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Abstract: A new algorithm inspired from particle swarm optimization method is successfully implemented for 
flexible job-shop work-shop optimization problems. Its efficiency for solving combinatory problems is 
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1. Introduction 

The importance of scheduling has increased in recent years due to the growing consumer 
demand for variety, reduced product life cycles, changing markets with global competition and 
rapid development of new processes and technologies [Hu and al, 06]. 

Scheduling problems are part of strong combinatory optimization problems. Many applications, 
varying from metallurgy, chemistry, agro-food [Tangour, 06], [Tangour, 06] or pharmaceutical 
industries [Boukef and al, 06], [Boukef and al, 07] can be treated by using heuristics and 
metaheuristics for their resolution.  

Among the used metaheuristics, simulated annealing [Kirkpatrick, 83], tabu search [Glover, 89], 
genetic algorithms [Holland, 75] and ant colony [Colorni and al, 91] proved their performances. 

But nowadays, a new optimization method is being used and is given satisfying results. This method 
proposed by Kennedy and Eberhart [Kennedy and Eberhart, 95] is the Particle Swarm Optimization 
method. 

In fact, in 1995, J. Kennedy and R. Eberhart, motivated by bird flocking observation, proposed a 
new algorithm for representing social behaviour of artificial agents and, then created the Particle 
Swarm Optimization (PSO). Since 2000, PSO has been growing rapidly [Liao and al, 07] and 
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has been applied successfully to continuous nonlinear functions, neural networks [Van de Bergh 
and Engelbrecht, 00], etc.  

The PSO functioning makes it classified among iterative methods (progressive approach of 
finding optimal solution) and stochastic ones. Its aim is to improve existing states by moving 
partially at random and partially according to some defined rules in order to reach the global 
solution [Clerc, 99]. 

Most of the research on PSO took into account continuous optimization problems but the studies 
on discrete ones and particularly on flow-shop [Lian and al, 06], [Lian and al, 06], [Lian and al, 
07] and job-shop [Sha and Hsu, 06], [Xia and Wu, 05] scheduling problems are very few. 

The principal scope took into account in these types of scheduling problems is the Makespan 
minimization, even if some authors are interested in total tardiness [Tasgetiren and al, 04]. 

The problem treated in this paper is dealing with flexible job-shop work-shop scheduling with 
Makespan optimization objective. 

First, flexible job-shop problems are introduced. Next, particle swarm optimization method is 
presented and a new algorithm inspired from it is proposed for flexible job-shop scheduling 
problems. Three examples are, then, treated. The two first ones deal with mono-operation 
flexible job-shop problem and the third with multi-operation flexible job-shop problem. In the 
last part, a comparison between the obtained results and those issued from genetic algorithm 
method is proposed, proving, thus, the performance of this new method. 

2. Flexible Job-shop Problem Presentation 

The flexible job-shop scheduling problem (FJSP) is known in the literature as one of the 
hardest optimization problems [Saad et al, 07]. Many studies have been done on this kind of 
problems, [Filip et al, 83], [Mesghouni et al, 96], [Mesghouni et al, 98], [Liouane et al, 07], 
[Saad et al, 08]. 

The difficulty of FJSP suggests the adoption of metaheuristic methods producing reasonably 
good schedules in a reasonable time, instead of looking for an optimal solution. 

The FJSP may be formulated as follows [Saad et al, 07]: 

• consider a set of n jobs which are carried out by m machines Mk, k = 1, 2, . . . , m, 

• each job Jj consists of a sequence of nj operations Oi,j , i = 1, 2, . . . , nj, 

• each routing has to be performed to achieve a job, 

• the execution of each operation i of a job Jj requires one resource selected from a set of available 
machines, 

• the assignment of the operation Oi,j to the machine Mk entails the occupation of the latter 
one during a processing time, noted pi,j,k. 

The FJSP presents two difficulties. The first one is to assign each operation Oi,j to a machine Mk. 
The second one is the computation of the starting times ti,j and the completion time tfi,j of 
operation Oi,j. 

In this study, we considerate the minimization of makespan criteria for the following tables 2, 3 
and 4 benchmark. 

3. Particle Swarm Optimization 

PSO as an optimization tool provides a population-based search procedure in which individuals 
called particles, change their position (state) with time. In a PSO system, particles fly around in 
a multidimensional search space. During flight, each particle adjusts its position according to its 
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own experience, and according to the experience of a neighbouring particle, making use of the 
best position encountered by itself and its neighbours. 

This is similar to the human behaviour in making decisions where people consider their own 
best past experience and the best experience of how the other people around them have 
performed [Kennedy and Eberhart, 95].  Thus, the PSO system can combine Local Search (LS) 
methods with global search methods (metaheuristics), attempting to balance exploration   
and exploitation. 

Many similarities exist between evolutionary type methods and PSO, the latter is different 
because it does not use the selection operation that choose the individuals that are kept into the 
next generation and the members of the entire population are maintained through the search 
procedure so that information is socially shared among individuals to direct the search towards 
the best found positions in the search space [Deroussi and al, 06]. 

3.1. Continuous particle swarm optimization 

The basic principles in classical PSO are very simple. A swarm, which contains a set of particle, 
is initially moving into a search space. Each particle of the swarm has five characteristics 
[Kennedy and Eberhart, 95]: 

• its position, 

• its velocity, 

• the objective function value for its position, 

• its neighbours best position and the associated objective function value,  

• its best previous position. 

The relative notations to these characteristics are expressed as follow: 
t

iV    : flying velocity of particle i at iteration t  

t
iX   : current position of particle i at iteration t  

t
iP    : best previous position of particle i at iteration t  

t
iG    : neighbours best position of particle i at iteration t  

At a specific time, each particle has to make a choice between: 

• following its own way and keep its current position, 

• taking into account its best previous position, 

• taking into account its best neighbour’s position. 

The possibilities quoted above, can be formulated by the following expressions  
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321  ,, ccc are coefficients that indicates the importance given to each expression and 
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3.2. Discrete particle swarm optimization 

The PSO has proved its efficiency in solving continuous optimization problems [Clerc, 99], 
[Shelokar et al, 07],… but in the major part of production optimization, the problems treated are 
discrete ones. Some authors treated discrete optimization problems [Lian and al, 06], [Lian and 
al, 07], [Liao and al, 07], [Shi and al, 07],... relative to flow-shop scheduling problems. In this 
article, the PSO optimization for flexible job-shop scheduling problem is considered. 

3.2.1. Problem formulation 

A new formulation is necessary to move from continuous PSO to discrete one. The notations 
related to this kind of problem can be expressed as follows: 

f
ijO  : operation i of a job j for a particle f  

)(tm f
ij  : selected machine for operation f

ijO  production at iteration t  for present particle 

f position 

)(tP f  : present position of particle f at iteration t  

)(tP f
M  :  best known position of particle f  neighbours at iteration t   

)(tP f
m  :  best known position of particle f  at iteration t  

m
f

ij tm )]([ : selected machine for operation f
ijO production at iteration t  for best known  

particle f  position at iteration t  

M
f

ij tm )]([  : selected machine for operation f
ijO  production at iteration t  for best known particle 

f position neighbours at iteration t  

f
ijm∆   : changes applied to particle f for machines affectation 

f
ijmµ  : mutation vector applied to particle f to allow position changing, 

γβα ,,  :  confidence coefficients 

For each individual, the changes done to move from a position to another must respect the 
following formulations: 
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Presenting a particle structure means presenting an affectation example of considered operations 
f

ijO to a set of machines Mk by indicating begining times tij for each one of them, knowing that 
machines are classified by velocity order. 

An example of a position structure )(tP f  in a given iteration is illustrated in the following table 1. 
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Table 1. Example of a position structure Pf(t) 

Operation Machine 
 number  

Beginning time 
 execution of Oij 

O11 M1 t11 

O21 M3 t21 

O31 M3 t31 

O12 M3 t12 

O22 M2 t22 

O32 M1 t32 

O13 M2 t13 

O23 M1 t23 

 

3.2.2. Proposed algorithm 

The Particle Swarm Optimization algorithm steps, applied to flexible job-shop scheduling 
problems in discrete case, are given in figure1.  

First, an Initial population, called swarm, is randomly generated by, affecting each operation to 
a machine while respecting their precedence order. After that, one particle is selected among the 
swarm and a neighbourhood containing this particle is chosen.  

Then, two heuristics are used to improve machines allocations: 

• the first one consists in comparing the machines affectation and their beginning time 
execution between the chosen particle and its best neighbour and changing the worst 
affectation ; 

• the second one consists in verifying for each operation if the fact of waiting a release of 
another machine is better or not than to execute this operation on the current one.  

To these two local heuristics, a global one is added which consists in changing machines 
affectation using f

ijm∆ and applying it to the current particle to improve optimization function. 

For each element of f
ijm∆ : 

• if this element value is between 0 and 0,5 then, keep the same machine,  

• if this element value is between 0,5 and 1 then increment the machine number and if the 
machine is the last one then, take randomly another machine, 

• if this element value is higher than 1 than decrease the machine number and if the 
machine is the first one then, take randomly another machine, 

• in any other case, take the machine that needs the less time for the operation execution. 

These steps are repeated until an iterations number fixed previously.  
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Figure 1. Particle swarm algorithm steps 

 

4. Simulations and Results 

In this paper, two flexible job-shop mono-operation problems are treated, the first one deals 
with a 20 products and 5 machines scheduling where all the machines can be used at a specific 
time, as shown in table 1. The second one deals with  a 10 products and 6 machines scheduling 
where some of these products can not be executed in specific machines, as shown in table 2 by 
«--» symbol. 

In these two cases, each product contains only one operation and it needs for its execution one 
of the disposed machines. Another problem, dealing with flexible job-shop multi-operation 
scheduling is considered. 3 products have to be executed on 5 machines. Each product contains 
more than one operation, as shown in table 3. Each operation is then, executed on a specific 
machine and precedence constraints have to be respected.  
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Table 2. Scheduling data for a 20x5 mono-operation flexible job-shop problem 

 M1 M2 M3 M4 M5
J1 16 79 58 66 54 
J2 89 03 56 58 83 
J3 49 11 20 31 15 
J4 15 99 85 68 71 
J5 89 56 53 78 77 
J6 45 70 35 91 36 
J7 60 99 53 13 53 
J8 23 60 41 59 38 
J9 57 05 69 49 27 
J10 64 56 13 85 87 
J11 07 03 86 85 76 
J12 01 61 72 09 91 
J13 63 73 08 39 14 
J14 41 75 49 41 29 
J15 63 47 47 56 12 
J16 47 12 87 40 77 
J17 26 21 58 54 32 
J18 75 86 18 77 87 
J19 77 05 68 51 68 
J20 40 77 28 31 94 

This table expresses various manufacturing durations of jobs Jj on machines Mk. These 
durations are different from a machine to another making possible the choice of the most 
suitable combination to reach optimal solution. 

Table 3. Scheduling data for a 10x6 mono-operation flexible job-shop problem 

 M1 M2 M3 M4 M5 M6
J1 07 13 06 10 -- -- 
J2 05 12 08 02 07 11 
J3 05 12 06 09 06 17 
J4 08 10 -- -- 15 -- 
J5 12 06 08 15 10 09 
J6 05 13 07 09 -- -- 
J7 13 20 08 14 14 17 
J8 16 11 05 07 17 09 
J9 16 11 08 09 -- -- 
J10 14 18 06 08 21 14 

This table above, also expresses the durations of jobs Jj on machines Mk. But the difference with 
the previous table is that some jobs can not be executed on some of the machines. 

Table 4. Scheduling data for a 3x5 multi-operation flexible job-shop problem 

 M1 M2 M3 M4 M5 
O11 1.50 3.12 4.91 4.50 9.50
O21 3.00 1.75 4.70 4.50 4.50
O31 4.50 1.75 4.50 3.75 7.00
O12 1.50 4.50 3.25 6.37 4.50
O22 1.50 4.91 4.50 3.75 8.25
O32 4.50 1.75 2.00 4.50 4.50
O13 1.50 4.91 3.25 3.00 4.50
O23 4.50 1.75 4.50 3.75 9.50
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This table shows the durations of the operation i of the job j, expressed by Oij, on the machine 
Mk. In this example, precedence constraints have to be respected. So, operation O22 must be 
necessarily executed before the operation O32. 

For the first problem, a 50 particles population is randomly generated and a neighbourhood 
containing this particle with 5 others is chosen. The α, β and γ coefficients take respectively 0.2, 0.3 
and 0.5 values. Figure 2 shows the algorithm evolution through generations and the stabilization at 
the 232nd one. In figure 3, Gantt diagram shows the best individual for this 20x5 FJSP problem. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Makespan evolution through generations for 20x5 FJSP problem 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Gantt Diagram of best individual for 20x5 FJSP problem 

For the second problem, a 50 particles population is randomly generated and a neighbourhood 
containing this particle with 5 others is chosen. The α, β and γ coefficients take respectively 0.2, 
0.3 and 0.5 values. Figure 4 shows the algorithm evolution through generations and the 
stabilization at the 63rd one. In figure 5, Gantt diagram shows the best individual for this 10x6 
FJSP problem. 
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Figure 4. Makespan evolution through generations for 10x6 FJSP problem 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Gantt Diagram of  best individual for 10x6 FJSP problem 

For the third problem, a 50 particles population is randomly generated and a neighbourhood 
containing this particle with 5 others is chosen. The α, β and γ coefficients take respectively 0.2, 0.3 
and 0.5 values. Figure 6 shows the algorithm evolution through generations and the stabilization at 
the 12th one. In figure 7, Gantt diagram shows the best individual for this 3x5 FJSP problem. 
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Figure 6. Makespan evolution through generations for 3x5 FJSP problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Gantt Diagram of best individual for 3x5 FJSP problem 

 

5. Comparison Between Particle Swarm Optimization and Genetic 
Algorithm for FJSP Problems 

The simulations results in Table 5 below, obtained by particle swarm optimization method are 
compared with those obtained by genetic algorithm application [Saad, 07] in order to minimize 
the Makespan. 

  20x5 problem 10x6 problem 3x5 problem 
Optimization Method GA PSO GA PSO GA PSO 
Makespan 84 84 16 16 6,75 6,75 
Convergence 905 232 20 63 14 12 
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This table shows that for the three problems considered, the particle swarm optimization method 
and the genetic algorithm method reached the same Makespan, 84 for the first example, 16 for 
the second one and 6.75 for the third one with best convergences according to  the PSO 
algorithm for first and last examples and a little slower for the second one. 

6. Conclusion 

The results obtained by applying our algorithm inspired from particle swarm optimization method 
on flexible job-shop scheduling problems and illustrated with Gantt diagrams, show the 
effectiveness of this method which leads to a charge balance of operations on selected machines and 
a minimization of Makespan.  

Comparing this method with genetic algorithms one allows us to validate the use of the PSO in 
the discrete case. 
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