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1. Introduction

Over the past two decades, several control and 
decision-making systems have been developed 
using Particle Swarm Optimization algorithms 
(Kennedy & Eberhart, 1995). Many modern 
PSO algorithms combine different optimization 
methods, such as genetic algorithms, differential 
evolution, and other bio-inspired techniques 
(Akopov & Beklaryan, 2024; Molaei et al., 2021). 
Such hybridization helps to overcome the problem 
of premature convergence that is inherent to 
PSO, while improving the quality of the obtained 
solutions. There are single-objective and multi-
objective versions of PSO known as MOPSO.  

The PSO and MOPSO algorithms have been used 
to solve optimization problems in various systems 
(Demidova & Gorchakov, 2022). For example, they 
have been applied to the scheduling problem in the 
Internet of vehicles (Li & Wang, 2023), to control 
magnetic levitation systems (Engda et al., 2023), 
to improve prediction accuracy, to design PID 
controllers (Gao et al., 2021) and in other systems.  

The PSO combined with the Real-Coded Genetic 
Algorithm (RCGA) enables the optimization of 
the characteristics of Multiagent Systems (MASs), 
as demonstrated in (Akopov & Beklaryan, 2024; 
Akopov et al., 2020).

MASs are simulation-based systems comprising 
multiple intelligent agents. Optimizing MAS 

characteristics is a complex computational 
challenge because the values of the objective 
function are computed as a result of simulation 
modeling. In MAS, a large number of agents with 
individual decision-making systems interact with 
each other and contribute to the objectives of the 
whole system (Balaji & Srinivasan, 2009). 

Some studies propose using PSO for efficient data 
clustering (van der Merwe & Engelbrecht, 2003; 
Miles et al., 2020). At the same time, the PSO and 
the MOPSO algorithms can be enhanced through 
clustering techniques, as it was demonstrated in 
this paper.

There are some known limitations to existing 
particle swarm optimization (PSO) algorithms, 
such as their difficulty in finding optimal solutions 
with high accuracy, premature convergence to 
local extremes, and other issues (Gbenga & 
Ramlan, 2016). These limitations are particularly 
significant when solving multiobjective 
optimization problems in MAS with dynamic 
control over agent states. In such systems, even a 
minor change in the values of control parameters 
can cause a significant shift in the values of the 
objective functions due to the impact of scaling in 
agent-based models. Therefore, the development 
of new evolutionary optimization algorithms is 
crucial for MASs.
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This paper presents a novel clustering-based 
hybrid particle swarm optimization algorithm 
(CBHPSO) for finding trade-offs in a multi-
sectoral agent-based model of trade interactions.

The multisectoral agent-based model considered 
here is an assembly of agent enterprises belonging 
to different sectors of the economy which interact 
with each other to buy intermediate products and 
produce end products. Within the system, each 
agent aims to maximize its cumulative profit and 
the number of transactions with other agents. As a 
rule, these objectives are in conflict, as the growth 
of sales requires a decrease in prices, which can 
lead to a fall in the profit. 

The trade interactions discussed here are transactions 
between agents, as a result of which some enterprises 
receive products for their intermediate consumption, 
while other firms receive money from selling the 
end products. At the same time, the production of 
these end products is only possible if agents have 
all necessary intermediate products in quantities 
determined by technological requirements.

The proposed algorithm (CBHPSO) has 
several advantages over other multi-objective 
optimization methods, including the accuracy of 
the Pareto front approximation and its higher time 
efficiency. The CBHPSO algorithm can be used to 
find solutions within the developed MAS.

The main differences between the CBHPSO 
algorithm and other PSO algorithms can be 
summarized as follows:

	- CBHPSO uses clustering techniques to 
improve the quality of solutions obtained in 
solving biobjective optimization problems. 
This means that the local archives of 
nondominated solutions of particles in the 
swarm are combined and shared among all 
particles belonging to appropriate clusters;

	- CBHPSO periodically interacts with the 
multiobjective real-coded genetic algorithm 
(MORCGA) to update its local and global 
archives of non-dominated solutions with 
the non-dominated solutions of MORCGA. 
This approach aims to overcome the problem 
of premature convergence and improve the 
quality of the Pareto front approximation.

The remainder of this paper is organized as follows. 
Section 2 introduces the developed multisectoral 
agent-based model of trade interactions and the 
proposed CBHPSO optimization algorithm. 
Section 3 presents the results of the optimization 

experiments. Section 4 discusses the main 
advantages and limitations of this approach, while 
Section 5 concludes this paper.

2. Material and Methods

2.1 Multisectoral Agent-Based Model

The proposed approach is based on principles of 
the previously developed stochastic agent-based 
model of goods exchange (Akopov et. al., 2023). 
In this first simple model, agents are individuals 
who get involved in bartering or monetary 
transactions maximizing the utility of the future 
consumption. Such agents do not need the raw 
materials and time to create new products.   

The multiagent system presented in this paper 
consists of agent enterprises. Agent enterprises can 
be in the stock formation state, in the production state 
or in the selling state.  Such agents also act as both 
sellers and consumers making individual decisions 
on the purchasing intermediate products or selling 
the end product at any moment of time. In such a 
multisectoral model the input-output coefficients 
(technical coefficients) and prices of intermediate 
and end products are significant characteristics 
(Brems, 1957). At the same time, these prices depend 
on the spatial density of agent enterprises belonging 
to the same economic sector (Gu & Wenzel, 2009).  

A brief abstract description of the model is 
presented below.

Here,

	- 0 1{ ,   ...,  }T t t T=  is the set of time moments 
(by days), T  is the total number of time 
moments; 0t T∈ , Tt T∈  are the initial and 
final moments of the model;

	- 1 2{ ,  ,  ..., }JJ j j j=  is the set of indices of  
the economy sectors, where J  is the total 
number of the economy sectors;

	-
1 2

{ ,  ,  ..., }
I j

j j j jI i i i=  is the set of indices of 
agent enterprises of the j-th economy sector, 
|Ij| is the total number of agent enterprises of 
the j-th economy sector.

	- ( ) {1,  2,  3},  ,  i k js t i I j J∈ ∈ ∈  represents the 
states of the agent enterprise at moment ,kt
( )kt T∈ : 1 is the stock formation state, 2 is 
the production state, 3 is the selling state;

	- [0,  1],  ,jjk j j J∈ ∈


  represents input-output 
coefficients the values of which depend on 
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the production technologies used in the j-th  
economy sector;

	- ( )kijd t


, ( ),  ,  ,k jijd t i I j j J∆ ∈ ∈


  are the 
volumes of the intermediate products of 
the i-th agent of the j-th economy sector, 
produced in the j-th economy sectors and 
their increments due to purchasing at moment 

,kt ( )kt T∈ ; 

	- ( ),  ,  i k jp t i I j J∈ ∈  is the volume of end 
product produced by the i-th agent of the j-th 
economy sector at moment ,kt ( )kt T∈ ;  

	- ( )i kp t , ( ),  ,  i k jp t i I j J∆ ∈ ∈  represent 
the sales volume for the end product of the 
i-th agent of the j-th economy sector and 
its decrement due to selling at moment ,kt
( )kt T∈ ;

	- ri(tk), ei(tk) ∈ {0, 1}, i ∈ I, j ∈ J are the states 
of readiness of the i-th agent enterprise for 
purchasing intermediate products or selling 
the end product (i.e. when an agent is willing 
to buy or sell) for each moment of time kt , 
( ) :kt T∈  0 indicates that the transactions are 
not allowed, 1 indicates that the transactions 
are allowed.  This means that the parameter 

( )i kr t  influences the number of intermediate 
products intended to be purchased by the i-th 
agent and the parameter ( )i ke t  influences the 
number of intermediate products intended 
to be sold by the i-th agent, allowing or 
prohibiting appropriate deals at moment ,kt
( )kt T∈ . The values of ( ),  ( )i k i kr t e t  can be 
generated by using log-normal or heavy-
tailed distribution and other distributions.

The state of the i-th agent enterprise ( )ji I∈  
at moment ,kt ( )kt T∈  is given with the  
following rule:

1,  if I is true,
( ) 2,  if II is true,

3,  if III is true,
i ks t


= 

                                

(1)

where:

I. for the i-th agent ( ,  ,  ( ) 1)j i ki I j J r t∈ ∈ = ,  
1( ) ( ) ( )k k i kij ij jjd t d t p t k− + ∆ <

  

 is fulfilled for at 
least one ,j J∈  and there exists at least one i
-th agent such that ,  ,  ( ) 1kj ii I j J e t∈ ∈ =

 

  , which 
means that stocks of intermediate products are 
being created and the stock formation is possible;

II. for the i-th agent ( ,  )ji I j J∈ ∈ , 
1( ) ( ) ( )k k i kij ij jjd t d t p t k− + ∆ ≥

  

 for all ,j J∈  which 
means that all stocks of intermediate products 
are created and the agent enterprise is in the 
production state;

III. for the i-th agent ( ,   ,  ( ) 1)j i ki I j J e t∈ ∈ = ,  
1( ) ( ) ( )i k i k i kp t p t p t− + ≥ ∆ 

 is fulfilled, and 
there exists at least one i-th agent such that 

,   ,  ( ) 1kj ii I j J r t∈ ∈ =
 

  , which means that the 
stock of the end product is created and the sale 
is possible. 

The dynamics of stocks for intermediate products, 
and for the production and the sale of the end 
product for the i-th agent enterprise ( ,  )ji I j J∈ ∈  
are given as:

1

1

( ) ( ), if ( ) 1,

( )
( )

( ) ,  if ( ) 2,

( )

k k i kij ij

kij
kij

k i kij

i k jj

d t d t s t

d t
d t

d t s t

p t k

−

−

+ ∆ =

  = 
+∆ = 
  − 

 







         

(2)

1

1 1

1

( )
, if ( ) 2,

( ) ( )

( ),  if ( ) 2,

i k

J J
i k

i k i k jj
j j

i k i k

p t
s t

p t p t k

p t s t

−

= =

−

 
 

= = + 
 
 ≠

∑∑ 



      

(3)

1

1

( )
( ) , if ( ) 3,

( )
( )

( ),  if ( ) 3.

i k

i k i k
i k

i k

i k i k

p t
p t s t

p t
p t

p t s t

−

−

 
 + = =  −∆ 
 ≠







                  

(4)

When an agent enterprise is in the selling state, it 
searches for an agent buyer who needs an appropriate 
intermediate product. At the same time, the product 
price depends on the ratio between the number of 
sellers of a product and buyers located within the 
bounded area and the distance between them.

The price of the i-th agent seller ( ,  )ji I j J∈ ∈   for 
the i-th agent buyer ( ,  )ji I j J∈ ∈



   can be given as:

( )1
( )( ) ( ) ( ) ,
( )

i k
k j k kii ii

i k

M tt t t
N t

α
β

π π δ−

 
=  

 
 





          
(5)

1
( ) ( )

jI

i k kii
i

M t m t
=

=∑ 



,
                                      

(6)

ˆ
1

( ) ( )
jI

i k kii
i

N t n t
=

=∑ ,
                                       

(7)

1,  if  ( )  and ( ) 1,
( )

0,  if  ( )  or ( ) 1,
k kii i

kii
k kii i

t s t
m t

t s t
δ ρ
δ ρ

 ≤ == 
> ≠

 



 





       
(8)

ˆ ˆ
ˆ

ˆ ˆ

ˆ1,  if  ( )  and ( ) 3,
( ) ˆ0,  if  ( )  or ( ) 3,

k kii i
kii

k kii i

t s t
n t

t s t

δ ρ

δ ρ

 ≤ == 
> ≠         

(9)
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where:

	- ˆ
ˆ ˆ{ ( ),  ( )},  , ,k k jii iit t i i i Iδ δ ∈




  are the Euclidean 

distances between the i-th agent and the i -th  
agent buyer and between the i-th agent and 
the î -th agent seller, respectively. These 
characteristics define the metric distances 
between relevant agents with the specified 
coordinates { ( ),  ( )},i k i kx t y t { ( ),  ( )}k ki ix t y t

 

  , 
and ˆ ˆˆ ˆ{ ( ),  ( )}k ki ix t y t :

( ) ( )2 2ˆ ( ) ( ) ( ) ( ) ( ) ,k i k k i k kii i it x t x t y t y tδ = − + −
  

 

( ) ( )2 2
ˆ ˆ ˆ

ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ;k i k k i k kii i it x t x t y t y tδ = − + −

	- ( ),  ,  j k kt j J t Tπ ∈ ∈  is the average price for 
a product of the j-th economy sector;  

	- p is the radius of trade interactions (control 
parameter). The parameter defines the 
maximum distance between two agents at 
which their trade interactions can occur;

	- α, β ∈ [0, 1] are coefficients.

The distance between the product of the i-th agent 
seller ( ,  )ji I j J∈ ∈  and the product of the i -th 
agent buyer ( ,  ),ji I j J∈ ∈



   measured along the 
length of the arc of a numerical circle with evenly 
distributed numbers 1, 2, ..., J  can be expressed as:

1 ˆ( ) ( ) ( )
1k k kii ii iit t t

J
δ ϑ λδ= +

−  

,
                  

(10)

where

( ) ( ) ,  
( ) min

( ) ( )
i k ki

kii
i k ki

j t j t
t

J j t j t
ϑ

 ′ ′′− =  
′ ′′− −  











             
(11)

Here: 

	- λ is the coefficient (a small number) that 
determines the impact of the cost (related 
to the loss of benefits for the seller) due to 
the Euclidean distance between a seller and 
a buyer; 

	- ( )i kj t J′ ∈  is the index of the product proposed 
by the i-th agent seller ( ,  )ji I j J∈ ∈  at 
moment ,kt ( )kt T∈ ;

	- ( )kij t J′′ ∈


  is the index of the most 
desired product for the i -th agent buyer 
( ,  )ji I j J∈ ∈



   at moment ,kt ( )kt T∈ .

The average number of agents’ deals is: 

1

1 ( ),
j jk

k

I IT

kiiJ
t i i

j
j

D g t
I

=

= ∑∑∑
∑





                        

(12)

( )  and 
1,  if  and ,

ˆ ( )
( )

( )  or
0,  if  or ,

ˆ ( )

kii

ii

kii
kii

kii

ii

kii

t

t
g t

t

t

δ γ
π η

δ ρ

δ γ
π η

δ ρ

  ≤
  

∆ ≤  
   ≤  = 

 >
 
∆ > 
   > 













                

(13)

( )
( )

kii
ii

j k

t
t

π
π

π
∆ = 



 ,
                                           

(14)
 

where: 

	- , 0γ η >  are the coefficients of contractuality 
(control parameters);

	- ( )kii tπ


 , ( ),  ,  ,j k j jt i I j j Jπ ∈ ∈  are the price 
of the i-th agent seller for the i-th agent buyer 
and the average price in the j-th economy 
sector, respectively.  

The average cumulative profit of agents is: 

1

1 ( ) ( ),
j jk

k

I IT

k kii iiJ
t i i

j
j

P d t t
I

π

=

= ∆∑∑∑
∑

 



               

(15)

Problem A. The decision maker wants to find 
2 2{ ,  ,  ,  },  { , , }µ σ µ σ ρ γ η  , 

0{ ( ),  ( ),  ( ),  ( ),  }T
k k i k i k k kij ijd t d t p t p t t =∆ ∆

 

  such that 
the average cumulative profit and the average 
number of deals of agents be maximized. The 
mathematical formulation of the bi-objective 
optimization problem is as follows:  

 

2 2

0

2 2

0

{ , , , }, { , , },
{ ( ), ( ), ( ), ( ), }

{ , , , }, { , , },
{ ( ), ( ), ( ), ( ), }

max

max

T
k k i k i k k kij ij

T
k k i k i k k kij ij

d t d t p t p t t

d t d t p t p t t

P

D

µ σ µ σ ρ γ η

µ σ µ σ ρ γ η

=

=

∆ ∆

∆ ∆








 

 

 



 

                      

(16)

s.t. 
, [ 1,  1]µ µ∈ − , 2 2, (0,  1]σ σ ∈ , 

[1,  ]ρ ρ∈ , [0,  1]γ ∈ , [0,  ]η η∈ ,

( ) [ ,  ]kij ij ijd t d d∈
  

, ( ) [ ,  ],kij ij ijd t d d∆ ∈ ∆ ∆
  

( ) [ ,  ]i k i ip t p p∈ , ( ) [ ,  ],i k i ip t p p∈  

( ) [ ,  ]i k i ip t p p∆ ∈ ∆ ∆    for all ,  , ,  .j ki I j j J t T∈ ∈ ∈  

Here, ρ , η  are the upper limits of the control 
parameter values and ,ijd



,ijd∆


 ,ip ,ip ip∆  and 
,ijd


,ijd∆


,ip  ip , ip∆  are the lower and upper 
bounds of the values for internal variables of the 
model, respectively. 
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2.2 Clustering-Based Hybrid PSO

There is a number of multiobjective evolutionary 
algorithms, such as SPEA2 (Zitzler et al., 2001), 
NSGA-II (Deb et al., 2002), MOPSO (Xiaohui & 
Eberhart, 2002), FCGA (Akopov et al., 2022), and 
BORCGA-BOPSO (Akopov & Beklaryan, 2024). 
These bio-inspired methods, especially the hybrid 
ones (based on using particle swarm optimization 
and genetic algorithms) show a high performance in 
solving large-scale simulation-based optimization 
problems.  However, further improvements to 
these algorithms in terms of their accuracy in 
approximating the Pareto fronts are still required. 

The proposed algorithm (CBHPSO) uses 
clustering techniques to improve the quality 
of the obtained solutions in solving biobjective 
optimization problems. 

In general terms, the following problem is 
considered:

( )1 2min ( ) ( ),  ( )F f x f x=x ,                          (17)

s.t. 

1 2( ,  ,  ..., )  nx x x ′ ∈Ωx =  where
1 2( ,  ,  ..., )'nx x xx =  is a decision variable vector 

of dimension n , 
1

[ ,  ]
n

j j
i

a b
=

Ω =∏  is the feasible 

region of the search space (j = 1, 2, ..., n is the 
index of decision variables) and ( )mf x  represents 
the m-th objective functions ( 1,  2)m =  computed 
with the use of the agent-based model. 

The CBHPSO algorithm uses a swarm of particles 
to find nondominated solutions. Its main steps are 
presented in compact form below:

Algorithm 1. CBHPSO: main steps
1: Initialization
2: repeat
3: Calculating objective functions for all particles
4: If condition of domination is fulfilled then

5: Updating the archives of nondominated 
solutions

6: end if
7: Clustering particles in the criterion space

8: Selection of the local and global archives of 
nondominated solutions

9 Updating the velocities and values of decision 
variables

10: Interacting with the multiobjective genetic 
algorithm to exchange the optimal solutions 

11: until All iterations are completed

In Algorithm 1, the condition of domination can 
be given as:

( ) ( )
( ) ( )
( ) ( )
( ) ( )

11

22

22

11

( ) ( )  and

 ( ) ( )  or

( ) ( )  and  

( ) ( )  for  ,

k i i ki i

k i i ki i

k i i ki i

k i i ki i

f t f t

f t f t

f t f t

f t f t i I∀ ∈

x x

x x

x x

x x

 

 

 

 













              

(18)

where:

	- 1 2{ ,  ,  ...,  }TT t t t=  is the set of iterations of 
the CBHPSO, where T  is the total number 
of iterations;

	- { ,  ,  ... , }II i i i=  is the set of particles in 
the swarm, ,i i I∈  represent indices of 
nondominated and other (i.e. existing) particles;   

	- ( ),  ( ), , ,  i k k kit t i i I t T∈ ∈x x




  are the decision 
variable vectors of the given i-th particle and 
other i-th particles.

The clustering of particles in the criterion space 
in Algorithm 1 is completed by means of the 
k-means algorithm (Lloyd, 1982). Unlike other 
PSO-based evolutionary algorithms (e.g. MOPSO, 
BORCGA-BOPSO), the CBHPSO operates with 
the subsets of particles clustered in the criterion 
space by means of the k-means algorithm. As a 
result, the best (nondominated) potential decisions 
obtained by all particles within the appropriate 
cluster *( ),  ,  i k kt i I t T∈ ∈x  are formed. 

Periodically, there is interaction between the 
multiobjective particle swarm optimization 
algorithm and the multiobjective genetic algorithm 
to exchange optimal solutions and prevent 
premature convergence in the CBHPSO algorithm.

In the CBHPSO algorithm, the velocity vector 
for the decision variables is calculated, which 
determines the position of the i-th particles ( )i I∈  
in the space of potential decisions at the moment 

kt  ( ) :kt T∈

( )

( )

1

*
1

1

1

2 1 1

( ) ( )

( ,  (1,  )
          (0,  1)

( )

          (0,  1) ( ) ( ) .

i k i k

i k c

i k

g
k i k

t t

t h I
c q

t

c e t t

θ −

−

−

− −

=

 
 +
 − 

+ −

v v

x

x

x x






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Here:

1 2{ ,  ,  ... , }CC c c c=  is the set of particle clusters, 
where C  is the total number of particle clusters;
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	-
1 2

{ ,  ,  ... , }
Ic

c c c cI i i i=



    represents the set of 

indices belonging to the c-th cluster, where 
cI  is the total number of particles in the 

c-th cluster;

	- ( )*
1 1 1( ,  (1,  )  ( ),  g

i k c k kt h I t t T− − − ∈x , x  are 
the best (nondominated) potential decisions 
obtained by particles belonging to the same 
cluster as the given i-th particle ( )ci I∈   and 
chosen randomly in the range of [1,  ]cI
, and those obtained by all particles in the 
swarm, respectively; 

	- 1 2,  ,  c cθ    are constants, the values of which, 
as a rule, are set in the following ranges: θ ∈ 
[0.4, 1.4], 1 [1.5,  2],c ∈  and 2 [2,  2.5];c ∈

	- (0,  1),  (0,  1)q e  are random values uniformly 
distributed in the interval [0,  1] .

The boundary values for the feasible ranges 
of these constants were selected based on the 
recommendations from previous studies (Hassan 
et al., 2005).

At the same time, the values of decision variables 
are computed with the subsequent updating of 
the archive of nondominated solutions if the 
domination condition (20) is fulfilled: 

1 1

1 1

1
1

1

( )

( ) ( )
,  if [ ,  ],

( ) ( )
          

( )
( ),  if [ ,  ],

( )

i k

i k i k

i k i k

i k
i k

i k

t

t t
t t

t
t

t

− −

− −

−
−

−

=

   
∈   + +   


  ∉  + 

x

x x
x x

v v

x
x x x

v   

(20)

where [ ,  ]x x  are the feasible ranges of the 
decision variables ( ),  ,  .i k kt i I t T∈ ∈x  

3. Results

Firstly, the developed algorithm (CBHPSO) was 
tested and evaluated to assess its performance. 

In Table 1 the test instances (Zitzler et al., 
2000) that were used for testing the CBHPSO 
are presented.

The number of decision variables varies in 
the range from 2 to 150 depending on the used  
test instance.

Table 1. Test instances for the CBHPSO

Test
instances

Problem statement
(objectives to be minimized)

FT1

2 2
1

2 2
2

4 4 ,
( 5) ( 5)

f x y
f x y

 = +


= − + −
;

s.t.
2 2

1
2 2

2

( 5) 25,
( 8) ( 3) 7.7

g x y
g x y

 = − + ≤


= − + + ≥
;

0 5;x≤ ≤

0 3y≤ ≤

FT2

( )( )
( )( )

21/2
1 1

21/2
2 1

1 exp ,

1 exp

n
jj

n
jj

f x n

f x n

−
=

−
=

 = − − −

 = − − +


∑

∑
;

4 4jx− ≤ ≤ ,
 
1 2j≤ ≤

FT3

( )( )
( )

2 2 2
1 11

0,83 3
2 1

10exp 0,2 ,

5

j jj

j jj

f x x

f x x

+=

=

 = − − +

 = +


∑

∑
;

5 5jx− ≤ ≤ ,
 
1 3j≤ ≤

FT4

( ) ( )2 2
1 1 1 2 2

2 2
2

1 ,
( 3) ( 1)

f A B A B
f x y

 = + − + −


= + + +  
;
 

where

1

2

1

2

0,5sin1 2cos1 sin 2 1,5cos 2,
1,5sin1 cos1 2sin 2 0,5cos 2,
0,5sin 2cos sin 1,5cos ,
1,5sin cos 2sin 0,5cos

A
A
B x x y y
B x x y y

= − + −
 = − + −
 = − + −
 = − + −

;

xπ π− ≤ ≤ yπ π− ≤ ≤

FT5

1 1

2

,f x
f gh
=

 =   
;

where

( )

30

2

1 1 1

91 ,
29

1 / / sin(10 )

jj
g x

h f g f g fπ

=

 = +

 = − −

∑
;

0 1jx≤ ≤ ,
 
1 30j≤ ≤

FT6

1 1

2

,f x
f gh
=

 =  
;

where

( )150 2
2

1

1491 10cos(4 ) ,

1 /

j jj
g x x

h x g

π
=

 = + −

 = −

∑
;

10 1,x≤ ≤
 

5 5,jx− ≤ ≤
 
2 150j≤ ≤
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In Table 1, the following notations are used:  

	- FT1 – Binh and Korn function;

	- FT2 – Fonseca-Fleming function;

	- FT3 – Kursawe function;

	- FT4 – Poloni’s two objective function;

	- FT5 – Zitzler-Deb-Thiele’s function N3;

	- FT4 – Zitzler-Deb-Thiele’s function N4.

The results of optimization experiments conducted 
with the CBHPSO in comparison with other 
evolutionary algorithms are presented in Table 2.

The optimization experiments were carried out on 
a portable supercomputer DSWS PRO (2x Intel 
Xeon Silver 4114, 1x NVIDIA QUADRO RTX 
6000) using 100 parallel processes of evolutionary 
search by means of particle swarm.

The following values of control parameters 
were used: total number of iterations: |T| = 100; 
population size: |I| = 100, and total number of 
clusters in the CBHPSO: |C| = 10.

Here, LHV is the logarithmic hypervolume, 
CPF is the Pareto front cardinality related to the 
number of obtained Pareto optimal solutions, 
PT (in seconds) is the processing time spent to 
obtain solutions.

As shown in Table 2, the CBHPSO (using 
clustering particles in  a  swarm) performs better 
than  the BORCGA-BOPSO and other multi-
objective genetic algorithms, in terms of LHV and 
CPF for most test instances. 

The main advantage of the CBHPSO 
algorithm over other evolutionary algorithms is its 
ability to optimize important performance metrics 
such as LHV (logarithmic hypervolume) and CPF 
(the Pareto front cardinality). 

Table 2. Evaluation of the performance metrics for CBHPSO and the other evolutionary algorithms employed

Performance metrics CBHPSO
Other evolutionary algorithms

BORCGA-BOPSO SPEA2 NSGA-II FCGA MOPSO
FT1 – Binh and Korn function

LHV 3.8087 3.8081 3.8079 3.8079 3.8079 3.8075
CPF 2993 1635 754 3044 3063 842
PT, sec. 142.1 61.7 42.6 95.7 157.6 20.8

FT2 – Fonseca-Fleming function
LHV -0.0007 -0.0014 -0.0073 -0.0022 -0.0022 -0.0020
CPF 2007 1281 89 5415 5417 318
PT, sec. 157.0 49.1 12.3 143.9 276.6 24.8

FT3 –Kursawe function
LHV 1.9092 1.9032 1.8497 1.9041 1.9033 1.8596
CPF 178 124 23 390 371 37
PT, sec. 126.0 34.6 13.1 33.9 50.0 24.1

FT4 – Poloni’s two objective function
LHV 2.7092 2.7063 2.7054 2.7058 2.7054 2.7062
CPF 161 109 78 79 82 104
PT, sec. 101.6 32.9 13.1 25.1 36.1 24.1

FT5 – Zitzler-Deb-Thiele’s function N3
LHV 0.20210 0.2018 0.2015 0.2017 0.2017 0.2010
CPF 260 260 260 260 260 256
PT, sec. 260.0 259.8 259.5 259.6 259.6 256.1

FT6 – Zitzler-Deb-Thiele’s function N4
LHV 1.59862 1.59843 1.59838 1.59841 1.59836 1.59185
CPF 1523 915 919 980 904 76
PT, sec. 216.0 97.0 139.0 201.0 259.0 3.0
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By  maximizing these metrics,  the proposed 
algorithm can help  to find better  solutions and 
obtain a larger number of trade-offs. 

Although MOPSO and some genetic algorithms 
such as SPEA2 obtained a better value for time 
efficiency, the CBHPSO allows for a significant 
increase in the number of Pareto optimal solutions 
(CPF), while improving the quality of the Pareto 
front approximation (LHV). At the same time, an 
increase in processing time (PT can be observed 
for the search for optimal solutions with CBHPSO 
due to the time spent on clustering particles in the 
swarm (Table 2).

The value ranges for LHV, which was assessed 
as a result of repeated multiple optimization 
experiments for the considered algorithms and 
test instances, are shown in Figure 1.

Figure 1. Value ranges for LHV

As shown in Figure 1, CBHPSO features a stable 
outperformance of other evolutionary algorithms 
with respect to the quality of the Pareto front 
approximation (LHV). Thus, the obtained results 
are statistically significant.

Figure 2 shows that the convergence rates for 
the normalized performance metrics (LHV and 
CPF) increase during the iterations of CBHPSO. 
The best values of these performance metrics 

correspond to a value of 1, while the worst values 
correspond to a value of 0 in Figure 2. 

Figure 2. Convergence rates for normalized 
performance metrics

As it can be seen in Figure 2, the CBHPSO shows 
a stable convergence in terms of the growth rates 
of performance metrics values across different 
test instances. 

The sensitivity tests for the normalized value of 
the LHV completed using the CBHPSO technique 
are shown in Figure 3.

Here, the best values of the LHV correspond to 1 
and the worst values of the LHV correspond to 0.

Figure  3 shows that, as a rule, the quality of 
the Pareto front approximation (LHV)  for  the 
CBHPSO algorithm improves with an increase 
in the population size. At the same time, the 
total number of clusters in the swarm to be set 
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up depends on the optimization problem to be 
solved. For minimizing the objectives of some 
test instances, for example, FT6, it is desirable 
to reduce the number of swarm clusters to  
a minimum. 

This may be due to the fact that, when the large-
scale optimization problem is solved (e.g. the 
number of decision variables is equal to 150 in this 
instance), multiple closely located Pareto optimal 
solutions are formed and the search areas can be in 

a smaller number of clusters. Sensitivity tests were 
also carried out for the CPF. By contrast to the 
LHV, the maximum value of CPF was achieved for 
the largest number of clusters in the swarm for all 
the analysed test instances (i.e. |C| = 10), because 
of the closely located solutions, irrespective of the 
increase in the value of CPF.

Further on, the CBHPSO algorithm was 
aggregated through objective functions with 
the employed multisectoral agent-based model 

Figure 3. Sensitivity tests completed with the CBHPSO
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of trade interactions, and it was applied to find 
trade-offs aimed at maximizing the values of 
these functions.

The proposed multisectoral agent-based model 
of trade interactions was developed based on the 
FLAME GPU 2 framework (Richmond et al., 2021), 
intended for large-scale agent-based modeling. 

The allocation of agent enterprises among the 
high-technology and low-technology sectors of 
the economy is illustrated for three scenarios 
shown in Figure 4.  

Figure 4. Scenarios for the allocation of agent 
enterprises among different economic sectors

As it is evident from Figure 4, the following 
scenarios for the allocation of agent enterprises 
among the sectors of the economy are considered:

	- Scenario 1. Prevalence of agent enterprises 
in high-technology sectors. Most  agents 
have high prices  (i.e. added values) for 
their end products;

	- Scenario 2. Prevalence of agent enterprises 
in low-technology sectors. Most agents have 
low prices for their end products;

	- Scenario 3. Uniform allocation of agent 
enterprises among various sectors. The 
number of agents with high and low prices 
is the same.

Figure 5 shows the Pareto fronts computed with 
the CBHPSO algorithm in combination with the 
developed multisectoral agent-based model for 
various scenarios. The total number of agent 
enterprises allocated among the economic 
sectors is 10000, and the simulation period 
included 100 (days).

Figure 5. The Pareto fronts computed with the use 
of CBHPSO in combination with the multisectoral 

agent-based model

The results illustrated in Figure 5 were obtained 
by replicating the values of the objective functions 
multiple times during the evolutionary search 
in order to ensure their stability. Therefore, the 
simulation solutions shown in Figure 5 can be 
considered statistically significant.	  

Table 3 includes the optimal values of control 
parameters corresponding to the different optimal 
solutions for the Pareto fronts shown in Figure 
5. As it is evident from  Figure  5 and Table 3, 
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the various optimal values of control parameters 
correspond to the different values of the solutions 
of the Pareto fronts. 

Table 3. The optimal values of control parameters

Control 
parameters

Scenario 1
Solution 1.1 Solution 1.2 Solution 1.3

µ 0.647 0.277 0.823

σ 0.043 0.209 0.002

µ 0.077 0.229 -0.365

σ 0.019 0.289 0.019

ρ 11 5 10

γ 0.478 0.532 0.963

η 1.352 1.212 1.001

Scenario 2
Solution 2.1 Solution 2.2 Solution 2.3

µ 0.898 0.803 0.879

σ 0.239 0.193 0.099

µ 0.524 -0.165 -0.946

σ 0.292 0.292 0.089

ρ 19 6 15

γ 0.352 0.699 0.865

η 1.347 1.180 0.975

Scenario 3
Solution 3.1 Solution 3.2 Solution 3.3

µ 0.924 0.375 0.901

σ 0.185 0.158 0.024

µ 0.705 0.644 -0.990

σ 0.239 0.377 0.238

ρ 19 4 17

γ 0.441 0.666 0.836

η 1.424 1.175 1.099

4. Discussion

In this paper, a new Clustering-Based Hybrid 
Particle Swarm Optimization (CBHPSO) 
algorithm was proposed. This algorithm 
outperforms other evolutionary multi-objective 
algorithms in terms of the quality of the solutions 

obtained (Table 2 and Figure 1). However, it 
has some limitations due to the time spent for 
clustering particles in the swarm. Therefore, 
other evolutionary algorithms such as SPEA2 
and BORCGA-BOPSO obtained better processing 
time values (PT) in comparison with the CBHPSO. 
In the future, these time costs could be reduced 
thanks to the use of GPU-accelerated clustering 
algorithms (Li et al., 2023).

The CBHPSO algorithm has been integrated 
with a multisectoral agent-based model of trade 
interactions, and various scenarios of enterprise 
allocation among different economic sectors have 
been considered (Figure 4). 

The Pareto fronts have been computed using the 
CBHPSO in combination with the multisector 
model for different scenarios (Figure 5).

When most agent enterprises are in high-
technology sectors (the first scenario), the average 
cumulative profit per agent is high for most 
Pareto optimal solutions. The number of deals 
is significant because high-tech agents require a 
variety of intermediate products (Figure 5). 

In the second scenario when most agent enterprises 
belong to low-technology sectors, both the average 
cumulative profit and the number of deals decrease 
due to lower prices for the final products of agents 
which have the simple structure of the intermediate 
products and a low added value. 

For the uniform allocation of agent enterprises 
among various sectors (the third scenario), the 
total number of obtained solutions increases 
thereby raising the number of trade-offs which 
makes the values of the objective functions change 
in wide ranges. 

As shown in Table 3, the maximization of the 
average cumulative profit per agent (Solutions 
1.1, 2.1, and 3.1) can be noticed for the low 
values of γ  and high values of η , which 
contributes to increasing the number of high-
margin transactions between agents. By contrast, 
the relaxation of restrictions at the level of 
compliance of procurement with demand in a 
combination with a limitation on price increases 
leads to an increase in the average number of 
low-margin and ill-founded deals and to a 
decrease in the average cumulative profit per 
agent (Solutions 1.3, 2.3 and 3.3 in Table 3).  
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The practical significance of the improvements in 
the values of the optimization metrics is as follows. 
The obtained nondominated solutions are close to 
the reference Pareto fronts, which allows to identify 
new more profitable scenarios for the control of 
economic agents’ behavior. The total number of 
Pareto optimal solutions is significantly expanded, 
allowing for the more preferred ones to be selected 
from a wide range of possible scenarios.

5. Conclusion

This paper presents a new clustering-based 
hybrid particle swarm optimization algorithm 
(CBHPSO), which operates with subsets of 
particles in the criterion space using the k-means 
algorithm. Unlike other PSO-based evolutionary 
algorithms, CBHPSO iteratively executes the 
k-means algorithm, clustering particles in the 
swarm at each iteration in the criterion space. 
This allows the local archives of best solutions 
(i.e. nondominated solutions) to be expanded, and 
these archives can be used to update the velocities 
of the decision variables using inertia weights. 
The CBHPSO has advantages in terms of quality 

of the approximation of the Pareto front, and it 
outperforms other multiobjective PSO and genetic 
optimization algorithms. However, a decrease in 
time efficiency can be for the CBHPSO, which 
could be improved in future works by utilizing 
GPU-accelerated clustering algorithms.

The proposed algorithm (CBHPSO) has been 
applied to search for trade-offs in the employed 
multisectoral agent-based model of trade 
interactions, for various scenarios.

Future research could focus on the further 
development of this multisectoral agent-based 
model. This will be achieved by including new 
economic agents, such as households, banks, 
and transportation companies. These agents 
have specific behaviours that impact on trading 
interactions. An increase in the number of agents 
will also require an improvement in the efficiency 
of the evolutionary search process.
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