}} (\alpha_{b'a}^{c'} I(x_{c'} x_{b'}) + \beta_{b'a}^{c'} R(x_{c'b'})) = 0. \end{split}$$
 (6)

At this moment we construct a deformation of the original scalar product that should enable us to conclude linear independence.

We construct the following deformation of V. Add in direct sum $\sqrt{(1-\varepsilon')}x_i \oplus \sqrt{\varepsilon'}s_i = \widetilde{x}_i$, where s_i are semicircular [Vo], so that \widetilde{x}_i remains an orthonormal basis. Moreover, with respect the new \widetilde{x}_i the scalar product <<,>> is deformed from the old one by less than ε , ε' is small enough.

In this deformation $(x_a x_b)_{a,b \ge 2}^n$ are linearly independent and independent from $(x_a)_{a=1}^1$. In particular, over the reals, $I(x_{ab})$, $R(x_{ab})$ are linearly independent. Because $P\eta_a = \eta_a$, we have to take into consideration that the projection P of the elements in (5), (6) is 0, i.e., that these linear combinations will produce a conflict if they arrive in V.

From (5), (6) it follows that

$$\sum_{\substack{2 \le a < b \le n \\ c}} \alpha_{ab}^{c} R(x_{b} x_{c}) + \sum_{\substack{2 \le b' < a \le n \\ c'}} \alpha_{b'a}^{c'} (-R(x_{c'} x_{b'})) = 0$$

$$\sum_{\substack{2 \le a < b \le n \\ c}} \alpha_{ab}^{c} I(x_{b} x_{c}) + \sum_{\substack{2 \le b' < a \le n \\ c'}} \alpha_{b'a}^{c'} I(x_{c'} x_{b'}) = 0$$
(8)

Similarly, we have the relations

$$\sum_{\substack{2 \le a < b \le n \\ 2 \le c \le n}} \beta_{ab}^{c} \left(-I(x_{b} x_{c}) \right) + \sum_{\substack{2 \le b' < a \le n \\ 2 \le c' \le n}} \beta_{b'a}^{c'} I(x_{c'b'}) = 0$$
(9)

and

$$\sum_{\substack{2 \le a < b \le n \\ c}} \beta_{ab}^{c} R(x_{b} x_{c}) + \sum_{\substack{2 \le b' < a \le n \\ c'}} \beta_{b'a}^{c'} R(x_{c'b'}) = 0$$
(10)

Now, in the relations (6), (7), clearly if in the first sum c > a or in the second sum c' < a, these terms cannot cancel each other, so their coefficients must be zero.

The only possibility that a term in the first part of the sum is equal to one in the second half is when c < a, c' > a and c corresponds to b' in the second sum while c' corresponds to b in the first.

Note that in this case one has to have $\alpha_{ab}^{c} - \alpha_{b'a}^{c'} = 0$ from the first sum and the opposite from the second. Hence also these coefficients may be zero likewise for the *p*-coefficients.

Step 2 of proof. We define the matrix $<< Yx_a, Yx_b>>$ and $<< Yx_a, x_bY>>$. We are obliged to take

$$\langle\langle x_b Y, x_a Y \rangle\rangle = \overline{\langle\langle Yx_a, Yx_b \rangle\rangle}$$
.

Moreover, one should have that the matrix $\langle Yx_a, Yx_b \rangle$ has any property that $\langle Y^2, x_a x_b \rangle$ that is:

(*) if
$$\sum \theta_{ab} x_a x_b = 0$$
 with respect to <<,>> then $\sum \theta_{ab}$ <<, Yx_a , Yx_b >> should be 0.

In order that <<,>> is a positive scalar product it is necessary and sufficient that the matrix

$$<<\alpha(Yx_a), \beta(Yx_b)>>_{a,b=1,\alpha,\beta=1,j}^n$$

 $\geq \sum_{\varepsilon} <<\alpha(Yx_a), \varepsilon>> \overline{<<\beta(Yx_b), \varepsilon>>},$

Where ε runs over a basis of $V\otimes V$. Moreover, the only condition (*) comes to the requirement that

$$(\langle Yx_a, Yx_a \rangle + \langle Yx_{a^c}, Yx_{a^c} \rangle)_{a=2}^n$$
 be proportional to the numbers c_a .

We impose $\langle\langle Yx_a, x_bY \rangle\rangle = 0$ and clearly we can find a large enough positive matrix with this property (since * doesn't imply that the matrix $\langle Yx_a, Yx_b \rangle$ should be singular).

Step 3. We define $\langle\langle Yx_a, Y^2 \rangle\rangle$ to be 0 and

equal to $\langle\langle Y, Y^2 \rangle\rangle$ taking $\langle\langle Y^2, Y^2 \rangle\rangle$ to be large enough we get a scalar product.

Theorem. Let V be a cyclic finite dimensional vector space with basis x_1, \dots, x_n . Then for every $\varepsilon > 0$, there exists an ε deformation of the original structure on V (that preserves the square conditions) and there is an infinite dimensional cyclic prehilbertian space W, with orthonormal bases $x_1, \dots, x_n, x_{n+1}, \dots$, such that $d(x_i x_j, W \otimes 1) = 0$, $\forall i, j$, the distance is relative to the norm induceded by positive bilinear form on W.

Proof. We apply successivelly the previous proposition. Moreover, at every step n we use $\varepsilon/2^n$. At every step we are extending the basis from the previous step. Let $<<,>>_n$ be the scalar product on W_n at step n. Then the sequence $<< x_i x_j, x_k x_l >>_n$ is convergent and defines a cyclic structure on the reunion W of W_n . Moreover, the distance $d(x_i x_j, W_n)$ tends to zero.

Note. If W can be obtained as an algebra of bounded operators, with trace then it would follow that [Ra] every positive polynomial p of degree four, that is positive under the trace in any II_1 factor, then p is a sum of squares (modulo universal terms of zero trace).

REFERENCES

- [Co] CONNES, A., Classification of injective factors. Cases II₁, II_∞, III_λ, λ=1, Ann. of Math. (2) 104 (1976), No. 1, pp. 73–115.
- [Ra] RĂDULESCU, F., A non-commutative, analytic version of Hilbert's 17th problem in type II₁ von Neumann algebras, math.OA/0404458, To appear in Proceedings Theta Foundation.
- 3. [Vo] VOICULESCU, D., Circular and semicircular systems and free product factors, in Progress in Math., Vol. 92, Birkhäuser, 1990.