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1. Introduction

The field of aerial vehicles has witnessed 
remarkable advancements in recent years, 
specifically with unmanned aircrafts, commonly 
known as drones (AL-Dosari, Hunaiti & 
Balachandran, 2023). These pilotless systems 
find application in different fields, ranging from 
surveillance, security, medicine, military and 
agriculture to search and rescue missions. Notably, 
quadrotors, a subset of drones characterized by 
their four-rotor configuration, exhibit superior 
performance in security and inspection missions, 
due to their precise and stable hovering capabilities 
as well as high manoeuvrability (Sonugur, 2023).

In security-sensitive applications, drones become 
more vulnerable to failure scenarios, which 
requires the implementation of Fault-Tolerant 
Control (FTC) mechanisms (Mlayeh & Khedher, 
2023b; Jamel, Khedher & Othman, 2017). 
Such control is crucial for maintaining vehicle 
objectives, even in the face of failures.

There are various techniques that can be used 
to control a drone under failure. For instance, 
Zhang et al. (2022) employed a predictive 
control strategy to reconfigure an aerial system. 
Such FTC allowed the handling of diverse 
control constraints, including those resulting 
from the inherent limitations of the actuators. 
Nevertheless, the application of this technique 
introduces high computational load, as it 
requires real-time optimization. Expert systems 
were employed by Feng et al. (2023) to handle 
different issues in a vehicle’s wireless network, 
including multiple sensors concurrent failure. The 
proposed framework enabled both fault detection 

and diagnosis. Merheb, Noura & Bateman (2014) 
applied the sliding mode controller to monitor a 
drone with one partial rotor defection. In case a 
rotor was completely lost, hardware redundancy 
could be employed, as demonstrated by Saied, 
Shraim & Francis (2023). However, this hardware 
duplication, although efficient, increases the size, 
cost and weight of the vehicle. Thus, it is not 
always privileged. Alternative control frameworks 
(Dalwadi, Deb & Ozana, 2022) relied on adaptive 
backstepping to accommodate the complete loss 
of a drone’s motor. Azeem et al. (2024) used 
Linear-matrix-inequalities (LMIs) to conceive a 
FTC scheme that tackles the fault in the actuator 
channel of an octa-rotor aerial vehicle. In the 
specialized literature (Saied et al., 2023), the 
Linear-Quadratic Regulator (LQR) was presented 
as an effective strategy for FTC of a quad-plane 
vehicle. This approach constructs feedback control 
by minimizing a cost function that relies on both 
control and state variables. The primary strengths 
of LQR lie in its simplicity, along with its capacity 
to regulate the settling time of state variables and 
control the amplitude of inputs.

It must be stressed that choosing the suitable 
control method depends on the fault type, the 
system nature and, mainly, the mathematical 
model. Indeed, establishing the appropriate system 
model is a crucial step in FTC. Linearizing the 
system equations around an equilibrium point 
is a widely used technique. For instance, Zhou 
et al. (2019) used a predictive control based on 
successive linearization model to control the 
position of a drone. Despite its simplicity, this 
linearized model is valid solely in a limited area 
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around the equilibrium point. That makes the 
system model “unreal” and less representative 
of the vehicle complexities. Mlayeh & Ben 
Othman (2022b) and Mlayeh & Khedher (2024) 
used the nonlinear modelling to establish FTC 
of an aircraft. Using nonlinear equations made 
the model more accurate and valid in a larger 
range. However, some simplifications such as 
the small angle approximation, had to be made 
in order to apply the control strategy. Moreover, 
the complexity of the model posed challenges in 
establishing certain mathematical theorems or 
assumptions, such as proving stability through 
Lyapunov function analysis.  

While significant improvements have been made 
in FTC for nonlinear systems, the majority of the 
established controllers suffer from complexity 
and heavy reliance on precise mathematical 
formulations of the underlying models. 

The Takagi-Sugeno (TS) models are a type 
of Multiple-Models (MMs) (Zhang, Wang & 
Wang, 2023; Elleuch, Khedher & Othman, 2018) 
that enable the control of nonlinear systems 
across a broad operational range, split into 
distinct linearized regions. TS models are one 
of the favoured tools for representing nonlinear 
systems, by approximating complex, nonlinear 
relationships (Khedher, Elleuch & Ben Othman, 
2022; Jamel et al., 2010a). Such characteristic 
enables them to effectively capture the complexity 
of nonlinear systems and to handle nonlinearities 
in a structured manner. At the same time, linear 
tools and methods can be exploited by providing 
a piecewise linear representation, which leads 
to efficient modelling and control solutions 
(Bouguila et al., 2013).

This paper investigates the problem of FTC of a 
quad-rotor aerial vehicle using TS models. The 
considered nonlinear system was first introduced 
by Mlayeh & Khedher (2023a) and Mlayeh et 
al. (2021). In the aforementioned specialized 
literature, authors have proceeded either by 
linearizing the system and using PD control, or by 
keeping nonlinear equations and using recursive 
control techniques. The proposed control dealt 
with disturbances and structural faults. However, 
theoretical stability proofs were never made. This 
study proposes a new model of the vehicle, build, 
for the first time, using TS models. The main 

objective is to stabilize the vehicle orientation 
when faults affect the four rotors simultaneously. 
An accommodation strategy is proposed using 
LQR technique and based on the developed sub-
models. The stability of the new model is proved 
using Lyapunov theory and LMIs.

The rest of this article is structured as follows. 
Section two describes the vehicle and its nonlinear 
dynamics. Section three represents the system 
modelling, using TS approach, as well as stability 
proofs, using Lyapunov theory. In section four, the 
accommodation scheme is presented using LQR 
technique. Section five is dedicated to simulation 
results. Finally, section six presents the conclusion 
of the present paper.

2. Vehicle Description

The vehicle considered in this study is the 
“DraganFly” four-rotor drone (Bresciani, 2008). 
A simplified structure of the drone consists of two 
crossing arms and two pairs of motors positioned 
along each of its arms. The pairs of motors 
spin at opposite directions to maintain stability. 
Moreover, when all motors rotate at identical 
speeds, the vehicle can sustain a consistent 
heading during hovering. The drone can perform 
three rotational movements known as roll, pitch 
and yaw, according to axis (x, y, z) respectively. 
The expression of these Euler angles (φ, θ, ψ) and 
their derivatives define the angular position of the 
drone and can be obtained using kinematics and 
dynamics equations along with Newton’s second 
law (Mlayeh & Ben Othman, 2022a). 

The nonlinear equations in (1) represent the final 
expression of the vehicle’s attitude
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Ui represents the system’s inputs that depend on 
the motors’ speed, L is the arm size, Ix,y,z represent 
the body inertia and Ir is the inertia moment.
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3. Takagi-Sugeno Modelling

The multiple model approach consists of 
segmenting the system’s operating space into a 
finite set of distinct operating zones. Consequently, 
the dynamic characteristics of the system within 
each operating zone can be represented using 
a simple linear sub model. Each submodel 
contributes to the system by means of a weighting 
function. The final approximated system is 
obtained by establishing connections among the 
submodels, while accounting for their individual 
contributions (Jamel et al., 2010b). 

The objective in this section is to build a T-S 
model from the nonlinear system equations 
given in (1). In general, there exist three main 
approaches for the construction of fuzzy models: 
either through identification, when there is data 
on the inputs and outputs, or through linearization 
around different operating points, or by a convex 
polytopic transformation, when an analytical 
model is available (Chadli & Borne, 2012). The 
aforementioned strategy is used in this study. In 
general, a TS model has the following form:
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where ( ). nx ∈  is the vector of state variables, 
( ). mu ∈  is the inputs vector and ( ). qz ∈  is the 

vector of decision variables, also called fuzzy 
variables. iA  and iB  are constant matrices with 
appropriate dimensions. ( ).iµ  are weighting 
nonlinear functions that satisfy the convexity 
property (4):
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where i ∈ {1...N} and N represents the number 
of models.

3.1 Polytopic Transformation

This technique relies on the boundedness 
of nonlinear terms and consists of convex 
transformation of the latter. It permits a maximum 
reduction of the number of models. The first step 
consists of identifying nonlinearities in the system, 
by putting the nonlinear system in the following 
form:
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The number N of local models depends on the 
number s of nonlinearities in (5) where N= 2s. The 
second step is to identify the fuzzy variables zj, j 
∈ {1...s}. The choice is not unique as they might 
depend on the states, the inputs or both. For each 
variable zj, there exist two membership functions  
M1(zj) and M2(zj) such that:
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where zj is bounded on [zjmin, zjmax]. The 
membership functions can be expressed as follows:
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Finally, weighting functions ( )( )i z tµ  (see the 
system equations in (8)) can be obtained by 
multiplying the different membership functions and 
by following the TS fuzzy rules (Mehran, 2008).
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3.2 TS Model of the Drone

Considering the nonlinear equations in (1), the 
system can be transformed based on formula 
(5) where:
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By selecting     
T

x ϕ ϕ θ θ = Ψ Ψ 
 

 , one can 
choose four fuzzy variables (10) dependent on 
the state.
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One must remind that the choice of fuzzy variables 
is not unique. For instance, z1 and z3 can be chosen 
as a single variable that depend on x4. Given the 
physical properties of the drone, the bounds of the 
decision variables are as follows.
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The membership functions can be computed using 
relation (7). Finally, the drone can be described 
using 16 local models, {A1...A16} and {B1...B16} 
as given below. 
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3.3 Stability Analysis

For a given nonlinear system described by 
TS models, Chadli & Borne (2012) presented 
the following theorem as a sufficient stability 
condition for multiple models.

Theorem: The TS model (3) is asymptotically 
stable, if there exists a matrix P that is 
symmetric and positive definite, such that the 
LMIs (12) are verified:

{ }0       1T
i iA P PA i N+ ≤ ∀ ∈ …                (12)

Once matrix P is obtained, the assymptotic 
stability can be confirmed by deriving 
the  quadra t ic  Lyapunov funct ion 

( )( ) ( )( )TV x t x t Px t= . The existence of a 
matrix P that satisfies the LMIs (12) depends on 
two conditions. The first one is that each local 
model is stable (i.e. Ai has negative eigenvalues). 
The second condition is the existence of a matrix 
P that is common to all submodels.

In this study, the LMIs (12) were solved using 
a specific MATLAB toolbox, which lead to the 
required matrix P in (13):

2.8378 0 0 0.6159 0 0.0004
0 0.0029   0 0 0 0.0656
0 0 0 0 0 0

P  
0 0 0 0.1337 0 0

0.6159 0 0 2.9253 0 1
0.0004 0.0656    0 0 0 8.0019

− 
 
 
 

=  
 
 
 
−  

         

(13)

4. Fault Accommodation

This section proposes a FTC for the vehicle 
described by TS model. The accommodation 
procedure is based on the LQR approach. The 
formulation of the LQR problem, in the infinite 
horizon case, can be expressed in (14). For a given 
linear system in the state space form, the objective 
is to find the optimal control u(t) that minimizes 
the cost function J. Q and R are called “weighting 
matrices” and are selected according to the desired 
action on the state or the input.

( )
( ) ( )

0

T T

x Ax Bu

J x Qx u Ru dt

u t Fx t

∞

 = +



= +

 = −

∫



                               

(14)

The feedback gain is obtained using (15):

1 TF R B K−=                                             (15)

where K represents the solution of the Riccati 
equation (16):

1 0T TA K KA KBR B K Q−+ − + =              (16)

For a system described by TS model (3), the 
appearance of an actuator fault at time tf affects 
the different input matrices Bi. For each submodel 
(Ai, Bi), equation (16) is solved and the new FTC 
uci can be obtained using the relation in (14). 
Considering the closed-loop TS system (17), the 
asymptotic stability of the entire model can be 
proved using Lyapunov approach (Chadli, 2002):

( ) ( )( )( )
1

) (
N

i i i i
i

x t z t A B F x tµ
=

= −∑

           
(17)

A transition process is used to monitor the different 
intervals (18) that describe the system behaviour:

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) [

, , [0
0

, , [
0

, , [
0

n
x t z t A x t B u t t t ti i ni ni f

n
x t z t A x t B u t t t ti i fi ni f c

n
x t z t A x t B u t t t ti i fi ci c

µ

µ

µ


 = + ∈∑ 


 = + ∈∑ 

 = + ∈∑ ∞








        

(18)

where n, f, c denote “nominal”, “fault” and 
“correction”, respectively.

In this study, it is assumed that the diagnosis 
procedure is already performed. Therefore, the 
FTC is applied with the assumption that the fault 
model is known.

5. Simulation Results

The current section presents the simulation results 
of the vehicle during the different time intervals, 
as described in (18).

5.1 Nominal Conditions

In order to validate the TS model developed 
in section 3, simulation is performed using 
the 16 local matrices {A1...A16} and {B1...B16}. 
The outputs of the system are the different 
Euler angles and their respective derivatives 

    
T

x ϕ ϕ θ θ = Ψ Ψ 
 

 . The weighting 
matrices are chosen for simplicity: R = I4 and Q 
= I6. In this first interval, 0 , [ft t t∈   (see equation 
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(18)), it is considered that { } { }1 16 1 16.. ..n nB B B B=  
and, for each submodel, a gain Fni is computed 
using (15), leading to the control uni. Starting from 
the initial conditions [ ]0.5;0;0.02;0; 0.5;0CI = −  and 
using a fixed step Te = 0.005, one gets the results 
shown in Figure 1 and Figure 2. 

Figure 1. Orientation angles in nominal conditions

Figure 2. Angles derivatives in nominal conditions

Figure 3 illustrates the time evolution of the 
weighting functions ( )( )i z tµ  (denoted in the 
figure by hi ), that are clearly nonlinear and obey 
to the convexity property (4). Both Euler angles 
and their derivatives converge successfully to the 
equilibrium in 4s, which proves the validity of the 
model, as well as the adopted control.

Figure 3. Weighting functions

5.2 Fault Conditions

For the second interval , [f ct t t∈   from equation 
(18) an actuator fault occurs at tf = 4s. This fault 
affects the four propellers of the drone and is 
modelled using an additive matrix, added to each 
submodel, such that:

	    ,fi ni aB B B= +

638 0 0 0
0 638 0 0
0 0 638 0
0 50 0 400
0 0 10 0
0 0 0 10

aB

 
 
 
 

=  
 
 
 
                               

(19)

For the drone, this fault can be considered as an 
actuator bias. Since the physical inputs of the 
system are the motors’ speed, adding a constant 
value will act like an undesired acceleration 
command that will affect the intended control. 
Consequently, the motors will spin with 
inappropriate speed, causing the drone to 
change its normal direction. In reality, this can 
be caused by different scenarios such as sensor 
bias, mechanical issues in the motor itself or 
electronic component issues in the driver circuit 
of the motor. 

It must be stressed that matrix Ba is selected 
using a trial-and-error method. Although this 
method is time consuming and might not lead 
to the most accurate result, it still has several 
advantages such as the simplicity to implement. 
Also, it gives quick initial results by achieving 
a basic level of fault representation. The main 
criterion is to produce a significant deviation 
or divergence in the angular position of the 
vehicle. Once the fault occurs, simulation is 
performed using the new input matrices Bfi (see 
equation (19)), but with the same control uni , in 
order to analyse the impact of the defection on  
the vehicle. 

Figure 4 and Figure 5 showcase that the vehicle’s 
orientation angles witness a significant deviation 
and diverge completely from the nominal position 
at t = 6.5s.
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Figure 4. Orientation angles in failure conditions

Figure 5. Angles derivatives in failure conditions

5.3 Correction with FTC

In the last interval [ , [ct t t∞∈  from equation (18) 
the FTC uci is computed for each model, by solving 
the Riccati equation (16), while considering the 
matrices Bfi (see equation (19)). Then, it is applied 
at the instance tc = 5.5s. 

Figure 6. Orientation angles with FTC

Figure 7. Angles derivatives with FTC

Figure 6 and Figure 7 demonstrate the efficiency 
of the FTC approach. Starting from the instance 
of correction tc, all orientation angles and their 
derivatives converge again to the equilibrium 
position and the vehicle resumes again its normal 
behaviour.

6. Conclusion

This paper investigates the problem of FTC of a 
quad-rotor aerial vehicle using TS models. A new 
model of the vehicle was proposed and built, for 
the first time, using TS models. The main objective 
was to stabilize the vehicle orientation when faults 
affect the four propellers simultaneously. These 
faults caused the Euler angles to diverge, which 
significantly affected the stability of the vehicle. 
An accommodation strategy was then proposed 
using LQR technique and based on the developed-
sixteen submodels. The proposed FTC had 
successfully brought the vehicle to the equilibrium 
position. The stability of the new model was 
proved using Lyapunov theory and LMIs.

The validity of the developed new model as well 
as the FTC were proved through varied simulation. 
Moreover, the main advantages of the polytopic 
transformation used in TS modelling are to avoid 
the generation of approximation errors and to 
reduce the number of local models, compared to 
the linearization method (Chadli & Borne, 2012). It 
should be noted that reducing the number of local 
models leads to the reduction of the LMIs number, 
which consequently increases the chances of 
finding a Lyapunov solution for stability analysis.

In forthcoming studies, it would be interesting to 
develop a comprehensive framework that includes 
both fault diagnosis and FTC. Artificial Neural 
Networks can be investigated to estimate faults in 
nonlinear systems modelled by TS. Additionally, 
this research can be extended to achieve complete 
control of the drone, including its altitude and 
position regulation.
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