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1. Introduction

Complexity of the automotive embedded applications continuously increases. Anti-collision
radar, vehicle tracking and inter-vehicle communication are some examples of such applications
which have to be embedded in a system.

Most of the time, embedded systems have real-time constraints and have to satisfy various
constraints, such as energy consumption, surface, etc. The “System on Chip” (SoC) allow to
design mix hardware and software embedded systems. SoC are realized on a single chip,
therefore, they help to solve embedded systems constraints. The current SoC generation already
contains several processors on a single chip: a general purpose processor (ARM, etc.), DSP
dedicated to digital signal processing applications, ASIC for very specific and systematic tasks
and reconfigurable components, FPGA, which add flexibility to a SoC. The rising integration
capabilities of the chips allows to design more “parallel” SoC, where several homogeneous or
heterogeneous processors communicate according to bus or complex Network on Chip (NoC).
The next SoC generation has to provide more and more computing power and still has to satisfy
the energy consumption constraints.

The rising complexity of the automotive application and the rising SoC integration capabilities
are the trend. However, it is an ambitious challenge to efficiently execute such complex
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applications onto such complex architectures. In order to successfully face this challenge, it
becomes necessary to relevantly exploit the specificity of hardware and software elements
contained in embedded systems. A hardware element corresponds to an architectural component
in a SoC (i.e. processors, memories, etc.), a software elements corresponds to a task in an
application. Some approach aim to specify the software independently from the hardware in
order to facilitate the design of embedded system. The software and the hardware are tested
together only at the end of the design process, they can reveal some major problem that could
have been detected earlier with a co-design approach. The co-design approach aims to specify,
at the same time and in the same environment, the hardware and the software embedded in a
system. For this purpose, it is necessary to model both the hardware and the software in the
unified environment in order to accelerate the design process and to increase the productivity of
the SoC designers.

This paper extends the works presented in [6] and demonstrates the reliability of the Gaspard
codesign environment to develop high performance systems. Gaspard is introduced in Section 2;
this environment is definitely oriented towards regular parallel applications and architectures.
Section 3 presents the high level modeling of a purely data parallel application used in an
embedded automotive radar. From this high level model, the VHDL code is automatically
produced and synthesized onto FPGA. On-road experimentation results of the overall embedded
system are provided in Section 4, demonstrating the reliability of our approach. The conclusion
presents the extension of our work for control-flow and mix data-flow/control-flow applications.

2. Co-Design Approach

In classical approach, the software and hardware designs are realized separately and are tested
together only at the end of the design process. The conjoint development process of the software
and the hardware, called co-design, allows handling complex systems design and promotes their
perennity in order to enhance their productivity. The main objective is to manage the growing
complexity of the embedded systems thanks to a co-design approach. Indeed, the design space
exploration, the compilation processes and the prototyping are fundamental challenges in co-
design. The design space exploration processes allows finding hardware architecture convenient
for a specific application. The performance analysis provides relevant information on the
embedded system behavior, which is provided to design space exploration process [1]. The
prototyping validates this performance analysis.

This new approach also constitutes a challenge for the development of the software tools
dedicated to the co-design. Indeed, the co-design of a SoC manipulates the two technologies
(software and hardware) and covers the different process cycles, from the specification towards
the realization.

2.1 Model driven engineering

The Object Management Group (OMG: http://www.omg.org/) advocates the use of the Model
Driven Engineering [14] (MDE) in order to clearly separate the specification level from the
implementation level. The use of the MDE for SoC co-design offers a new opportunity to design
embedded systems. MDE allows separating the application and the architecture specifications
from the languages (platforms) used to realize or execute the embedded system. This allows to
reuse models and components at high abstraction levels.

In MDE, abstraction levels are specified with metamodels. A metamodel gathers the set of
concepts and relations between the concepts used to describe a model at a given abstraction
level. A model is then said to be conform to a metamodel. Generally speaking, a metamodel
defines the syntax of its models, like a language defines its grammar. In MDE, a model
transformation [5] is a compilation process which transforms a source model into a farget
model. The source and the target models being respectively conform to the source and the
target metamodels.
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A model transformation relies on a set of rules. Each rule clearly identifies concepts in the
source metamodel in order to create concepts respecting the target metamodel. Such a
decomposition facilitates the extension and the maintainability of a compilation process: new
rules extend the compilation process and each rule can be modified independently from the
other rules. Model transformations allow to transform a source model at a given abstraction
level into a destination model at a lower abstraction level. Therefore, they make possible the
deployment of the system according to the targeted implementation (SystemC, VHDL, etc.).

2.2 The Gaspard environnement

Gaspard is entirely developed according to the MDE approach: the application, the architecture
and the association of the application onto the architecture are completely independent from any
implementation details. For instance, a same high level specification of an application can be
simulated with SystemC, synthesized using VHDL, executed onto multiprocessors architecture
using Open/Fortan and verify thanks to the Synchronous language.

For this purpose, Gaspard follows the “Y-chart” [9], as illustrated in Figure 1. MDE helps to
specify the abstraction levels (which are associated to a metamodel) and the model
transformations [5] between these abstraction levels. In this paper, we focus on the chain that
generates VHDL (this allows FPGA synthesis). The transformation chain is the following:
UML—Deployed—RTL—VHDL. UML corresponds to the high level specification of systems,
Deployed corresponds to the first internal representation, RTL corresponds to the description of
an hardware accelerator able to execute a given application and VHDL corresponds to the
VHDL code of this hardware accelerator. Deployed, RTL and VHDL are automatically
generated thanks to model transformations (represented with arrows). The overall metamodels
and model transformations allow the opportunity to express/manipulate regular aspects.

Indeed, Gaspard is definitely oriented toward the data parallel paradigm and its usage in
embedded systems for intensive signal processing applications. A specific attention is provided
to the regular aspects in applications and multiprocessors system on chip (MPSoC). The
placement of an application (software) onto an architecture (hardware) also requires regular
aspects that are exploited during the compilation process.

3. Co-Design for Transport

The automotive domain also requires tools and techniques in order to realize SoC based
embedded systems. These tools have to contribute in the maintenance and have to warranty a
high level safety of such systems despite their growing complexity.

3.1 The ModEasy project

The Interreg ModEasy project2 (which stands for MOdel Driven dEsign for Automotive Safety
embedded sYstems, http://www.lifl.fr/modeasy/) aims to develop software tools and techniques
to aid the design of reliable embedded systems using advanced software technologies. The tools
are evaluated on applications of the automotive domain, such as reactive cruise control [11] and
anti-collision radar [13, 6] but can be applicable for generic embedded systems in any safety and
mission critical applications in the wider industrial domain. The project intends to reduce
development and production costs while maintaining existing high dependability and safety
levels as embedded systems become more complex for many existing and new products.
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Figure 1. The Gaspard environment: from a high level specification, model transformations

allow to generate several targets implementations.

The aim of the project is to develop tools, which are to generate low level implementations (co-
design synthesis) from high level specifications of automotive embedded systems (co-design
specification). The detailed goals of the ModEasy project are to:

evaluate the specific requirements of the automotive embedded systems;

formalize the high level specification of these requirements into metamodels thanks to the
MDE methodology. Such metamodels are implemented in UML with profiles [4];

specify the low abstraction level metamodels which correspond to the targeted
implementations: SystemC for a multiprocessor SoC simulation and VHDL for a hardware
accelerator execution;

develop transformation rules in order to ensure the automatic generation of the low level
implementations from the high level specification;

allow FPGA implementations for the generated hardware accelerators;
evaluate the developed tools for cruise control and anti-collision radar systems;

prototype these systems onto FPGA and realize on-road experimentation.
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Figure 2. The studied detection algorithm in an anti-collision radar system.

The following section deals with some results of the project, which concern a detection
algorithm embedded in an anti-collision radar system. For this purpose, we have:

* model in UML the detection algorithm;

» generate an hardware accelerator from the UML model;

» synthesize the hardware accelerator onto FPGA;

* integrate the FPGA in the overall anti-collision radar system;

» evaluate the performance of the embedded system during on-road experimentation.
3.2 Anti-collision radar system

Anti-collision radar systems use radar waves to detect obstacles. Such system emits a wave
thanks to an antenna, as illustrated in Figure 2. When the emitted wave hits an obstacle (other
vehicles, animals, etc.), it is re-emitted in the direction of the antenna. The system compares
the received wave with the emitted one, searching for similarities resulting from the presence
of an obstacle in front of the vehicle. Computing the time spent between the emission and the
reception of the wave, the system can determine the distance between the car and the obstacle.
By periodically computing this distance, the system can also estimate the relative speed of the
car and the obstacle. Thus, detecting an obstacle comes down to one task: performing the
correlation of an emitted and a received wave. This obstacle detection is placed in an
embedded system context, where resources are limited. This leads us to use FPGA
technologies, which offer flexible solutions for the implementation of hardware accelerator
that perform the correlation.

The correlation is the most resources and time consuming part of the overall anti-collision
radar system: it receives a sample each 10 ns and executes thousands operations for each
received sample. The computing power required for the execution of such data parallel
applications is considerable but they can be efficiently executed by hardware accelerators [15,
10]. However, the development of full custom execution units is costly and error prone since
it requires hardware designer experts, even when using the usual high level synthesis tools.
We believe that Gaspard is able to facilitate the development of such hardware accelerators
for the studied automotive system. Indeed, it can be generated from a high level specification
(i.e. independent from the implementation details of the hardware accelerators) of the
algorithm used to detect the obstacles. The studied detection algorithm is expressed by the
following equation:

1023

Cey(§) = Y _ i) - y(i+ )

1=0
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Figure 3. Top view of the detection algorithm: each component instance represents a task and
each connector expresses a data dependency.

Ccy(j) corresponds to the correlation results, c(i) is the reference code and y(i+j) corresponds to
the received signal. This algorithm and its hardware implementation have already been studied
[15], but our aim is to generate these hardware accelerators from high level models. The
following presents the UML model of this detection algorithm.

3.3 UML modeling of the detection algorithm
We describe the UML model of the detection algorithm with a top-down approach.
3.3.1 Overall view of the detection algorithm

For each received sample, the detection algorithm computes 1024 multiplications and realizes
an addition with the results provided by the overall multiplications. These two majors steps are
modeled in Figure 3: #rm realizes the multiplications and #rat performs the summation. The task
Convinteger standardizes the output of the detection algorithm in order to produce integer
values. The connectors represent the data dependencies between the several tasks. The detection
algorithm has two input ports: ReceivedSignal represents the received signal (coming from the
antenna in the embedded system) and Coeff corresponds to the reference code. outCorr is the
output of the detection algorithm (7.e. the results).

3.3.2 Repetition of the multiplication

Figure 4 represents the UML model of the multiplications: the TimeRepeatedMultiplication
component expresses the temporal data dependencies while RepeatedMultiplication expresses
the spacial data dependencies. The data flowing through inDataM (from rm) correspond to the
shift of the data flowing through Datal. This shift is expressed thanks to the tiler that connect
Datal to inDataM. The tilers are precisely defined in [3], they allow to express complex data
dependencies in data parallel applications.
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Figure 4. UML model of the multiplications: the top side of the figure expresses the temporal
data dependencies, the bottom side expresses the spacial ones.

A tiler allows to model data dependencies that links a M-dimension data array to a N-dimension
data pattern. These data dependencies are not limited to compact and parallel to axis patterns.
Usually, data dependencies are expressed within indexes. Indexes are tedious to manipulate and
error prone when directly provided by users: their complexity dramatically increases with the
number of dimensions and the shape of the pattern. Tilers do not cause this inconvenience. The
spacial data dependencies, illustrated on the bottom side of Figure 4 are expressed in the same
manner. The repetition space of the task m is expressed thanks to the multiplicity [(1024)].

3.3.3 Pipelined additions

Figure 5 represents the UML model, which expresses an addition of 1024 data (previously
computed by the multiplications). InAdditionTree is the input port of the addition tree, its shape
is [(1024)]. Result is the output port (the result of the addition), it is a scalar.

Each pipeline stage of the addition tree realizes a partial addition of the overall addition. The
shape of the ports between the pipeline stages reduces until a scalar is obtained from the initial
1024 input data (1024 — 512 ... 2 — 1). The bottom side of Figure 5 represents the first
pipeline stage. This component partially adds 1024 data into 512 data. In order to realize the
partial addition, the task a/ (an elementary component) is repeated 512 times. This task is
elementary and is linked to an IP (Intellectual Properties). An IP provides the behavior of an
elementary component. The links between an elementary component and an IP are managed
during the deployment specification step (Figure 1) like detailed in the following.
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side illustrates a data parallel task in this addition tree.
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Figure 6. The elementary components are deployed onto IP contained in a library.
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Figure 7. Automatic generation of a VHDL code from a UML model. The resulting VHDL code
describes an hardware accelerator able to execute the modeled detection algorithm in UML.

3.3.4 Deployment of the elementary components

The elementary components from the previously detailed model (an addition and a
multiplication) correspond to the leaf of a tree (i.e. the tree represents the overall algorithm).
The behavior of leafs is provided during the deployment specification step [2].

Figure 6 illustrated the deployment of the addition and the multiplication components. The top
side of the figure represents these elementary components, the center of the figure shows the IP
and the bottom side of the figure illustrates the code-file of the IP. Elementary components and
their ports are deployed thanks to the (ImplementedBy and PortlmplementedBy connectors. The
file-path of the IP code is provided thanks to a manifest connector. In this example, the same
code file contains the multiplication and the addition IP.

4. From UML to Road...

Gaspard is able to transform a UML model in order to generate a hardware accelerator. Figure 7
illustrates the integration of Gaspard into the Eclipse environment [7]. The UML model
corresponds to the detection algorithm previously detailed. This model is transformed in a
Deployed model which corresponds to the first internal representation of the application. A RTL
is then automatically generated, it corresponds to an abstract representation of the hardware
accelerator. Details about the transformation from a deployed model into a RTL model can be
found in [12]. The last step is the VHDL code generation, the resulting VHDL code describes
the hardware accelerator and it is directly simulable and synthetically according to commercial
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synthesis tools. The following section provides simulation and synthesis results provided within
such commercial tools.

|

Figure 8. Simulation results of the hardware accelerator.

4.1 VHDL simulation

Figure 8 illustrates the correct behavior of the generated hardware accelerator. The top side of
the figure illustrates the input of the hardware accelerator (the received wave) and the bottom
side of the figure represents the output (i.e. the result of the detection algorithm). The peaks
demonstrate the right behavior of the hardware accelerator: the hardware accelerator is able to
detect the obstacles in front of the anti-collision radar system.

4.2 VHDL synthesis

This section presents the synthesis results of the generated VHDL code. This section is
illustrated with code excerpts and different views of the synthesized design.

4.2.1 Data dependencies

Expressing the overall application in UML, Gaspard identifies that the temporal data
dependencies of the detection algorithm are efficiently implemented in hardware with shift
register. The top left-hand side of Figure 9 presents an excerpt of the corresponding VHDL
code. The dInTIN1db 1 signal allows to create a shift register able to shift data 1024 times. In
the process, the loop statement corresponds to the description of the shift register itself, its input
is the signal InTIN1db(1). The outputs are connected to the different pipeline stage of the shift
register. The bottom left-hand side of Figure 9 represents a partial synthesis result of the shift
register. The left-hand side represents the input of the shift register and the right-hand side
represents the outputs that are connected to shifted data.

The spacial data dependencies are managed in the same manner. However, while shift register
are necessary for temporal data dependencies, simple connectors can perform spatial data
dependencies. The excerpt of the VHDL code illustrated on the top right-hand side of Figure 9
describes such data dependencies. This code can be directly synthesized onto FPGA, as
illustrated on the bottom right hand side.

Starting from a UML description of the tilers, Gaspard automatically generates such VHDL code.
For this purpose, we manage all the specificities of the tiler (which are detailed in Section 3.3.2).

4.2.2 Addition tree

The top side of Figure 10 illustrates the 6 last stages of the addition tree in the generated
hardware accelerator. They partially realize the addition in the detection algorithm. A tree
topology and the reduction of data arrays from a pipeline stage to another are clearly identified.
The bottom left-hand side of Figure 10 illustrates a VHDL code excerpt of the 8th pipeline stage
(i.e. in the addition tree). This code corresponds to a multiple instantiation of the Addition
computing unit; this allows to execute four additions in parallel. The bottom right-hand side of
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Figure 10 represents the synthesis results for this 8th pipeline stage (which include the
previously detailed VHDL code excerpt). The marks 1 and 5 correspond to the input and output
ports, the marks 2x and 4 identify the components that resolve data dependencies. The marks 3x
represent the four elementary tasks, which realize additions in a parallel manner.

process (clk,InTIN1db)
begin

if clkevent and clk =1’ then
delayedInputTIN1db_1(1024) <= InputTIN1db(1);

foriin 1to 1023 loop

dinputTIN1db_1(i) <= dinputTIN1db_1(i+1);

end loop;
end if;
end process;

Signal_InTIN1db_1 <= dinputTIN1db_1;

LEEERARELE AR R AR AL E LR TR R TR RRIRE LY

éénito : for it0 in 1 to 4 generate
instanceOfAddition : Addition

port map(

OutputTIN1160709(6) <= InputTIN1160709(11);

OutputTIN1160709(7) <= InputTIN1160709(13);

OutputTIN1160709(8) <= InputTIN1160709(15);

OutputTIN1160709(9) <= InputTIN1160709(17);
1

0) <= InputTIN1160709(19);
OutputTIN1160709(11) <= InputTIN1160709(21);
OutputTIN1160709(12) <= InputTIN1160709(23);
OutputTIN1160709(13) <= InputTIN1160709(25);
OutputTIN1160709(14) <= InputTIN1160709(27)

)

OutputTIN1160709(15) <= InputTIN1160709(29

)
)

(
(
E
OutputTIN1160709(
(
(
(
(
(

)

Figure 9. Synthesis results of data dependencies.

clk => clkConnectora8,
raz => razConnectora8,

outData =>RepConnector_f72499(it0) ,

inData1

=>RepConnector_17a95c6(it0) ,
inData2 =>RepConnector_ff22ed(it0)) ;

end generate;

i
I

: Input ports
: Input Tilers

: Quput Tiler
:  Qutput Ports

Figure 10. Synthesis results for the pipelined addition tree.

: Repeated tasks
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Figure 11. FPGA implementation of the hardware accelerator and integration of the FPGA in
the embedded system.

4.2.3 FPGA implementation and experimentation

The generated hardware accelerator has been synthesized onto a FPGA Stratix2S60 from the
Altera company. This FPGA has been integrated into the overall anti-collision radar system, as

illustrated in Figure 11.

In the scope of the ModEasy project, the embedded system has been tested during on-road
experimentation. The tests have been realized with the INRETS of Lille (Institut National de
Recherche sur les Transports et leur Sécurité: http://www.inrets.fr/infos/centres/ct_vascq.html)
and the IEMN of Valenciennes (Institut d’Electronique de Microélectronique et de
Nanotechnologie : http://www.iemn.univ-lillel.fr). The tests have validated the right behavior of
the overall embedded system and the hardware accelerator (generated from the UML model)
ensures the obstacle detection. Figure 12 illustrates the on-road experimentation. Others tests
was also performed by the IEMN in order to use the anti-collision radar with a cruise control
and a GPS, resulting in a mix dataflow and control-flow embedded systems [8]. While the data-
flow part of the system was automatically generated, the control-flow part was written by hand.
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Some extensions of the Gaspard environment are currently realized in order to generate such
mix data-flow and control-flow embedded systems from UML models.

B Tk

Figure 12. On road experimentation of the overall embedded system.

5. Conclusion

This paper presents the Gaspard co-design environment, which is dedicated to the embedded
systems. From a UML model of an application, Gaspard generates the VHDL code
corresponding to a hardware accelerator able to execute the modeled application. The VHDL
code can be synthesized and implemented onto FPGA according to synthesis tools. The UML
models are independent from any implementation details. Therefore, one can model an
application and generate the corresponding hardware accelerator without being expert in the
design of hardware accelerators.

We demonstrate the reliability of the Gaspard environment for data parallel automotive
applications. For this purpose, a detection algorithm embedded in anti-collision radar was
modeled in UML. The hardware accelerator generated by Gaspard was synthesized onto FPGA.
After simulation processes and validations, the hardware accelerator was experimented on-road.
This experimentation validated the right behavior of the hardware accelerator and the overall
embedded system.
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