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1. Introduction 

Global optimization of continuous black-box 
functions that are costly (computationally 
expensive, CPU-intensive) to evaluate is a 
challenging problem. Several approaches 
based on response surface techniques have 
been developed over the years.  A common 
feature is that, unlike local optimization 
methods, every computed function value is 
saved and utilized.  

Problems that are costly to evaluate are 
commonly found in engineering design, as 
well as industrial and financial applications. A 
function value could be the result of a complex 
computer program or an advanced simulation, 
e.g. computational fluid dynamics (CFD). Hence 
consuming anything from a few minutes to many 
hours of CPU time.  

From an application perspective there are 
often restrictions on the variables besides the 
lower and upper bounds, such as linear, nonlinear 
or even integer constraints. The most general 
problem formulation is as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Mixed-Integer Costly Global 
Black-Box Nonconvex Problem 
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Let dR∈Ω be the feasible set defined only by 
the simple bounds, the box constraints, and 

d
C R∈Ω  be the feasible set defined by all the 

constraints in (1).  
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(CGO) solver utilizes a surrogate model, or 
response surface, to approximate the true 
(costly) function.  The RBF algorithm 
introduced by Powell and Gutmann [2, 9] use 
radial basis function interpolation to build an 
approximating surrogate model. The EGO 
algorithm by Jones et al. [6] utilizes the DACE 
framework.  By optimizing a less costly utility 
function these algorithms determine a new 
point, where afterwards the original objective 
function is evaluated. This is repeated until 
some convergence criteria is fulfilled.  

2. Experimental Designs  

Common for all surrogate model CGO solvers 
is the need of an initial sample of points 
(experimental design) to be able to generate the 
initial surrogate model.  For all these points the 
costly function values are calculated.  The 
initial surrogate model is built from these 
sampled points and used as an approximation 
of the true function. A new point to sample is 
then decided by some algorithmic strategy, and 
this continues until some convergence criteria 
is met. 

It is not obvious how to choose this initial set of 
points, but there are some criteria we strive to 
fulfill. As the problems to solve are considered 
black-box, we have no idea what the function 
might look like. Therefore it is most important 
that the experimental design have some sort of 
space filling ability, i.e. avoid sampling only a 
certain part of the design space.  

2.1 Deterministic Global Solver 

It is of course possible to utilize any standard 
global optimization solver for a limited number 
of iterations, just in order to get an initial set of 
sample points for the surrogate model to get 
going.  After all, deterministic global 
optimization algorithms are designed to find 
the global optimum as fast as possible, so why 
not use this fact and let the solver find good 
initial points.  

In this paper we utilize the DIRECT algorithm 
(DIviding RECTangles) by Jones et al. [5], 
implemented in the TOMLAB Optimization 
Environment [4] as solver glcDirect1. This is a 
deterministic global optimization solver, but not 
itself suited for the costly problems considered.  
1 http://www.tomopt.com/tomlab/  

The maximal number of sample points N is 
possible to set when running glcDirect. But, 
because the algorithm generates more than one 
new point in each iteration, the costly function 
value might be computed for a few more 
sample points than  N.  

2.2 Corner Point Strategy  

RBF solvers tend to sample points on the 
border, which seldom contribute as much 
information as interior points to the 
interpolation surface. This problem is 
thoroughly discussed by Holmström in [3]. To 
increase the chances of sampling interior 
points, a first idea was to sample all corner 
points of the box constraints Ω, and 
additionally the midpoint of the box.  

It turns out that unless the midpoint is the point 
with lowest function value, the initial 
interpolation surface will have its minimum 
somewhere on the boundary, and the CGO 
solver sometimes samples a new border point. 
To avoid this we propose sampling the corner 
points of half the bounding box, centered 
around the original midpoint, until we find a 
point with lowest function value so far. The 
idea is demonstrated in Figure 1.  

For problems in higher dimensions d, the 
exponential growth in number of corner points 

dN 2= becomes an issue. A good alternative 
is then to sample only a subset of corner points. 
One idea is to sample only the lower left  
 

 

 

 

 

 

Figure 1. The Corner Point strategy in 2 dimensions.  

corner point of the bounding box plus all its 
adjacent corner points. This yields a more 
moderate number of initial sample points N = 
d + 1. This is also the minimum number of 
initial points needed for the initialization of the 
RBF algorithm.  

A generalization of the previous corner idea is 
to choose both the lower left and the upper 
right corner points, plus all adjacent corner 



Studies in Informatics and Control, Vol. 18, No. 1, March 2009 89

points. This gives an initial sample of size N 
= 2·(d + 1) if d > 2.  In two and three 
dimensions, the strategy is equivalent to 
sampling all corner points.  

2.3 Maximin LH Designs  

Latin Hypercube Designs (LHD) is a popular 
choice of experimental design. The structure of 
LHDs ensures that the sampled points cover 
the sampling space in a good way. They also 
have a non-collapsing feature, i.e. no points 
ever share the same value in any dimension.  
Maximin LHDs give an even better design, as 
the points not only fulfill the structural 
properties of LHD designs, but also separate as 
much as possible in a given norm, e.g. the 
standard Euclidean norm. It is possible to 
generate Maximin LHDs for any number of 
points N.  

A good collection of Maximin LHDs, 
together with many other space filling 
designs, can be found at 
http://www.spacefillingdesigns.nl together 
with state-of-the-art articles in this area.  

3. Handling Constraints 

When solving problems with additional 
constraints, besides the box constraints, it 
might be better to avoid sampling initial 
points that are not feasible since the function 
evaluation is extremely costly.  We now 
describe how the proposed methods in Section 
2 are adjusted to handle constraints, whenever 
possible. The methods presented here cannot 
handle equality constraints at the moment, 
however nonlinear equality constraints are also 
difficult in general.  

There exist other ideas on how to find a space 
filling initial sample, taking into account the 
constraints. Stinstra et al. [10] solves an 
optimization problem, where the objective is to 
maximize the minimum (euclidian) distance 
between N feasible points.  

3.1 Constrained Deterministic 
Global Solver  

We need to select a global deterministic solver 
that is able to handle constraints. The DIRECT 
algorithm was extended to handle nonlinear 
inequality constraints by Jones in [7]. In the 

TOMLAB implementation of the con-strained 
DIRECT, glcDirect, the DIRECT algorithm is 
generalized to separately treat linear equality 
and inequality constraints, and nonlinear 
equality and inequality constraints. Since the 
algorithm always divides a rectangle in three 
pieces, infeasible points might still be included 
in the initial iterations, even if glcDirect has a 
feature to delete rectangles that are infeasible 
with respect to linear inequality constraints, 
and avoid computing f(x) for points infeasible 
with respect to linear and nonlinear constraints.  

3.2 Corner Point Strategy  

The Corner Point Strategy is not able to handle 
constraints in a straight-forward way. It is 
possible to check which generated points are 
feasible, but what should be done if only a few 
of them are feasible? One could develop 
strategies on how to choose additional points, 
but then we diverge too much from the original 
idea of sampling the corner points. Therefore 
we only consider the basic approach, i.e. not 
taking constraints into account. 

3.3 Constrained Maximin LH Designs  

We have developed a method to create an 
initial sample fulfilling both the LHD structure 
and all constraints given for the problem. The 
method utilizes large Maximin LHDs, where 
the number of points in the design is 
significantly larger than the desired number of 
initial points, and only picks out the feasible 
points. The method is described in pseudo-
code below, see Algorithm 1.  
______________________________________ 
Algorithm 1 Find N feasible Maximin 
LHD points  

1: Initialize M := N + # constraints.  
2: Apply Maximin LHD with M points to 

constrained problem.  
3: Calculate number of feasible points Mf.  
4: if Mf == N then  
5:     STOP. 
6: else if Mf < N then  
7:      Increase M, go to 2. 
8:  else  
9:      Decrease M, go to 2. 
10: end if  

If the value of Mf starts to alternate between 
two values, one less than N and the other one 
greater than N, stop the algorithm and declare 
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failure to find exactly N feasible points. The 
Maximin LHD with too many feasible points is 
used. The resulting design includes N feasible 
points with a Maximin LHD structure. An 
illustrative example is found in Figure 2. 

 

 

 

 

 

 
Figure 2.  A 15 point Maximin LHD with Mf = 9 

feasible points. 

4. Benchmark and Tests 

Our aim is to test the set of experimental 
designs presented in previous sections. Define 
the set of experimental designs as E, and pick a 
set of test problems P and a set of solvers S. 
Every combination of problem Pp∈  and 
experimental design Ee∈  is solved with each 
solver .Ss∈  Below the different designs, 
solvers and test problems used in the 
benchmark is presented.  The set of 
experimental designs E is summarized in Table 
1.  Information on the test problems are found 
in Table 2.  

Three solvers from the TOMLAB/CGO 
environment are used. The rbfSolve and 
arbfmip solvers utilize radial basis functions, 
and the EGO solver utilizes the DACE 
framework. The algorithmic structures are 
coded in MATLAB but all heavy calculations 
are in TOMLAB implemented in Fortran and 
C code, and interfaced using so called mex file 
interfaces.  

4.1 Set of Experimental Designs  

There are two main parameters to consider: 
first, the number of initial sample points N, and 
second, for constrained problems, whether or 
not to take the constraints into account. The 
tested combinations are described and 
motivated below.  

Size N  

The Corner Point Strategy generates a fixed 
number of initial sample points, one for each 

corner point of the bounding box. The other 
two strategies can generate any number of 
initial sample points. We use N1 = (d + 1)(d + 
2)/2  and  N2 = 10·d + 1, where d is the 
dimension of the problem to be solved.  

Constraints  

The Maximin LHD strategy can handle 
constraints by applying Algorithm 1. To test 
whether it is more efficient to force all the 
initial sample points to be feasible, all problems 
with constraints in combination with the 
Maximin LHD design are solved twice.  First 
using the standard strategy and then applying a 
Maximin LHD with only feasible points.  

Combinations  

Table 1: The Set of Experimental Designs (E). 

Experimental 
Design 

Size of N Constraints

Corner Points Fixed No 

GO Solver N1 and N2 Yes 

Maximin LHD N1 and N2 No 

Maximin LHD N1 and N2   Yes 

Corners + GO N1 and N2 Yes 

Corners + 
LHD 

N1 and N2 No 

Corners + 
LHD 

N1 and N2 Yes 

Inspired by some preliminary results we also 
tried to combine the Corner Point Strategy with 
the other two designs. All corner points (no 
interior points) were added to the result of 
either the global optimization solver or the 
Maximin LHD.  

4.2 Set of Test Problems 

In total, a set of 15 box-bounded unconstrained 
problems UP  and a set of 6 constrained 
problems CP  are solved. Most of them are 2-
dimensional problems, except a few problems 
in 3 and 4 dimensions. All problems in CP , in 
combination with the Maximin LHD 
experimental design, are solved twice (with 
and without taking constraints into account).  
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Table 2 The Set of Test Problems (P). 

Problem set PU PC 
Dimension  d  2     3    4   2     3
No. of problems 13    1    1   4     2

None of the test problems above have a global 
minimum in a corner point or midpoint, as this 
obviously would benefit the Corner Point 
Strategy.  

Problems in only 2 or 3 dimensions might 
seem very simple, but even problems of this 
size are non-trivial and might be hard to solve 
when the problems are costly to compute. It is 
quite common that costly problems are of 
small size, with less than 10 unknowns.  

5. Numerical Results 

To present the benchmark results in an easy 
way, we utilize profiling. A performance 
profile [1] shows the relative performance of 
the solvers in S on the given set of problems P. 
However, performance profiles do not provide 
the number of function evaluations required to 
solve any of the problems.  

Since function evaluations are expensive we 
are interested in the percentage of problems 
solved (for a given tolerance) within a given 
number of function evaluations. Data profiles 
[8] are specifically designed to handle this. 
These profiles are both probability density 
functions, but with an important difference. A 
data profile is independent of the set of solvers 
S, while the performance profiles are computed 
relative the other solvers in S. 

5.1 Metrics 

The solvers are set to break after 200 function 
evaluations or earlier if convergence to the 
known global optimum is obtained. The 
relative error is defined as 

,min

opt

opt
r f

ff
E

−
=  

Where  fmin  is the current best function value 
and fopt is the known global optimum. 
Convergence is assumed if the relative error Er 
is less than 0.01. In the case fopt = 0, stop when 
fmin is less than 0.01. To compare the outcome 
of each experimental design, a number of 
metrics are used:  

f%  Number of function evaluations needed to 
reach 1, 2, 3 and 4 digits of accuracy (Er ≤ 
10−k   k = 1, 2, 3, 4). This is the primary 
goal for most optimization problems.  

x%  Number of function evaluations needed to 
sample a point within 10% and 1% of the 
design space, centered around the global 
optimum. It is very important to sample 
points close to the global optimum.  When 
this basin is found, the CGO solvers tend 
to converge quickly.  

RMS When the algorithm stops, the final 
surrogate model s(x) is compared to the 
true function f (x). A grid of points is used 
to calculate the Root Mean Square error.  
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For d = 2, 412 = 1681 points are used.  
For d = 3, 213 = 9261 points are used. 
For d = 4, 114 = 14641 points are used.  
It is good if the final surrogate model 
captures the main features of the costly 
function, however the main goal is to 
find the global minimum rather than 
having an overall good approximation to 
the objective function.  

Smaller values are better for all metrics. To 
compare the experimental designs, data 
profiles for the costly  f %  and  x%  metrics are 
used. The RMS measure is not costly and 
presented using performance profiles.  

5.2 Results 

Since our focus of interest is to compare the 
performance of experimental designs, not 
specific solvers, accumulated results for each 
design are presented and discussed. Analysis 
for each solver has been done as well, and if 
any result differs significantly for a specific 
solver, a note is given.  

We present the analysis for the set of 
unconstrained problems PU, but results are 
valid for PC as well if not specified otherwise. 
First compare the experimental designs where 
N, the number of initial points, was set to either 
N1 = (d + 1)(d + 2)/2 or N2  = 10·d +1 
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Figure 3 shows that the Maximin LHD with N2 
performs slightly better for all metrics. The 
results are similar for the deterministic global 
solver, and hence consider only the N2 setting 
in forthcoming analysis.  

Overall best Experimental Design  

Comparing the results of the three originally 
proposed experimental designs, the Corner 
Point Strategy and the global solver approach 
have a very similar success rate for all metrics, 
as seen in Figure 4. The Maximin LHD falls 
behind when it comes to finding many digits of 
accuracy, but is superior when looking at the 
RMS error. But as noted, a good RMS error is 
not the main goal in global optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the PC  problems, the Maximin LHD 
design performed much better and 
outperformed the other designs for all metrics. 
But since PC contains only 6 problems this 
might just be a coincidence.  

The high success rate of the Corner Point 
Strategy encouraged us to explore two 
combined versions. The global solver approach 
and the Maximin LHD is used as before, but 
the corner points of the bounding box are then 
added to the initial design. This increases the 
number of initially sampled points somewhat, 
but should contribute to a more robust design. 
The outcome of this experiment is found in 
Figure 5. 
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Figure 3. Comparison of setting N1 and N2 for Maximin LHDs. Data profiles for the metrics  f%  
and  x%  are used, and a performance profile for RMS. 
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Figure 4. Comparison of the 3 proposed Experimental Designs. Data profiles for the metrics  f%   and  
x%  are used, and a performance profile for RMS.  
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Figure 5. Comparison of Experimental Designs. Data profiles for the metrics  f%  and  x%  are used, 

and a performance profile for RMS.  
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A slight improvement can be seen for the 
Corner Points - deterministic global solver 
combination (CP+DGS). The second 
combination, Corner Points -Maximin LHD 
(CP+LHD), has no obvious effect on the  f%  
and  x%  metrics.  

The RMS error is improved for both 
combinations, and since more points are 
sampled initially this seems reasonable. Once 
again the Maximin LHD design, and the 
combination (CP+LHD), performed better on 
the PC  problems.  

Constrained versions or not  

The results of the ordinary Maximin LHD and 
the constrained version are compared on the set 
of constrained problems PC. Like before, only 
the N2 setting is used, since it outperforms the 
N1 setting. The extra effort of finding feasible 
points initially seem not to pay off as one might 
expect. Figure 6 does not show any significant 
improvement for the  f% and x% metrics. 

 
 

 

A possible reason for this is that although some 
points are infeasible, they still give information 
about the shape of the function.  Since only 
feasible points are sampled by the CGO 
solvers, these initial infeasible points give extra 
stability to the surrogate model, compared to 
sampling only feasible points initially.  

When considering the RMS metric for 
constrained problems, there are two ways to 
measure the error.  One can look at the whole 
design space, like before, but it is also 
interesting to measure only the feasible space. 
As seen in the plots, these two results are in 
conflict. Using a fully feasible initial design 
naturally gives better RMS error when only 
considering the feasible design space, but not as 
good when measuring the whole design space. 
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Figure 6. Constrained Maximin LHD versus standard Maximin LHD. 
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6. Conclusions 

The N2 setting performed better for all 
experimental designs, so this is definitely good. 
One could of course try to start with even more 
points, but since the CGO solvers are 
constructed in a way where each new point is 
chosen carefully by utilizing information from 
all the sampled points, this is probably not a 
good idea.  

Finding a feasible experimental design with 
space filling capacity is not easy. The 
algorithm proposed in this paper generates an 
initial design with feasible points having the 
structure of a Maximin LHD. To see any real 
effect of a fully feasible experimental design, 
one must probably have test problems where a 
large area of the design space is infeasible. 
Most of the problems in PC have large feasible 
areas and thus the effect is not as noticeable. 
Also, as the number of initial points N is 
typically a small part of the total number of 
sampled points, the effect is limited.  

Sampling the corner points of the bounding 
box add a tremendous stability to the solvers, 
one could think of it as pinpointing the corners 
of the surface and therefore getting a more 
stable description of the boundary. This feature 
is important as it tends to help the solvers 
sample more interior points, which often helps 
the convergence.  

The Maximin LHD approach is superior when 
looking at the RMS error. Combining this with 
the success of the Corner Point Strategy 
seemed like a promising idea, but 
unfortunately did not improve the  f%  and  x%  
metrics as we had hoped.  

There is no obvious winner since all the 
experimental designs work satisfactory. But 
since we consider costly functions, even small 
differences do matter. The combination of 
Corner Points and global solver performs very 
well compared to the other experimental 
designs, with robust results for all metrics. 
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