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1. Introduction 

The Virtual Reality Modeling Language (VRML) has become the most commonly used 
standard for representing such 3D models. A VRML file contains complex information in text 
format related either to the connectivity and the geometry of the model, or to the model 
properties. Basically, a 3D mesh is defined by a set of vertices and a set of faces. The vertex 
location is defined by its coordinates in the 3D Cartesian system. A face is defined as an ordered 
sequence of vertex indices. The connectivity represents the relationships between vertices, the 
geometry refers to the position of the vertices and the properties contain photometric 
information, including color, texture and normals.  

The VRML files needs effective 3D compression techniques that would significantly reduce the 
transmission time, the used memory and local disk space. A very big community of researchers 
has tried to find different algorithms to manipulate the 3D data. One mentions here those whose 
results are remarkable and very close to aim of our work: J. Rossignak [17], G. Taubin [18] 
[20], M. Deering [10], F. Bossen [13], F. Lazarus [18], M. Chow[5], C. Gostman [22], C. J. Kuo 
[14], F. Preteux [11], D. Nuzillard [7], A. Gueziec [12], etc. The compression procedure 
involves three different coding steps for the connectivity, the geometry and the properties of the 
mesh. Our contribution is a method concerning the geometry coding. 
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2. Robust Second Order Blind Identification (RSOBI) 

In many practical problems the processed data are multidimensional observations, that has the form: 

x(k) = A s(k)           (1) 

where the N-dimensional vector x(k) = [x1(k), x2(k),…, xN(k)]T is an instantaneous linear mixture 
of source signals, the M-dimensional vector s(k) = [s1(k), s2(k), … , sM(k)]T contains the source 
signals sampled at 1≤k≤K and the matrix A called mixing matrix is the transfer function 
between sources and sensors. The source signals si(k), 1≤i≤M (M�N), are assumed independent.  

To obtain source signals from observations one utilizes Blind Sources Separation (BSS) 
algorithm entitled Robust Second Order Blind Identification (RSOBI). This one consists of an 
orthogonalization stage fallowed by a unitary transform.  

Orthogonalization stage is performed by Robust orthogonalization algorithm described by A. 
Cichocki [6]. For preselected delays (p1, p2, ... , pJ) one estimates a set of symmetric delayed 
covariance matrices of sensor signals: 
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where Rx(p) is the delayed covariance matrix of the observation vector computed as: 
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and one constructs an NxNJ matrix: 
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Then it is performed a singular values decomposition of matrix R:  

R = Q ∑ WT          (5) 

where NxM matrix Q and NJxNJ matrix W are orthogonal, and ∑ is an MxNJ matrix whose left 
M columns contain diag[σσ� σ�] (with non increasing singular values) and whose right NJ-M 
columns are zero. For a non-zero initial vector of parameters α = [α1, α2 ,..., αJ]T one computes 
the linear combination: 
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One checks if R  is positive definite ( R >0) and one performs the eigenvalues decomposition of 
R . If R  isn’t positive definite one chooses an eigenvector v corresponding to the smallest 
eigenvalue of R  and one updates α by α+δ, where 
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and with new vector α one returns to compute the linear combination R . Otherwise, one 
performs the eigenvalues decomposition of symmetric positive definite matrix: 
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as follows: 

VΛVαR T
x =)(          (9) 

where α is the set of parameters αi after the algorithm achieves convergence positive 
definiteness of the matrix R , NxM matrix V = [v1, v2, ... , vM] contains the eigenvectors 
corresponding to the largest M eigenvalues of R , and Λ = diag[λ1  ≥  λ2  ≥ ... ≥ λΜ] contains 
the eigenvalues arranged in decreasing order. The Robust orthogonalization transformation is 
realized by a linear transformation with matrix W: 

y(k) = W x(k)          (10) 

where the matrix W has the form: 

W = Λ-0,5 VT          (11) 

The covariance matrices of the observed vector can be rewritten as: 

Rx(p) = A Rs(p) AT         (12)  

Because the source signals have unit variance and are assumed to be uncorrelated, the 
covariance matrix of the sources vector equals the unit matrix: 

Rs(0) = E[s(k) sT(k)] = I         (13) 

Consequently, Rs(p)=E[s(k) sT(k - p)] are non-zero distinct diagonal matrices, and it follows that: 

Rx(0) = A AT          (14) 

The components of the orthogonalized vector y(k) are mutually uncorrelated and they have unit 
variance. The orthogonalized covariance matrices are given by: 

IWRWyyR xy === ∑
=

T
K

k

T kk
K

)0()()(1)0(
1

      (15) 

T
K

k

T ppkk
K

p WRWyyR xy )()()(1)(
1

=−= ∑
=

,  p≠ 0     (16) 

From equations (15) and (16) it results:  

Ry(0) = W A AT WT = W A (W A)T = I       (17) 

Thus, it follows that U = W A is an N x N unitary matrix. Consequently, the determination of M 
x N mixing matrix A is reduced to that of a unitary N x N matrix U. From equations (13) and 
(17) it results: 

Ry(p) = W A Rs(p) AT WT = W A Rs(p) (W A)T,p≠ 0     (18) 

Since Rs(p) is diagonal, any orthogonalized covariance matrix Ry(p) with p≠ 0 is diagonalized by 
the unitary transform U. 

The SOBI algorithm, developed first by A. Belouchrani [4], retrieves the unitary matrix U by 
jointly diagonalizing a set of delayed covariance matrices. This matrix jointly diagonalizes the 
set MR={Ry(p)|p=1,…, P} when the next criterion is minimized: 
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where off operator is defined as:  
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The unitary matrix U is computed as product of Givens rotations [4]. When the unitary matrix U 
is obtained, the mixing matrix is estimated by A = W+⋅U and the unmixing matrix is then given 
by UT W, where + denotes the pseudo-inverse. 

3. Predictive 3D Mesh Geometry Coding 

The principle of the geometry encoding of single resolution 3D meshes, developed in [11] [14] 
[17] [20], requires the following steps: 1 the vertex coordinates are uniformly quantized and the 
quantization step is choosen using an iterative search algorithm in order to accomplish the 
bitrate control constraint; 2 a decorrelation step is performed directly by prediction on the 
quantized model; 3 the resulting errors are losslessly coded using successive approximations 
followed by arithmetic coding.  

Considering a sequence of vertices Vi, 1 ≤ i ≤N, each coordinate value on each direction is 
quantized to provide qVi. Thanks to a linear prediction rule it is possible to obtain an estimated 
value iVq ˆ  of it. The difference between the current vertex Vi and its estimated iVq ˆ  is called the 
predictive error dVi. Prediction technique consists of coding the predictive error only, as shown 
in the following figures:  

 

 

 

 

 

 
Figure 1. Encoder 

 

 

 

 

 

 

 
Figure 2. Decoder 

 

4. Quantization of the Vertex Position 

A cubic bounding box, defined by the minimum and maximum values of data, is first determined. 
The model’s geometry is quantized on a uniform 3D grid, defined with regard to the bounding box 
and to the number of quantization levels. The quantized values are performed as follows:  
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where V is the floating value of the vertex on each x, y and z direction, lC is the minimum value 
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of data on each mentioned direction, maxS is determined by the difference of the maximum and 
the minimum values for all directions and bpv represents the number of quantization levels. The 
restored floating value of the vertex, affected by the quantization error, is performed by: 
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5. Predictive Rule 

The efficiency of the compression framework is heavily based on the performances of the 
decorrelation step performed by the prediction rule [11].  

The actual techniques of compression use the polygonal predictive rule. This one was firstly 
proposed by C.J. Kuo [14], and then developed as a hybrid scheme by F. Preteux and all [9]. The 
principle of polygonal predictive rule consists in predicting a vertex from already traversed vertices 
in all polygons incident to it. Consequently, let's consider a current vertex V of a regular polygon 
including n vertices (V1 V2... Vn , with n>3). In the plane, passing through three non-collinear and not 
necessarily consecutive vertices Vi, Vj, and Vk, the predicted value is estimated by: 

V =α(n, i, j, k, l)Vi + β(n, i, j, k, l)Vj + γ(n, i, j, k, l)Vk.      (23) 

where α, β and γ are the barycentric coordinates depending only on i, j, k, l and n as follows: 
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If the current vertex belongs to a polygon including more than three predicted vertices, every 
possible combination of three preceding vertices yields a prediction. To make each preceding 
vertex contribute to the prediction of the vertex V equally, every possible combination of three 
preceding vertices is used to predict the vertex V. Consequently, the vertex V is predicted as the 
average of all these predictions. If there are several polygons incident to vertex V, which contain 
more than three traversed vertices, a prediction is computed for each of these polygons and the 
final prediction is the average of the predictions obtained from each polygon incident to V.  
When each polygon incident to vertex V has less than three traversed vertices, the vertex V is 
predicted as the mean of its traversed neighboring vertices. The first predictive error, at step 
i=1, is calculated as: 

dV1 = qV1          (25) 

The following figure shows the prediction of vertex V, described above, where the three 
preceding vertices are shown in black spot: 
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Figure 3. The prediction of vertex V 

 

6. Successive Approximation and Arithmetic Coding 

In order to obtain a binary representation of the input data, a successive approximation is 
performed [9]. This technique applies a sequence of thresholds Ti to determine if the input data 
are greater or not than each threshold. The thresholds are chosen so that Ti+1 = 0,5 ⋅ Ti, and 
initial threshold T0 is set to one half of the maximum of input data. The approximations are 
defined by a binary string b0b1b2… and a sign bit s. 

The number of information bits for a symbol is equal to the number of bits in the optimum code 
for the symbol. The efficiency of transmission can be improved using shorter code words for the 
more probable symbols and longer code words for the less probable symbols. The principle is to 
associate at each symbol a number of bits that is going to depend on its probability of apparition. 
The binary symbols generated by the successive approximation algorithm are coded using a binary 
arithmetic coder with a 113 states Markov model for the probability estimation [15].  

7. BSS Algorithms Introduction to the 3D Mesh Geometry Decorrelation 

The mesh geometry is spatially correlated on each direction of the Cartesian coordinate system 
and its decorrelation on each axis x, y, and z allows to compress it. In order to decorrelate the 
geometry of 3D mesh, the linear prediction rule used by actual methods is substituted by a Blind 
Sources Separation technique. In this goal one express the vector with N components of initial 
geometry g = [V1, V2, … , VN]T by a vector dg = [dV1, dV2, … , dVM]T with M decorrelated 
components, associated with a mixing matrix A[NxM], where M << N. 

Using predictive method, described above, the geometry g of the 3D mesh can be written as it follows: 
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where Pi, Pj and Pk are already crossed three vertices and α, β, γ, are the coefficients of the 
prediction rule mentioned by the equation (23). Replacing the Pi, Pj and Pk by their descriptions 
according to V1=dV1 and differences dV2, dV3, … , the geometry g = [V1, V2, … , VN]T of the 3D 
model can be expressed thus: 
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where the vector dg = [dV1, dV2, … , dVN]T is the decorrelated geometry of 3D mesh. One can 
remark that the geometry of 3D mesh is a linear combination of the decorrelated geometry’s 
components. In this context, the geometry vector g is described by the observation vector x, the 
three samples of its corresponding to the vertices values on the Cartesian directions:  
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This assumption leads us to conclude that the recovered sources vector s using BSS method 
approximately equal the decorrelated geometry vector dg that was coded in the bitstream of 
Predictive compression method:  
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and that the mixing matrix A is represented by: 
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Since the neighbors of the current vertex, that were determined during the passage on the 
triangle tree in the encoding process of the connectivity [18], are the same indifferent of x, y or z 
considered coordinate, the coefficients α, β and γ are not different in the three situations 
(αx=αy=αz, βx=βy=βz, γx=γy=γz). This notice explains the uniqueness of the matrix A (Ax=Ay=Az). 

8. 3D Mesh Geometry Coding by BSS 

The suggested compression technique based on BSS algorithms, decorrelates the 3D mesh 
geometry, preserving the information needed for the reconstruction in the reduced mixing 
matrix (NxM in dimension) and in the extracted sources with three samples corresponding to the 
Cartesian coordinates x, y, and z. The numbers of extracted sources being very small, their 
values are included in the compressed file’s header. The mixing matrix, having uncorellated 
elements, makes that the corresponding binary data contain more identification bits and less 
refinement bits. The matrix elements are quantified, binaried through successive approximation 
and coded using the arithmetic code, which strongly compresses the binary information 
consisting in more consecutive bits of the same value 0 or 1 suitable to the identification bits. 
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It is to be mentioned that the number of data hasn’t decreased after processing. On the contrary, 
besides the matrix elements in the number of NxM, also came up the values of the extracted 
sources on the directions x, y, and z. The advantage obtained after the process through the Blind 
Sources Separation method must be searched for somewhere else such as: seeing these through 
the compression angle, after processing it goes from the spatially correlated geometry data to 
the mixing matrix data that don’t have the same property any longer. In contrast to the 
correlated geometry status, the binary data resulted having more identification bits and less 
refinement bits allow to the arithmetic encoder an obvious superior compression to the case of 
the spatially correlated data. 

At the reception it is achieved the geometry reconstruction through the mixing of decorrelated geometry 
(the sources extracted at emission) using the arithmetic decoded and dequantized mixing matrix. 

The M lines of the mixing matrix have an equal dimension to the one of the original mesh 
geometry. With the purpose of reducing this deficiency, which aggravates 3D mesh geometry 
compression, we suggest the geometry division into blocks bg with N/b dimension (with the 
rounding towards the superior unit if the previous ratio is a rational number), where b is the 
number of blocks: 
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This measure was tested for Karhunen-Loève Transfom [8] and Eigenvalues Decomposition [7]. 
Now it is update in association with Robust Second Order Blind Identification algorithm. 

For each block there is determined a set of delayed covariance matrices Si={ )( jp
ixR , j=1,...,J} 

(i=1,...,b). Next it is calculated a global set of matrices, in which each matrix represents the 
average of the corresponding matrices )( jp

ixR  (i=1,...,b) from each set of matrices suitable to 
the blocks. This global set of matrices is used at the calculation of the symmetric positive 
defined matrix, whose eigenvalues decomposition determines the matrix Wb of the 
orthogonalization transform. The Wb matrix is applied to each block of the geometry: 

bg[Mx3] = Wb[Mx
b
N ] ⋅ bg[

b
N x3]       (32) 

For each block orthogonalized geometry there is determined a set of delayed covariance 
matrices Mi={Ri(τp), p=1,...,P} (i=1,...,b). Next it is calculated a global set of matrices, in which 
each matrix represents the average of the corresponding matrices Ri(τp) (i=1,...,b) from each set 
of matrices suitable to the blocks. The jointly approximate diagonalisation of the global set of 
the matrices determines a global unitary matrix Ub, used to separate the sources. By applying to 
each block of the whitened geometry bg the transposed of the global unitary matrix, it is 
obtained the sources separation: 

bdg[Mx3] = T
bU [MxM] ⋅ bg[Mx3]       (33) 

Thus, the mixing matrix dimension decreases from MxN to MxN/b and the decorrelated 
geometry dimension increases from M to b⋅M. A fine choice of blocks number in which the 
correlated geometry vector is divided, leads to decrease the mixing matrix dimension and to 
increase decorrelated geometry vector a little. This result brings a good decorrelation and 
compression, with small errors at reconstruction. If one chooses a too large number of blocks 
for decreasing the global mixing matrix dimension as much as possible, one obtains an increase 
of the reconstruction error. The increase of number M of considered components from 
transformed geometry, for obtaining a decrease of reconstruction error, provides increase of 
mixing matrix dimension by its rows number and of decorrelated geometry dimension, which 
yields a small mesh compression. 
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9. Experimental Results 

The compression technique based on BSS algorithm has been applied on several VRML models.  

Results were evaluated subjectively with a VRML browser, by visual inspection of the 
reconstructed meshes for a quality impression and objectively by a measure of distortions 
named reconstruction error. In the next figure the reconstruction results for three representative 
VRML models are illustrated. The mesh reconstruction has been affected by both the successive 
approximation error and the error corresponding to neglected coefficients with small energy. 
The first image corresponds to a good reconstruction for which the bitrate is optimum and the 
reconstruction error is small. In the last image one can see the degradation by using a too small 
bitrate. The number of bits used at binary representation is called bitrate. 

 

a) yoda.wrl 

   
bitrate = 11                        bitrate = 9                         bitrate = 7 

 

b) car.wrl 

   
bitrate = 9                        bitrate = 7                        bitrate = 6 

 

c) F.wrl 

   
bitrate = 7                        bitrate = 5                         bitrate = 3 

 

Figure 3. Reconstructed VRML models 

The distortion used in this study is defined as the distance between the vertices from the original 
and reconstructed mesh. The measure of distortions is defined as the mean value of these 
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distortions for all vertices. Consequently, for objective evaluation the reconstruction error was 
computed as: 
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where N denotes the number of vertices, xi, yi and zi are the original values of geometry and rxi, 
ryi and rzi are the values of reconstructed geometry. 

The mesh geometry compression performances, appreciated by the geometry compression rate 
(r[%]) and reconstruction error corresponding to some values of bitrate, are shown in the next 
table. Every line of the table corresponds to the same reconstruction error approximately. 
Geometry compression rate is: 
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where so and sc represent the size of the original respectively compressed file. 

 

Table 1. b/v = bitrate [bits/vertex]; r = geometry compression rate 

 

yoda.wrl car.wrl F.wrl 

b / v r[%] b / v r[%] b / v r[%] 

11 86 9 86 7 85 

10 89 8 89 6 88 

9 91 7 91 5 90 

7 93 6 92 3 92 

 

6. Conclusion 

Starting from the vertices coordinates decorrelation obtained after using a linear prediction law 
we have shown that the 3D mesh geometry is a linear combination by the decorrelated geometry 
vector’s components. This remark allows the applying of the Blind Sources Separation 
algorithms to the compression of  mesh geometry of virtual reality. 

Based on the experimental results we conclude that the best results for compression and 
reconstruction of 3D meshes are obtained when the correlated geometry is divided in two blocks 
(b=2), one separated three sources (M=3) from each block of correlated geometry, and one used 
a global reconstruction matrix with dimension equals N/2 x 3. The resulted error in mesh 
reconstruction is small. It is aproximativelly equal to the obtained error when the correlated 
geometry vector is not divided and one separated three sources. But the new dimension of 
reconstruction matrix provides good geometry compression.  

The obtained results are comparable with those of actual compression methods of 3D meshes, 
BSS algorithms offering an alternative way.  
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