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Abstract: This paper considers deadlock detection problem for FMS (Flexible Management System) based on the 
relationship of the resource share places in Petri Nets model. Since a deadlock is a condition in which the excessive 
demand for the resources being used by others causes activities to stop, it is very important to detect and prevent a 
deadlock. In this paper, after analyzing the relation of resource-share places in Petri Nets, we study the deadlock 
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on the complexity, the effect value and the algorithm understanding. 
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1. Introduction 

While deadlock problem is one of the important properties for analyzing the Petri nets, at the same 
time, it also could be one of the critical points in the scheduling problem of FMS (flexible 
Management System). Deadlock is a stopping status of the flow of a marking due to a resource 
waiting. Deadlock usually appears in contain subsystem which is run in parallel and resources 
share places. 

The approaches to address deadlock are classified as prevention, avoidance, and 
detection/resolution.  Deadlock prevention is a static server allocation approach, and averts 
deadlock by ensuring that the necessary conditions for deadlock cannot occur.  Examples of 
preventive measures in a manufacturing system include uni-directional batching of jobs and 
providing a large number of in-process buffers.  Deadlock avoidance is a dynamic server 
allocation approach that prevents the sufficient conditions for deadlock from occurring. Also, 
deadlock detection/resolution is a recovery procedures which detect deadlock occurs and restore 
the system operation [20].  Most of technical literatures have been used Petri nets to derive 
deadlock prevention and avoidance algorithms [1-3, 6, 9-11,13-19]. Deadlock avoidance methods 
are in many cases related to a set of sequential process sharing common resources of [15]. Xing et 
al. proposed a necessary and sufficient liveness condition based on the deadlock structure [16]. 
Moreover, J.park and S.A. Reveliotis [19] present deadlock avoidance policies for system with 
multiple resource acquisition and flexible routing, called conjunctive/disjunctive resource 
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allocation system. Control places were also used for siphon control in [7,8,15]. However, while 
many researches on an application of the DES (Discrete Event System) to need a real time process 
have been studied, the proposed studies failed to ease an understanding and application of a 
system included many processes. Our method for deadlock prevention is based on the structural 
property. It considers Petri nets component such as transition and place invariant. Since this 
method may detect the deadlock status and avoid schedule in the transitive matrix directly, it’s 
easy to find the deadlock property. In this paper, we propose a method to analyze the deadlock 
problem and to avoid problem in Petri nets using the transitive matrix. Also, this paper is an 
extended variant of a work in [18].  

This paper is organized as follows; some definitions of Petri Nets and transitive matrix are given 
in section 2. In  section 3, we show a deadlock detection algorithm, and show an illustration model 
with one example. In section 4, their performance is analyzed and evaluated. Finally, in section 5, 
concludes the paper and suggests directions for future study. 

2. Notations 

In this section certain terms which are often used in the latter part of this paper are [4,7,8,17]. 

A Petri net is a 5-tuple PN=<P,T,I,O,M,> where P ={p1,p2,..,pm} is a finite set of places, 
T={t1,t2,…,tn} is a finite set of transitions, and P ∪T = ∅, , =TP φ∩  I:P x T -> N is an input 
function, O:T x P -> N is an output function where N is the set of positive integers. M:P-> N, is a 
marking representing the number of tokens in places with Mo denoting the initial marking. 

A transition t ∈T is enabled under M, in symbols M[t>, iff ∀p ∈ •t:M(p) > 0 holds. If M[t> holds 
the transition t may fire, resulting in a new marking M’, denoted by M[t> M’, with M’(p) = M(p) 
-1, if p ∈•t\t•; M’(p)=M(p) +1 if p∈ t•\•t; and otherwise M(p)=M’(p), for ∀ p∈P. 

The set of reachable marking from a marking Mo is denoted as R(PN,Mo). 

Let (PN,Mo) be a Petri net with PN=<P,T,I,O,M>. A transition t ∈T is live under Mo iff ∀M∈ 
R(PN,Mo), ∃M’∈R(PN,M),M’[t> holds. PN is dead under Mo iff ∄ t ∈T, Mo[t> holds. (PN,Mo) 
is deadlock-free iff ∀M ∈R(PN,Mo),∃t∈T,M[t>holds. (PN,Mo) is quasi-live iff ∀t ∈T, ∃M 
∈R(PN,Mo), M[t> holds. (PN,Mo) is live iff ∀t ∈T, t is live under Mo. (PN,Mo) is bounded iff ∃k 
∈N,∀M ∈R(PN,Mo),∀p∈P,M(p) ≤k holds. 

The matrix of a PN structure, C is C=<P,T,B-,B+>, where P ={p1,p2,..,pm} is a finite set of places, 
T={t1,t2,…,tn} is a finite set of transitions, and P ∪T = ∅, , =TP φ∩ . B- and B+ are matrices of m 
rows by n columns defined by 

 B- =[I,j] = #(Pi,I(tj)), matrix of input function, 

 B+ =[I,j] = #(Pi,O(tj)), matrix of output function. 

Also, B = B+ - B- is called an incidence matrix. 

A column-vector xT=(x1,x2,…,xn) ≥ 0 of the homogeneous equation A xT=∆M =0 is called a 
T-invariant, where xT is x’s transpose. An integer solution y = (y1,y2,…,ym)T of the transposed 
homogeneous equation Ay = 0 is called a S-invariant. 

The place and the transition transitive matrix are as follows, respectively: 

B = B-(B+)T : place transitive matrix 
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Let BPL  be the labeled place transitive matrix:  

T
nP BtttdiagBL ))(,...,,( 21B

+−= , 

where ),...,2,1( niti = is : 

                    
   ti  firenot  0 

        ti   iref  1
  t i




=  

The elements of BPL  describe the directly transferring relation that is from one place to another 
place through one or more transitions.  

Through introducing the m×m place transitive matrix, we can evaluate transition enabling firing, 
and calculate Quantity and Sequence of Transition enabling Firing. 

Let a reachable marking )1( +KM R  from )(kM  be an m-vector of nonnegative integer. The 
transformation defined by 

PRMTT
R M(k)1)(kM =+  

The elements of MPR describe the direct transferring relation that is from one place to another 
place through one or more transitions.  

Let MPR be the labeled place transitive matrix. If a transition kt  appears s times in the same 
column of MPR, then we will replace kt  in MPR by  stk / .  

Let MPR be the mm×  weighted place transitive matrix. If a transition kt  appears s times in the 
same column of MPR, then we will replace kt  by stk /  in MPR. 

It is represented a control flow to a column direction of a transitive matrix. Therefore a control 
flow can be known through a value of 

i
k

s
t )(∑ , where i is a number of places.  

Let ))O(t,(pr# ki  be a number of output value from pi to transition tk, and ))E(t,(pr# ki be a number 
of input value from tk to transition pi . 

A formal definition of the relation conditions in column are as follows. 

1) ))(,(#))(,(# kiki tEprtOpr =  ⇒ ∑ =1
s

t
ik  : It is maintained a control scope under a firing of the 

token kt . 

2) ))(,(#))(,(# kiki tEprtOpr >  ⇒ ∑ >1
s

t
ik  : It is expanded a control scope under a firing of the 

token kt . 

3) ))(,(#))(,(# kiki tEprtOpr <  ⇒ ∑ < 1
s

t
ik  : It is reduced a control scope under a firing of the token 

kt . 

It is represented a firing possibility of each transition to a row in the transitive matrix. Also, a 
token exist in the resource common place of a row direction.  
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And we can know whether a firing possible or not through a value of ∑ s
t

ik  because the number of 

transitions is represented a row direction of a resource common place is the number of transitions is 
inputted at the place.  So, if a value of ∑ i

k

s
t

i )(  is greater than 1, it is possible to firing. 

Let ))O(t,(p# ki
 be a number of output value from pi to transition tk, and ))E(t,(p# ki be a number 

of input value from tk to transition pi . 

A formal definition of the relation conditions in column are as follows. 

1) ))(,(#))(,(# kiki tEptOp =  ⇒ ∑ ≥1
s

t
ik  

2) ))(,(#))(,(# kiki tEptOp >  ⇒ ∑ ≥1
s

t
ik  

3) ))(,(#))(,(# kiki tEptOp <  ⇒ ∑ ≥1
s

t
ik  

Therefore, we can know that the sum of transitions of a row direction of a transitive matrix is 1 in 
any case. If a value of 

i
k

s
t

i )(∑  is smaller than 1, we can know that the Petri net model mistake. 

Let MPR be a transitive matrix of PN = (P,T,I,O,M), then PN is called a deadlock-free if a 
relationship in row(column) of resource share place ∑ ≥ ,)( n

s
t

i
ki  where n ≥1 and integer, else the 

PN is deadlock.  

Proof: Transitive matrix explains all relationship between the places and transitions by OPN 
(Ordinary Petri net) in definition. This means that all places have only one input and output arc. 
So, each place in TM should have been an integer value the number of token. If number of token 
is less than zero then this place able to reach the deadlock. Also, if number of token is not integer 
then this place able to reach the deadlock. 

3. Deadlock Detection Based on TM 

An FMS example introduced in [12,17] is represented in Figure 3.1. There are 3 machines (M1, M2 
and M3), one robot and two transport devices, also four operations Job 1, Job 2, Job 3 and Job 4. 

 

Figure 3.1. System structure 

Let’s assume that the production ratio is 1/4, which means that the goal is to manufacture 25% of Job1 
1, Job 2, Job 3 and Job 4. We define that the incorporate alternative process plans as follows: 
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 Job 1: {M1, M2, M3} 

 Job 2: {M2,M1,M3} 

 Job 3: {M1,M2,M3} 

 Job 4: {M3,M2,M1} 

The PN representation of system is as follows: 

 

Figure 3.2. Illustrative example: 3 machines and 4 jobs 

 

First, the initial tokens are in M1, M2, M3, p1, p6 and p12. In this case, places p2, p12, p17 have a 
token and M1,M2 and M3 have not any token for fire. We can say that this marking is dead at M1. 

Based on the avoidance algorithm, we can get an avoidance PN and transitive matrix like as 
follows: 

 

Figure 3.3. Avoidance model of Figure 3.2 
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Table 3.1. Transitive matrix of Figure 3.3 
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Figure 3.4. Running process of Figure 3.3 

In this figure, we can find that modified model has not deadlock status and this model is bounded. 
Also, we use Visual Object Net ++ (Evaluation Version 1.44.2) to verify the proposed model is 
not deadlock. 

We propose a deadlock detection algorithm based on the previous section. The procedures for the 
detection and the avoidance of the deadlock status using the resource status table can be illustrated in 
the following algorithm: 

Algorithm: deadlock detection and avoidance 

Input:  N = <P,T,F,M> 

Output: N is deadlock free or not 

(1) Define MPR of a Petri net initial N. 

(2) Make a marking sequence from the initial place. 

(3) Find all relation of resource share places in each column PRM .  

(4) Calculate MR from the initial marking.  

(5) If they have one deadlock node then this net N is deadlock net but if not this net is deadlock free. 

(6) add one arc to input deadlock status node for another resource share place.  
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(7) verify the marking sequence with modified MPR. 

(8) If this marking sequence accepts fire conditions then this net will be avoided deadlock status 
and stopped,  else this is not deadlock status avoidance, repeat (2) to (6) until satisfy (8). 

4. Benchmarking 

4.1 Benchmarking model 

We introduce an illustrative example module for benchmarking algorithms like as two part types 
(J1 and J2) have to be produced on two machines r1 and r2. J1 contains three operations: r2, r1 and 
work, J2 contains three operations: r1 and r1 and work. We define that the incorporate alternative 
process plans as follows: 
 Job 1: {r2, r1, w} 

 Job 2: {r1, r2, w} 

Figure 4.1 and  figure 4. 2 show the Petri nets of this example model: 
 

 
Figure 4.1. Example model for benchmarking 
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Figure 4.2. Petri Nets of example model 

4.2. Deadlock detection algorithms 

Three deadlock detection algorithms presented in this section: Siphon, DAPN and the proposed 
approach(TM) for the FMS example are shown in Figure 4.2. Hence, we consider only deadlock 
detection algorithms except avoidance case to compare them.  
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1) Siphon 

This algorithm is related with the sequence of the marking in nets. We consider the other usual 
siphon notations [3,7-8,15,21-22].  

A subset of places is called a siphon if S ⊆ S , ,i.e. any input transition of S is also an output 
transit ion of S. It is called a trap if S  ⊆ S, A siphon (resp., trap) is said to be minimal if it does 
not contain other siphons (resp., traps). Also, the following property (see [8]) shows the 
importance of Siphons and traps in the detection of deadlocks. 

Property1: [15] 

1) A siphon S free of tokens at a marking remains token- free. Furthermore, all transitions 
connected to S are not live. 

2) A trap marked by a marking remains marked. 

3) For any marking such that no transition is enabled, the set of empty places forms a siphon. 

In the following, a marking enabled is called dead marking. A siphon S that eventually becomes 
empty is called potential deadlock [15].  

Property2:[15] A Petri net is deadlock-free if no minimal Siphon eventually becomes empty. 

In general, deadlock-freeness does not imply liveness. Exceptions include marked graphs and 
mono-T-semi flow nets. 

For some other important classes of Petri nets including FC(Free-choice) Nets and 
AC(Asymmetric choice)  nets, liveness can be still checked by means of siphons and traps[15]. 
Where, FC net is a Petri net such that ∀p∈P : |p | >1 ⇒  (p ) = {p} and AC net is a Petri nets such 
that ∀p1,p2∈ P: p 1  ∩ p 2  ≠∅ p1 ⊆ p2  or p1  ⊇ p2 . 

Property3:[15] An FC net is live if every siphon contains a marked trap. 

Property4:[15] An ACnet is live if every siphon contains a marked trap. 

Property5:[15] siphon which contains a marked trap is not a potential deadlock. 

Property6:[15] A Petri net is deadlock-free if for each minimal siphon S either it contains a 
marked trap or F(S) > 0. 

Based on these properteis of the siphon, we can find some siphon in example models like as 
follows: 

(1) Siphon: 

In this model, we find 4 siphons like as follows: 

Siphon S1 S2 S3 S4 

places {p2,r2,p3} {r1,p3} {r2,p2,p3,p6} {r1,p3,p5} 

 

(2) Analyze the Siphon S1:  
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S1 is siphon and trap 

   S1 ={t1,t2,t3} 

  S1  ={t1,t2,t3} 

  S1 ⊆ S1 , S1  ⊆ S1, 

S2: S2 is Siphon 

   S1 ={t1,t2,t3} 

  S1  ={t1,t2,t3} 

  S1 ⊆ S1 , S1  ⊆ S1, 

S3: Siphon and trap 

   S1 ={t1,t2,t3} 

  S1  ={t1,t2,t3} 

 S1 ⊆ S1 , S1  ⊆ S1, 

S4: Siphon and trap 

S1 ={t1,t2,t3} 

   S1  ={t1,t2,t3} 

   S1 ⊆ S1 , S1  ⊆ S1, 

Since S1, S3 and S4 are minimal siphons and have a initial marking trap, these subnet are 
deadlock-free, but S2 has empty marking status, so this subnet is deadlock. The detect algorithm 
used siphon algorithm is follows: 

Input: Petri Nets 

Output: siphon, trap 

1. Find cycle subnet based on the initial marking 

2. Repeat1-2 process due to find all subnet  

3. Analyze the siphon and trap at the all subnet 

4. Verify the minimal siphon, if find minimal siphon then this net is deadlock, but if not then this 
net is deadlock-freeness 

2) DAPN (Deadlock detection Avoidance Petri Net) 

Song et al.[16] proposed an algorithm based on the relational matrix in Petri nets.  

In the example model, the concurrence of JOB1 and JOB2 are operated in parallel and the starting 
points exist in each job, JOB1 and JOB2 can be completed at once. Taking into consideration the 
deadlock status and concurrent process of JOB1 and JOB2, the matrix is defined as MJ.  
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The conditions of MJ and the resources sharing places(r1 and r2) must be considered together, 
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since the interpretation of the deadlock status, its detection, and prevention can be obtained from 
these. Matching the MJ matrix with the value of the resources sharing places can create the final 
matrix. The matrix MJR is then obtained in figure 4.4. 
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Figure 4.4. Steps for the Algorithm of the example 

B_step  is a resource stage before the firing transition, which is necessary for job places to proceed 
to further steps. A_step is a stage of the resources after the firing transition. The job begins by 
concentrating on the transition from its initially marked location to the next job location. A table is 
therefore necessary to show the conditions of the resources for job locations in the resources 
sharing places. 

Table. 4.1. Resource State Table of example 

Resources 
Sharing 
Places 

Initial 
Resource
s Status 

B_step1 A_step1 B_step2 A_step2 B_step3 A_step3 

r1 1(j1orj2) 0 0 -1 
(j1orj2) 0 0 1(j1orj2) 

r2 1(j1orj2) 0 0 -1 
(j1orj2) 

-1 
(j1orj2)

-1 
(j1orj2) 1(j1orj2) 

 

The status value of each step’s resource can be calculated based on the following steps: 

Status value of B_stepi = Status value of a prior step - Status value of B_stepi 

Status value of A_stepi = Status value of a prior step + Status value of A_stepi 

A passage in parentheses found next to the resource numbers indicates which job the resource is 
needed for. For example, 1(j1 or j2) means that this resource can be used for either JOB1 or JOB2. 
1(j1) means that this resource can be used only for JOB1. 

If the values of r1 or r2 at B_step1 in Table 1 become negative, JOB1 and JOB2 will automatically 
become negative. Taking into consideration that B_step is before the firing transition, a deadlock 
status is expected since both jobs got negative results and the necessary resources could not be 
provided. This part, therefore, becomes the reason for the deadlock status. 

3) Transitive matrix (TM) 

TM shows all relationship between the places in Petri nets. In this MPR, through definition of TM, 
we can obtain a relationship of the example model as in the following table MPR

’. 
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Table 4.2. TM of example model 
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In this table MPR, we can find two jobs like as J1: p1-p2-p3 and J2:p4-p5-p6, and this relationship 
is explained one cycle. Also, we can find some relationship between the resource share places r1 
and r2: 

Case of r1:   

-relation condition in row : 1/2+1/2+r1 = 2  

-relation condition in column : 1/2+1/2=1 

Case of r2:   

-relation condition in row : 1/2+1/2+1/2 = 3/2 

-relation condition in column: 1+1=2 

In r2, relation condition of row is not equal of 1, this means that the number of token is more less 
than out and it’s may be occurred a deadlock status. In r1, it have all conditions of row and column 
are satisfied deadlock-free. Finally, this net is deadlock. 

By the definition in TM, we can consider a reachable marking as follows: 

Mo =[1,0,0,1,0,0,1,1],  where [p1,p2,p3,p4,p5,p6,r1,r2]. 

Then, the reachable marking M1 is: 

M1 = Mo• MPR, then, 

M1 = [0, (p1(t1/2) + r2(t1/2)), r1(t2/2), 0, (p5(t4/2) + r1(t4/2)), r2(t5/2), r2(t5/2), 0]. 

Since the number of token should be explained by integer value such as equal or greater than zero, 
we can explain the reachable marking M1 as follows: 

M1 = [0, 1, 0, 0, 1, 0, 0, 0]. 

Then next reachable marking is : 

M2 = M1• MPR 

      = [0,0, p2(t2/2),0,0,p5(t5/2),0,0] 
      =[0, 0, 0, 0, 0, 0, 0, 0]. 

In this result, we can find deadlock status occurred in transitions t2 and t5 by the places r1 and r2. 
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4.3. Benchmark the algorithms  

By the example, we can obtain some results as the following factors (Table 4.3).  

1) Understanding 

Understanding of the Siphon’s algorithm is difficult, because it’s difficult to find siphon’s subset 
and analyze the minimal siphon’s characteristics. Also, it’s some difficult to understand DAPN’s 
algorithm because this algorithm is based on the reachable characteristics.  So, it need some effect 
to find process sequence after made matrix. But, the algorithm of the transitive matrix is consider 
only a relationship between the resource share places in transitive matrix, so it’s some easy to 
understand the process concept and algorithm. 

2) Complexity 

The complexity of siphon algorithm is O(n2) in the example model. Also, in DAPN, the 
complexity is O(n4) and in TM the complexity is O(n2).  This solution showed that the good 
complexity of siphon and proposed algorithm rather than DAPN. 

3) Time 

Base on three algorithms, we can get the best time result for the good solution. It shows 32 sec for 
Siphon algorithm, 72 for DAPN’s and 18 for proposed algorithm (TM). This means that the 
proposed approach analyzing time is shorter than the Siphon and DAPN’s approaches. 

Finally, the result of relation graph of three approaches is shown in Figure 4.6. In this figure, we 
can find the optimization is TM’s is good, and Siphon’s approach is effectiveness in the time.  

 

Table 4.3. Benchmark results 
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Figure 4.6. Total relational graph 

5. Conclusion 

In this paper, we focused on the avoidance policy of the deadlock problem in Petri nets using the 
transitive matrix. The transitive matrix explained all relationship between the places and 
transitions in the net. By these relationships, we can find deadlock status based on the relation 
between the resource share places. Finally, it can be said that it is easy to find the deadlock status 
and modify the deadlock status in the net. In this work, a simple example has been shown to 
compare three algorithms: siphon, DAPN and the proposed approach. After applying to a system 
with two machines and two jobs, we compared the results based on the three factors like as time, 
complexity and understandings.  These results indicated that our method could be an easily 
understandable tool to find deadlock and to compute feasibility time.  
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