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Abstract: We analyse in this paper a concept related to the Connes Embedding Problem [Co]. A type ll1

algebra is an algebra with a trace, and CEP requires for the multiplication to be approximated by matrices. Here
we start the analysis of four products, which is the study of cyclic Hilbert spaces.
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In this paper we introduce the notion of a
cyclic Hilbert space, which is by definition a
Hilbert space, that carries a special cyclic
scalar product on H ® H . We prove that
such spaces can be embedded into finite
unbounded  (separable) von Neumann
algebras.

Given are arbitrary I, factor M, and V a

subspace of selfadjoint elements, the
Connes embedding Problem is reducible
([Ra]) to the problem to approximation of
four products: that is if V is a finite
dimensional real vector space of M, find an
approximate embedding (that preserves
approximately 7 (abcd), a,b,c,deV) into
Mn(C) with the normalized trace.

This consists into proving that every cyclic
Hilbert Space, as defined bellow is
embeddable into a I factor.

Definition. (Cyclic prehilbertian space)
Let V be a real prehilbertian space, with
pointed vector 1, of norm 1 and assume
that there is an additional bilinear complex
valued, positive form <<, >>

(<<a,f>>=<<pa>>) on V@, V)®,C
with the following properties:

1) ¥V embeds isometrically into V' ® V', via
themap v > v®1=1Qv;

2) <<,>> is cyclic in the following sense <<

a®b,c®d>=<<c®a,d ®b>> for all
ab,cdel;

3) <<,>> is autoadjunct in the sense that for
all a,b,c,din V

<<a®b,c®d >>=<<b®a,d ®c >>.

Such a space will be called a cyclic space.

Note. Such a cyclic space will also have the
following additional property:

2N <<a®b,c®d >=<<b®d,a® c>>.
Moreover 2') and 3) are equivalent to 2) and 3).

4) The map from V&V >VQV
(extended then by antilinearity to
VeV)®,C by J(®)=b®a is an

involution.

Proof. Assume 2), 3) are true. Then because
of 2) we have

<<b®d,a®c>=<<a®b,c®d>>.
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Clearly,

<< J(a®b),J(c®d)>=(b®a,d ®c)
=<<a®b,c®d >>.
Note also that

<<a®b,c®d>>=<<a®c,b®d >>

which follows by aplly iteratively properties
2) and 3). i

In the next proposition we prove that the
cyclic structure on ¥V, can be extended to a
larger space W, such that if y is an element in
V&®V, the product identification in the
scalar product given by << ,>> we have

yeWE=wel).

Proposition. Let V be a finite dimensional
cyclic vector space. Let y be a selfadjoint
element in (V®V)®, C (that is J y=y)
of lenght 1 and that is not identified (via
<<,>>) with an element in V&1 (or
equivalently 1®V ).

Fix an orthonormal basis x,,x,,"-+,x, of V,

and asuume that x 1=1, the pointed vector of V.

Then for every ¢ > 0, there exists an e-

perturbation <<,>>_ of the original

structure << ,>> that is

‘<<xj ®x;, %, ®x, >>—<<x; Qx;, x, Ox; >>‘ <€
for all ijkliI=12,..,n, with the folowing
properties:

Let Y be an undeterminate and let
W =V ®RY . Consider a scalar product
on W such that W,X,,X,,--,X,,Y as an

orthonormal basis.

Then, W has cyclic vector space structure
<<, >>,,, such that

1) <<,>>,, extends the structure <<,>>_
on VRV,

2) y =Y ®1 (modulo<<,>>, ).

Proof- We will use in the proof the notation
)cl.Y,Yx,,Y2 for x, ®x,

1

X, X

iy

X, ®Y, Y®x,Y®Y

We need to define <<Y ®x,,x; ®x, >>,

for i,l. Note that <<Y ®x, I®x, >> is
already defined and required to be equal to
<< y,x,x; >>,asis <<Y,x,x; >> required
tobe (¥, x,x,).

We consequently will start by constructing
the vector £, in (V' ®V)®, C, which will
correspond to the projections of the vectors
Yx in W, W)®,C onto (V®V)®, C
(projection with respect to the scalar product
induced by << ,>>).

The vector, &, a=2,...,n, are subject to

<< &, ,x,x, >>=<J& ,x . x, >

()

=<<Jé,,Jx, x, >>=<< &, ,x,x, >>

for all a,b,c=2,...,n, conform with properties
2), 3). We will use the notation << ,>> for
<<,>>_ until we define the requirements on

the deformation.

We also require that the projection of x aY to

be J&,, and hence properties 2), 3) will be
satisfied at least for the projections of the
vector &, .

Let P be the projection of (V®,V)®,C
onto (W®,C)". Note that
A5,=(&,,(1-P)x,x,) are predetermined (as

quantities

the numbers <<¢&,,& >>=<<y,x,x, >>
are all determined).

Hence to verify relations (1) we have to

determine vectors 77, in (V®V)&, C-V®,C
(that will be equal to P& ) that verify the

equations
< Ua’xbxc > _<J77b’xcxa >:0;b = _/,{’Zh + //i’}fa’
a,b,c=2,...n,b>a. 2

(Note that in relations (1) the a,b are
interchangable and that for b=a the relations
are redundant.)

We denote by R(7,), 1(17,) the real and
imaginary part of 77, with respect to J.

Then let v, be the real part with respect to J

of the complex Hilbert space
[((V®, N®, C—V®, RC]. The problem to
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solve the equations (2) reduces to finding
2(n-1) vectors R(n,), 1(n,), a=2,...,n, in

v that verify the following conditions:

<< R(na )7R(xbxc) >>+ << I(Ua ):
I(x,x,) >>+<<R(n,),R(x,x.) >>
+<<1(n,),1(x,x,) >>=Re(F,,), 3

<<I(n,),R(x,x.)>>+<<R(n,),
I(x,x,)>>+<<1(n,),R(x.x,) >>
+<<R(,),I(x,x,)>=Re(d;), (“)

a<b,a,b,ce {2,...,n}.

We will do so by showing that the equations
(3), (4) are non-contradictory. We consider

the vectors (R(17,),1(77,))ciz...y @ vectors

in v, and hence, we have to verify that the

relations

(C-R0)A )50 R ) ()50 ) V) = ReO,,

and similar set for the imaginary part are non-
contradictory. The corresponding vectors are

v, =(0...R(x,x,),I(x,x,)..0—R(x.x ),I(x.x,)...)
wi=(0..—1(xx),R(xx.)..0 I(xx),R(x.x)...).

where the non-components are exactly on the
components corresponding to a and b.

We will choose the deformation so that the
vectors v;,,w,, are linearly independent so

that one can solve equations (3), (4).

Having a linear combination that gives 0
would correspond to

c .c ¢ ..c _
Z aabvab + Z ﬂahwah _0'

2<a<b<n 2<a<b<n
2<c<n 2<c<n

We fix an a and look what this relation
correspond on the real imaginary components in
the a-components. There are two possible
situations. We have a contribution to this column
for some b>a, or it may be obtained from a b'<a
(roles beeing switched in this last case).

Thus it may happen that (for the real
component)

Y. (g R(xyx)+ By (<1(x,x,)))

2<a<b=<n
c

+ ZE: (612; _']?(X%“xb,)'+ [%;;](X%Vf)) ::0

2<b'<asn
2<c'<n

6]
and for the imaginary component:

Z (@ l(x,x,)+ By R(x,x,))

2<a<b<n
c

+ z (alf'yal(xc'xb') + ﬁlj;R(xc'b' ) =0.

2<b'<as<n
o

(6)

At this moment we construct a deformation
of the original scalar product that should
enable us to conclude linear independence.

We construct the following deformation of V.
Add in direct sum ,/(1-¢&")x, @ \/Esl. =X,
where s; are semicircular [Vo], so that X,

remains an orthonormal basis. Moreover,
with respect the new X, the scalar product <<
,>> is deformed from the old one by less than
g, &' is small enough.

In this deformation (x,x,),,., are linearly

independent and independent from (x,) .
In particular, over the reals, /(x,), R(x,)

are linearly independent. Because Pr, =177,

we have to take into consideration that the
projection P of the elements in (5), (6) is 0,
i.e., that these linear combinations will
produce a conflict if they arrive in V.

From (5), (6) it follows that
Y auRGx)+ Y ap, (<R(x,x,)) =0

2<a<b<n 2<b'<asn
c c'

(7
Y anlxx)+ Y apd(x,x,)=0
2<a<b<n 2<b'<asn
c c'

®)

Similarly, we have the relations

> B (Ixx N+ Y B d(x) =0

2<a<bs<n 2<b'<a<n
2<c<n 2<c'<n

(€)]
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and

Z BapR(x,x.)+ Z B R(x,,)=0

2<a<b<n 2<b'<asn
c c'

(10)

Now, in the relations (6), (7), clearly if in the
first sum c¢>a or in the second sum c'<a, these
terms cannot cancel each other, so their
coefficients must be zero.

The only possibility that a term in the first
part of the sum is equal to one in the second
half is when c<a, ¢"™>a and c corresponds to »'
in the second sum while ¢' corresponds to b in
the first.

Note that in this case one has to have
al, —ag, =0 from the first sum and the

opposite from the second. Hence also these
coefficients may be zero likewise for the
p-coefficients.

Step 2 of proof. We define the matrix
<<Yx,,Yx, >> and << ¥x_,,x,Y >>. We

are obliged to take

<<x,Y,x, Y >>=<<Yx,,Yx, >>.
Moreover, one should have that the matrix
<< Yx,,Yx, >> has any property that

<<Y?,x,x, >> thatis:

(*) if z 0 ,x,x, =0 with respect to <<,>>
then z 0, <<,Yx,,Yx, >> should be 0.

In order that <<>> is a positive scalar product
it is necessary and sufficient that the matrix

<< a(¥x,),B(¥x,) >>Z,b:1,a,/)’:l,j

> <<a(Yx,),e >><< f(Yx,),e >>,

Where £ runs over a basis of V ® V .
Moreover, the only condition (*) comes to
the requirement that

((Yxa Y, )+ (Yx L Yx >)Z:2 be

proportional to the numbers c,.

We impose << Yx, ,x,¥ >>=0 and clearly

we can find a large enough positive matrix
with this property (since * doesn’t imply that
the matrix (Yx,,Yx,) should be singular).

Step 3. We define <<Yx,,Y* >> to be 0 and

equal to <<Y,Y? >> taking <<Y?,Y* >>
to be large enough we get a scalar product.

Theorem. Let V be a
dimensional  vector space
Xy, X,. Then for every &>0, there exists

cyclic  finite
with  basis

an ¢ deformation of the original structure
on V  (that preserves the square
conditions) and there is an infinite
dimensional cyclic prehilbertian space W,

with orthonormal bases X,..X,,X, . s
d(xx, ,W®1)=0,Vij the

distance is relative to the norm induceded
by positive bilinear form on W.

such that

Proof. We apply successivelly the previous
proposition. Moreover, at every step n we use

/2" . At every step we are extending the
basis from the previous step. Let <<,>>  be
the scalar product on W, at step n. Then the

sequence << X,X,,X,X; >> is convergent

j b
and defines a cyclic structure on the reunion

W of W,. Moreover, the
d(x;x;,W) tends to zero.

distance
Jj?

Note. If W can be obtained as an algebra of
bounded operators, with trace then it would
follow that [Ra] every positive polynomial p
of degree four, that is positive under the trace
in any I factor, then p is a sum of squares

(modulo universal terms of zero trace).
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