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Abstract: Monitoring is one of the most important steps in advanced control of complex dynamic systems. Precise 
information about systems behaviour, including faults indicating, enables for efficient control. The paper describes an 
approach to detection and localisation of pipe leakage in Drinking Water Distribution Systems (DWDS) representing 
complex and distributed dynamic system of large scale. Proposed MultiRegional Principal Component Analysis (MR-PCA) 
skilfully takes full advantage of well known PCA method and enables not only for detecting the leakages but also supports 
their localisation. The main idea of MR-PCA is presented on example of small water network. Next the method is applied to 
DWDS in Chojnice, northern Poland. DWDS Chojnice is decomposed into suitable subnetworks what makes that the 
monitoring process is easier and require less sensors. The subnetworks and corresponding PCA monitoring models are 
selected based on the network operational knowledge and information regarding its topology.  
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1. Introduction 

Nowadays, monitoring systems besides data gathering are able to pre-process the data, to recover and 
estimate not directly measured variables. However, in large scale systems there is very large quantity of 
information that are hard to handle and sometimes almost impossible to properly process and hence to 
efficiently utilised it in the control process. An example of such systems is Drinking Water Distribution 
Systems (DWDS) the representatives of the class of network systems. The DWDS are usually, very 
complex (lots of pipes, connecting nodes, pumps, tanks etc.) and distributed (in space). It entails 
measuring of very large number of variables necessity, in order to possess information about the system 
state that is necessary for efficient system control. In such situations special methods enabling for analysis 
of large amount of data (e.g. faults detection and isolation) are required. Advanced monitoring systems 
should not only visualize desired data but also be able to detect devices faults and/or the unusual system 
behaviour. The paper proposes an approach to detecting and localisation of water leakage in pipes by 
using the Principal Components Analysis (PCA) method [1]. The PCA is a method that looks for 
multidimensional correlation between the variables and uses it to reduce the dimensionality of problems 
simultaneously remaining most of original information. Mostly, large amount of real data process do not 
provide large amount of important information. Hence, PCA explores data to find out very meaningful 
ones and include them into statistical models. Moreover, these models clearly indicate the abnormal state 
of the system thanks to specially calculated measures (T2 and SPE). In case of DWDS such a situation 
might be caused by device faults (e.g. sensor or pump break down), water leakage in pipe, significant 
increasing of the water uptake (e.g. caused by fire brigades) etc. Detecting of fault is important however, 
in case of DWDS the system operator still does not know its type and localisation. Leakages detection 
and localisation issue is a very important and complex problem that has been widely investigated [2] – 
[6]. However, available active leakage control methods are basically unpractical due to costs or long leak 
detection and location time [4]. In the paper the novel approach the MultiRegional Principal Component 
Analysis (MR-PCA) method is used to detect and to locate the water leakage based on measurements 
from limited number of measuring devices [5]. MR-PCA tries to join operational experience of staff 
working in water companies and advanced mathematical analysis. Moreover, this method compromises 
between detection efficiency and a number of measuring devices.  

The method is explained based on simple water network and followed with its application to real town 
case study DWDS Chojnice (northern Poland).  

2. Monitoring and Diagnostics in Advanced Control Systems 

Monitoring and diagnostics, which purpose is the fault detection and identification issue, are essential 
elements of advanced control of complex systems (Figure 1) [7] – [9].  

Monitoring and diagnostics utilize a variety of methods for solving the fault detection and 
identification issue. Basically these methods can be divided into tree classes (Figure 2), which are 
quantitative model-based, qualitative model-based and process history based, also known as data 
driven methods [7], [10], [11]. 
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Figure 1. Monitoring and diagnostics (Fault Detection and Identification Unit) in advanced control 
system structure  

Hybrids of monitoring and diagnostic methods can satisfy requirements imposed on a Detection and 
Identification Unit in a more natural way, since they utilize a set of elements, each fitted to a particular 
need [7]. Especially if the resulting mixture, consists of different class members, which is the case of 
MulitiRegional Principal Component Analysis (MR-PCA) [5], [6]. MR-PCA, dedicated to Distributed 
Systems (DSs) following the network structure, combines Structural Decomposition (SD) and Principal 
Component Analysis (PCA), where the latter belongs to the Multivariable Statistics methods (Figure 2). 
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Figure 2. Monitoring and diagnostic methods classification (based on [10])  

The main idea behind SD is to conclude about the conditions of system / process in question by means of 
its subsystems analysis [11]. PCA is described in the next subsection. 

2.1 Principal Component Analysis 

Principal Component Analysis is a method, which identifies linear dependencies among  variables 
, resulting in 

1>n

nix ,,1K= ns ≤  decorrelated and linearly related variables  and a residuals sit ,,1K= snit −= ,,1
~

K  
minimised in the sense of Mean Squared Error (MSE) [1]. Variables  are assumed to be normally 
distributed, with independently, identically distributed (IID) Gaussian noise contamination. Due to statistical 
consistency condition, PCA can model only quasi-static processes, i.e., with unnoticeable transients, because 
only cross-correlations between variables  are took into account during the identification. 

nix ,,1K=

nix ,,1K=

In more details, given a matrix consisting of data collected from the identified process 
(variables standardized to zero mean and unit variance) and , PCA leads to the following 
decomposition of : 

nN×ℜ∈Χ
nN >>

Χ

Studies in Informatics and Control, Vol. 17, No. 2, June 2008 137



TT PTTPΧ ~~
+=            (1) 

where  is the scores matrix containing new data vectors  corresponding to 

original data samples  and residuals 

sN×ℜ∈T s
Nj ℜ∈= ,,1Kt

n
Nj ℜ∈= ,,1Kx sn

Njt −
= ℜ∈,,1

~
K  collected in residual matrix 

snN −×ℜ∈T~ . Orthonormal block matrix [ ] nn×ℜ∈PP ~  plays in the decomposition (1) a key role leading 

to decorrelation of original cross-correlated data. Its first element , so-called loadings matrix, 
which column vectors  contain linear relations indentified in the data , spans 

sn×ℜ∈P
n

si ℜ∈= ,,1Kp Χ s -

dimensional Principal Component Space (PCS), while column vectors n
sni ℜ∈−= ,,1

~
Kp  of the second 

snn −×ℜ∈P~  span Residual Space (RS) and both spaces are orthogonal (Fig. 3). Thus Nj ,,1
~

K=t  and 

 are projections of  on the RS and PCS respectively, where the latter (or P  as its basis) 
is considered as the PCA model. 

Nj ,,1K=t Nj ,,1K=x

In order to obtain [ ]PP ~  one can perform diagonalisation (e.g. using Eigen Decomposition (ED)) of 

approximated data correlation matrix : nn×ℜ∈XR̂

XΧRX
T

N 1
1ˆ
−

=          (2) 

resulting in: 
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⎣
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where  and ss×ℜ∈Λ snsn −×−ℜ∈Λ~ are both diagonal matrices containing eigenvalues of (2): si ,,1K=λ  and 

sni −= ,,1
~

Kλ  corresponding to appropriate block matrix of [ ]PP ~  respectively and all eigenvalues are 

proportional to the variance of original data  in corresponding directions Χ [ ]PP ~  (Fig. 3). In the notation (3) 

it is assumed that si ,,1K=λ  and sni −= ,,1
~

Kλ  are sorted in descending order and in particular 1
~
λλ ≥s . From (2), 

(3) it is clear why only cross-correlation process structure can be modelled using PCA approach. 

Assumption of IID Gaussian noise contamination leads to equal values of 2
,1

~~
σλ =−= sni K , where 2~σ  is 

the variance of noise in question in all sn −  residual dimensions. This enables for clear and doubtless 
separation of  and Λ Λ~ , and in consequence  and PP ~ . However in practice this is the rare case and one 
has to choose approximation  rather than ŝ s  on the basis of some of available methods [12]. The least 
sophisticated, though quite effective, is the Captured Percent Variance (CPV): 
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∑
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sCPV
λλ

λ
        (4) 

where the choice of  depend on the assumed minimal captured by the PCA model percent of data 
variance : 

ŝ
limCPV

( )( limminargˆ CPVsCPVs
s

≥= )         (5) 

Because of PCA ability of modelling only the linear part of the processes, all nonlinear dependencies 
contained in data  would be linearly approximated minimising MSE of residuals. In such case 
linearization errors are included in the RS, which becomes a PCS non-fitting data container. 

Χ

Data analysis after decomposition (1) into PCS and RS, can be performed by norms derived for each of 
subspaces separately, which are Hottelings T2 and Squared Prediction Error (SPE) respectively [13]. The 
former, defined as: 
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is the squared Euclidean distance of data sample   projected onto PCS to the subspace origin, 

weighted proportionally to  variance (Fig. 3). The letter norm, i.e. SPE: 
Nj ,,1K=x

Nj ,,1K=t

( ) ( ) ( )( j
TT

jj
T

jNjSPE xPPIxtt −=== )~~),,1( K       (7) 

measures the squared Euclidean distance of the residual Nj ,,1
~

K=t  to the PCS (Fig. 3), where  is 

the identity matrix. For both norms (6), (7) thresholds 

nn×ℜ∈I

( )β,ˆ2
lim sT  and ( )α,ˆlim sSPE  can be computed 

corresponding to data  variability in each of subspaces respectively (Fig. 3). In the first case threshold 
is defined as a chi-squared deviate for the level of significance 

Χ
β   and  degrees of freedom [1] ŝ

( ) (ssT ˆ,ˆ 22
lim βχβ = )

)

         (8) 

which comes from the assumption of data normal distribution. The similar assumption leads to the 
equation for ( α,ˆlim sSPE  [13]: 
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and  is a standard normal deviate corresponding to the upper percentile αc α−1 . At this point should be 
indicated that α  and β  are tuning parameters. 

 
Figure 3. Example of PCA data decomposition for 3=n , 2ˆ =s  and certain α  and β .  

PCA can be used in process monitoring field for abnormality detection. For this reason PCA model is to 
be identified from process data . Due to monitoring purposes it not only means PCS basis derivation, 
i.e.  (thus computing  simultaneously), but also , 

Χ

ŝP ŝ ŝΛ ( )2 β,ˆlim sT  and ( )α,ˆlim sSPE  calculation. These 

last two quantities are required for bounding set of operational states  considered as 
desirable/allowable, with respect to 

{ Nj ,,1K∈ }x
α  and β  chosen values. This implies that process data should 

contain reasonably the largest representation of process desirable/allowable operational states (by the 
means of data samples ) and , because of PCS identification source, is called training data. 

The quadruple 
{ }j ,1K∈x ΧN,

( ){ ( )}α,ˆ,, 2 ssTPCA ss
MM ΛP= β,ˆ limlimˆˆ SPE  will be referred to as PCA Monitoring Model. 
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After is obtained off-line from training data, the next step is the actual process monitoring 
performed on-line for data samples  constructed analogously to . Since  corresponds to 

the model of the process under monitoring, current norms values : 

MMPCA
( )kx Nj ,,1K=x ŝP

)(2 kT

( )( ) ( ) (kkkT T
ss

T xPΛPx s
1

ˆˆ
2 )( −= )         (11) 

and : )(kSPE

( )( ) ( )( ) ( )kkkSPE T
ss

T xPPIx ˆˆ)( −=         (12) 

measure the (quadratic) distances of current operational state from their, training data based, expected 
values. Thus ratios ( ) ( β,ˆ/ 2

lim
2 sTkT )  and ( ) ( )α,ˆ/ lim sSPEkSPE  can be used for abnormal operational state 

indication/detection in case of unity violation by either of them: 

( )
( )

( )
( ) 1

,ˆ
1

,ˆ
:instatnt  at time state opertional abnormal

lim
2

lim

2
>∨>

αβ sSPE
kSPE

sT
kTk   (13) 

and the indication/detection magnitude (values of ratios ( ) ( )β,ˆ/ 2
lim

2 sTkT  and ( ) ( )α,ˆ/ lim sSPEkSPE ) 
depends on the abnormality magnitude measured by the (11), (12) relatively to the closest operational 
state concerned as a desirable/allowable, represented by the thresholds (7), (8). 

As far as the monitored process fulfil PCA assumptions, there is a fundamental difference between abnormality 
detection by the  and ( ) ( β,ˆ/ 2

lim
2 sTkT ) ( ) ( )α,ˆ/ lim sSPEkSPE  ratios. The former value indicates abnormal 

operational states, which preserve cross-correlation structure of the process, hence caused mainly by the 
operation point changes, while the latter ratio is responsible for abnormalities detection of PCA modelled 
process. However in case of nonlinear process under PCA monitoring, which can be often found in practice 
[5], [6], [14] – [19], since PCS contains only linearised and originally linear part of dependencies among 
variables , current  values indicate an abnormality being a mixture of operation 

point as well as whole process changes, both not perpendicular to the  directions. The same applies to the 
second ratio 

Nj ,,1K=x ( ) ( β,ˆ/ 2
lim

2 sTkT )

)
ŝP

( ) ( α,ˆ/ lim sSPEkSPE , with an exception, that this measure detects abnormal operational states 
(again a mixture of operation point and process changes) not captured by the PCS. 

3. MultiRegional Principal Component Analysis 

Distributed Systems (DSs) can be decomposed into regions such that operational state of DS follow this 
decomposition resulting in a set of local (regional) operational states. Because DSs posses network 
process structure, any local operational state is mutually dependant of its neighbouring regions, where the 
dependencies are defined by network topology. Hence any source of a abnormal operational state of DS 
can be analysed through the local operational states, which indicate a local abnormality, if and only if, the 
abnormality in question, has significant influence on them (local operational states). Significance of 
analysed abnormality is given by some measure of desirability/allowability of operational state. 

Moreover, it is the network topology that defines, which of local models (representing local operational 
states) are sensitive to abnormal operational state of DS with respect to its particularly placed source. This 
knowledge can be used to establish a methodology for abnormality source localization. 

In case of PCA chosen as a basis monitoring method, as many regions  of DS should be distinguished 
as it is possible, subject to -th region compactness and minimal number  of monitored variables 

. For each of  regions a local (regional) PCA Monitoring Model  and 

R
j 1>jn

jj nix ,,1K= R MM
RjPCA ,,1K=

( ) ( ){ }jjjjjjjsjs
MM
j sSPEsTPCA

jj
αβ ,ˆ,,ˆ,, lim,

2
lim,,ˆ,ˆ ΛP=  is to be derived following the methodology 

stated in the previous section (2.1). Defining norms for the -th region j ( )kTj
2  and  analogously 

to (11), (12) computed at time instant  with respect to local data sample , ratios: 

 and 

( )kSPEj

k ( ) jn
j k ℜ∈x

( ) ( jjjj sTkT β,ˆ/ 2
lim,

2 ) ( ) ( )jjjj sSPEkSPE α,ˆ/ lim,  are considered as measures of desirability/allowability 
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of local operational state and again (13) it assumed, that for the -th region if either of these ratios 
violates unity, there is an abnormality in DS causing local abnormal operational state. Thus abnormal 
operational states indication by particular local models still depends on its magnitude (relatively to the 
closest operational state concerned as a desirable/allowable), however in this case abnormality magnitude 
is understood locally, i.e. corresponds to particular regional PCA Monitoring Model. 

j

It is important to notice, that it is possible to distinguish between ‘process’ abnormality of DS and a 
sensor fault. While the latter is detected only by one regional PCA Monitoring Model (assigned to the 
specific sensor), the abnormality of DS radiates into all regions causing changes in  and ( )kT j

2 ( )kSPEj  
in more then one adjacent PCA Monitoring Model.  

Network process structure of DSs can be illustrated by the means of nodes and links, which connections 
structure follows the network topology. From this point of view any distinguished region should consist 
of variables measured at a node and in all connected links. In special case of isotropic topology (Fig. 4) 
the highest desirable/allowable regional operational state violation, thus also the highest abnormality 
indication, is in the neighbourhood of abnormality source, since the grater is the distance of local model 
from the abnormality source localization, the less its operational state depends on abnormality ‘injected’ 
into the network. 
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Figure 4. Visualisation of MR-PCA approach 

Detection and localisation of abnormality source in DS can be briefly described as follows: 

1. During the process operation both measures ( )kT j
2  and ( )kSPEj  for all  regional PCA 

Monitoring Models are monitored. 
R

2. If any measure exceeds corresponding threshold ( )jjj sT β,ˆ2
lim,  or ( )jjj sSPE α,ˆlim,  respectively, 

then it is said that a certain abnormality (including sensor faults) occurs. 

3. If it is only one regional PCA Monitoring Model that indicate abnormality, first check for sensor 
fault among  locally measured variables . Else, at once consider detected abnormality 

as affecting the process. 
jn

jj nix ,,1K=

4. Regional PCA Monitoring Models with the largest ( ) ( jjjj sTkT β,ˆ/ 2
lim,

2 )  or 

( ) ( )jjjj sSPEkSPE α,ˆ/ lim,  values determine the localisation of the process abnormality source. 

The main idea of proposed method is quite similar to Multi Block Principal Component Analysis (MB-
PCA) presented in [20]. However, this name appeared earlier and was dedicated for quite different 
approach [21]. Therefore, it was proposed [5], [6] to name the method MultiRegional PCA (MR-PCA). 

4. Drinking Water Distribution Systems  

Drinking Water Distribution System (DWDS) is a good example of a DS. In this section the general 
description of DWDS is presented.  

Nowadays, DWDS is one of the most important systems in community. Its efficient control requires advanced 
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method e.g. predictive control [22], [23] or adaptive control and reliable monitoring system. Proposed approach 
is applied to detection and localisation of failures in DWDS. Usually in DWDS, drinking water is introduced 
into the network by using pumps (pumping station) and transported through the network by pipes. Pipes 
connect in nodes where delivered water is mixed and transported farther. Flows through the pipes are enforced 
by nodal pressure differences. These are caused by pumps or/and by the water tanks. Tanks are used to store 
the water in periods when water production is greater then its consumption [23]. 

The network mathematical model is composed of two parts: static and dynamic. The static part is 
typically available in an implicit form represented by the element algebraic equalities and the 
interconnection equalities. This is described for water networks by Brdys and Ulanicki [25]. In general, 
the element algebraic equalities are described by non-linear functions. The interconnection equalities can 
be written based on conservation equations. Using the energy loss-gain relationships for the different 
elements of water distribution system, the conservation equation can be written in three forms: the node, 
the loop and pipe equations [26]. 

Unlike the node and loop equations, the pipe equations are solved for the vector of pipe flows Q and 
hydraulic head h simultaneously. Formulating the static part of water distribution network mathematical 
model we use the pipe form. The dynamic part of the network mathematical model is represented by 
differential equalities describing tanks. Because the measurements are available at discrete moments, the 
water distribution network model is formulated in discrete form.  

Paper considers detection and localization of water pipe leakages. The DWDS is modelled in simulation 
packages Epanet [27]. The leakages are modelled as an emitter. The flow rate through the emitter varies 
as a function of pressure available at the node [27]:  

γpCQ =           (14) 

where: Q is the flow rate, p is the pressure and C is the discharge coefficient (emitter coefficient), finally γ 
is the pressure exponent.  

5. MultiRegional Principal Component Analysis in Application to 
Drinking Water Distribution Systems 

Most often faults in DWDS are pump breakdowns and water leakages from the pipes. The former is easy 
to identify while the leakage detection and localisation is harder as it is placed underground. The faults 
might be detected based on the system measurements. 

When diagnosis of DWDS is under the consideration monitoring and diagnostics methods are directly 
divided into two groups [4]: ‘measurements and model based’, e.g. Inverse Transient Method [2] and 
‘measurements based’ [7], [10], [11]. A group of measurement based methods utilizes statistical data 
analysis [28], but these methods are still in the stage of research and development [4]. Moreover available 
active leakage control methods are basically unpractical due to costs and time consuming or having the 
long leak detection and location times [4]. This is not the case of MR-PCA, which can join not only 
relatively uncomplicated statistical analysis dedicated to DSs, such as DWDS (due to SD) but also 
experience of staff working in water companies. Moreover, this method compromises between detection 
and localisation efficiency and a number of measuring devices [5], [6]. 

In the DWDS one can measure the water pipe flows, pressure in the nodes, water level in the tanks and 
water quality (e.g. chlorine concentration). For DWDS approach region (when regional PCA Monitoring 
Models are taken into consideration) means a measurement nodes together with all adjacent links, while 
the abnormal DWDS operational state is said to be caused by the single water leakage. 

5.1 Fundamentals 

Local -th PCA Monitoring Model  for each of  regions consists of the locally identified PCS basis 

 with corresponding modelled variance information in diagonal matrix , as well as thresholds 

computed for local abnormality indication. All these elements are derived with respect to chosen PCS 
dimensionality  (e.g. using CPV criteria (4), (5), thus also ) and 

j MM
jPCA R

js j ,ˆP js j ,ˆΛ

jŝ jCPVlim, jα , jβ  parameters. 

Local PCA models use nodal heads (heads is a sum of nodal pressure and its geodetic heights) and 
adjacent pipe flows as process variables (of course for PCA models identification as well as on-line 
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DWDS regions monitoring). Since each local model (PCA model or PCA Monitoring Model) in all cases 
includes one quantity connected to a particular node (namely nodal head), the ‘Identification number’ of 
the particular node will be referred to as the model name and replaces its -th index. It means, e.g. (Fig. 

5) that PCA Monitoring Model  is related to the head in the node ‘88’ and flows in the pipes 
linking this particular node with its neighbours, which are: ‘44’, ‘55’ and ‘66’.  

j
MMPCA '88'

The minimal percent of variance captured by the -th PCA model, , in all cases is set to 95%. 
However due to existing nonlinearities this ensures only capture of the linearization results by PCS. 
Values

j jCPVlim,

jα  and jβ  are selected separately to ensure abnormality detection (with respect to given local PCA 
model) and simultaneously false alarms reduction. This implies in the non-normal and nonlinear case of the 
DWDS, that one must pay special attention while tuning jα  and jβ . Authors in most of further presented 

case studies assigned values from the range 7,06,0 ÷  and 9,07,0 ÷  for jα  and jβ  respectively. 

5.2 Simple water network case study 

Paper presents MR-PCA method in application to leakage detection in Chojnice drinking water distribution 
network. Large numbers of potential leakages in the network as well as potential monitoring points might be 
investigated, there. Hence in order to explain the fundamentals of the method and to illustrate well its 
efficiency, the simulations were carried out on small testing network (Fig. 5), where the leakages were 
modelled in different but very meaningful places, as an extra node with pressure dependent demand (Emitter). 

Fig. 5 presents three case studies when the leakage was modelled in different places in the testing 
network. First leakage was modelled in pipe between nodes ‘44’ and ‘88’ (Section 5.2.1), the second one 
in pipe between nodes ‘29’ and ‘30’ (Section 5.2.2) and the last one in pipe between nodes ‘25’ and ‘28’ 
(Section 5.2.3). All leakages took place between 46th and 52th hour. 

 

 Leakage 144

22 55

66
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31 30
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32

28

25
26

27

Leakage 2 

Leakage 3

Figure 5. Simple water network. Modelled leakages marked with blue dots  

The following figures present the effects of monitoring process by using PCA Monitoring Models 
designed based on flow rates delivering water to particular node and its nodal head.  

5.2.1 Water main screening effect 

The dashed blue lines in Fig. 6. represents results of quality measures T2 and SPE simulated on the 
training data, without any leakage. The solid red lines represents an effect of monitoring for the same 
simulation period but with modelled leakage (in pipe between nodes ‘44’ and ‘88’). 
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Figure 6. Leakage monitoring results by PCAMM  designed at selected nodes – water main screening 
effect (simulation without leakage (training) - blue; simulation with modelled leakage – red)  

Differences between the lines representing PCA models being identified on training data and its current 
(simulated) responses indicate that something unusual has took place in the network. In this particular 
example it means pipe water leakage. Notice how considerable increase of the T2 and SPE measures is 
generated by PCA Monitoring Models ‘44’, ‘22’, ‘66’ and ‘88’ ( ; ;MM MMPCA '44' PCA '22' '66'

MM

MM

MM

)

PCA  and 

). It simply means that the leakage has significantly disturbed the water flow rates and pressures 

being the base for particular PCA Monitoring Models (PCA

PCA '88'

MM). There are also PCAMM e.g.  that 
do not indicate any abnormalities in the network in spite being in similar distance to the leakage. Such a 
phenomenon is rather strange at the first glance. However, these models are designed based on 
measurements gathered from points laying ‘behind’ the water main. Hence, the significant amount of 
water flowing by the water main causes that modelled leakage did not significantly affect the usual 
(operating states represented by training data) flow rates and nodal heads on the other side of water main. 
This implies that the PCA Monitoring Models are unable to detect the leakage. In the paper such an effect 
is called ‘screening effect’ of the water main. 

PCA '31'

5.2.2 Water tank screening effect 

This section presents a case when the leakage was modelled in pipe between nodes ‘29’ and ‘30’. 
Similarly to the previous case study some of the PCA Monitoring Models produce quality measures 
significantly exceeding the assumed threshold (unity in the case of ratios  and ( ) ( jjjj sTkT β,ˆ/ 2

lim,
2

( ) ( )jjjj sSPEkSPE α,ˆ/ lim,  monitoring) e.g. ; ; ,  and , what 
indicates the leakage (Fig. 7). In opposite, there are models that generate measures similar to their training 
values what suggests that noting unusual happened.  

MMPCA '55'
MMPCA '28'

MMPCA '29'
MMPCA '31'

MMPCA '32'

 

 Studies in Informatics and Control, Vol. 17, No. 2, June 2008 144 



MM
''PCA55  

0

0.5

1

T2 /T
2 lim

 [-
]

40 45 50 55 60
0

100

200

t [h]

S
P

E
/S

P
E

lim
 [-

] MMPCA '28'

0

0.5

1

T2 /T
2 lim

 [-
]

40 45 50 55 60
0

2

4
x 10-8

t [h]

S
P

E
/S

P
E

lim
 [-

]

MMPCA '29'  

14

0

2

T2 /T
2 lim

 [-
]

40 45 50 55 60
0

5

10

t [h]

S
P

E
/S

P
E

lim
 [-

] MMPCA '30'

0

T2 /T
2 lim

 [-
]

0.5

100

40 45 50 55 60
0

50

t [h]

S
P

E
/S

P
E

lim
 [-

]

MMPCA '31'  

10 2

0

5

T2 /T
2 lim

 [-
]

40 45 50 55 60
0

100

200

t [h]

S
P

E
/S

P
E

lim
 [-

] MMPCA '32'

0

T2 T2 lim
 [-

]

1

100

40 45 50 55 60
0

50

t [h]

S
P

E
/S

P
E

lim
 [-

]

Figure 7. Leakage monitoring results by PCAMM designed at selected nodes - tank screening effect 
(simulation without leakage (training) - blue; simulation with modelled leakage – red) 

 

Notice that these models are identified based on measurements from two sides of retention tank. This is 
due to the fact that significant amount of water flowing in and out of the retention tank damps the 
influence of the modelled leakage on flow rates and nodal heads on the other side of the tank. Hence, e.g. 

 is not able to detect the modelled leakage. Since the values of components that the Monitoring 
Model composes of does not deviate much from the training data. 

MMPCA '28'

5.2.3 Isolated subnetwork effect  

The third case (Fig. 5) illustrates the situation that the leakage is modelled (pipe between nodes ‘25’ and 
‘28’) inside subnetwork that is isolated from the rest of the network (e.g outskirts of the town). The 
‘isolated subnetwork’ means that it slightly (if ever) supply any other subnetworks and hence the 
abnormalities taking place in its interior do not radiate outside it. The isolation effect is often enhanced by 
screening effects water main and/or retention tank related.  

Fig. 8 shows quality measures produced by PCA Monitoring Models located inside the isolated 
subnetwork. Notice that all of the PCAMM indicate the abnormality. On the other hand, the example 

 identified based on measurements almost entirely gathered from outside of the isolated 
subnetwork does not detect any symptoms of abnormal operational state. 

MMPCA '22'
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Figure 8. Leakage monitoring results by PCAMM  designed at selected nodes – isolated region effect 
(simulation without leakage (training) - blue; simulation with modelled leakage – red) 

5.2.4 Distinguishing the subnetworks  

Screening effects of the water mains, water tanks and isolated subnetwork are the serious disadvantage in 
leakage detection and localisation process at the first glance. However, skilfully utilisation of these 
features allows for improving the efficiency of faults monitoring process. Possessing the knowledge about 
DWDS characteristics (pipe flow rates, velocities, nodal heads, diameters of pipes, tank localisations etc.) 
one can divide the network into several independent subnetworks. The subnetworks should be selected in 
such a way to enable for independent (with respect to abnormalities significance indication) leakage 
detection inside them. Such an approach enables for placing much less measuring devices for detecting 
and then localising the leakages. As the results number of simulations and confronting them with network 
topology, three regional subnetworks have been distinguished (Fig. 9).  
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Figure 9. Selecting the regional subnetworks within the simple network  

Another step after the detection of the leakage is its localization. It is clearly seen that there is strong 
correlation between values of both quality measures and distance from leakage and PCA Monitoring 
Model (Fig. 6, 7 and 8). Namely, in case of leakage the highest values of T2 and SPE are produced by 
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PCAMM in close neighbourhood to the source of leakage. Therefore, employment of at least two 
monitoring nodes within a single subnetwork enables for preliminary leakage localisation. Of course, the 
more PCAMM are used, the more precise localisation is.   

5.3 Chojnice case study 
After presenting the fundamentals of described method, the MR-PCA is tested on Chojnice case study network.  

5.3.1 Chojnice Drinking Water Distribution Systems  

Chojnice is a city of forty thousand of citizens in northern Poland. Model of Chojnice DWDS [29] structure 
that sufficiently accurate for mentioned purposes is presented in Fig. 12 (Fig. 10 and Fig. 11). This model 
consists of 188 nodes, 284 pipes, two supply reservoirs in the system and one tank. Water is extracted from 
main reservoir by five pumps and provided to water treatment station. Model of Chojnice DWDS was built in 
Epanet simulator, while all the monitoring algorithms were implemented in Matlab. The monitoring points and 
leakages were selected to present the best advantages and disadvantages of proposed method. During the 
experiments pipe flows and nodal heads are determined by Model Predictive Control.  

Based on the rules and observations described in Section 5.2 one may distinguish the subnetworks inside 
the network. Fig. 10 illustrates the example of such a subnetwork. Notice that PCA Monitoring Model 
‘placed’ at node ‘147’ is able to detect potential leakages inside selected area, only. 

 

  

Figure 10. Monitoring at node ‘147’ – range of possible leakages detection  

The experiment has been carried out in such a way that water leakages were modelled at each of the network 
nodes/pipes one by one and hence selected monitoring node tried to detect these. The colours of the nodes in 
the figure indicate values of the ratios: ( ) ( )'147''147'

2
'147'lim,

2
'147' ,ˆ/ βsTkT  and ( ) ( )'147''147''147'lim,'147' ,ˆ/ αsSPEkSPE  

what determine the ability to detect the abnormality by PCA Monitoring Model ‘147’ ( ). The red 
nodes mean the highest detectability while the dark blue ones, the lowest. 

MMPCA '147'

5.3.2 Selection of monitoring nodes  

Based on number o simulations it has been noticed that there are several PCA Monitoring Models that are 
able to detect leakages in much wider area then local subnetwork, only. In these models, measurements of 
water flows are performed in pipes with relatively small water flows comparing to their potential 
possibilities (regarding its diameters) and that they are located in close neighbourhoods to main streams. 
The examples of such place are PCA Monitoring Models designed at nodes: ‘029’, ‘051’, ‘068’, ‘167’.  

Fig. 11 illustrates the areas of potential leakages that are detectable by mentioned PCA Monitoring 
Models. Notice that potential leakages located in almost entire network might be detected by these nodes.  

Another important observation is that any leakage at main streams are easily detectable by any PCA 
Monitoring Models, however it is not recommended to place the monitoring points at the main streams 
because of their limited ability to detect the other leakages. Nevertheless, the main streams are the crucial 
places of the network for the operators and hence they are most often under monitoring.  
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Figure 11. The leakages detectability by PCA Monitoring Models designed at nodes ‘068’ and ‘029’ 

In the result of such an analysis five subnetworks has been selected for Chojnice network and two 
monitoring places at of the regions have been indicated. These are presented at Fig. 12.  
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Pipes 

Pumps 
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Figure 12. The Chojnice DWDS. Green ellipsoids mark the selected subnetworks while blue dots mark 

assumed PCA Monitoring Models.  

5.3.3 Simulation results - leakage detection and localization 

Fig. 13 presents the results of monitoring the Chojnice DWDS by PCA Monitoring Models designed at nodes 
marked in Fig. 12. The situation without leakage (training data) is marked blue lines in the figures, while 
simulations with modelled leakage are marked red. Simulations show that only PCA Monitoring Models build 
at nodes ‘152’ and ‘144’ unambiguously have indicated the failure (both SPE and T2 have significantly 
exceeded the thresholds). These models consist of nodal heads and pipe flows measurements gathered inside 
one selected subnetwork, namely ‘IV’ (Fig. 12). It leads to conclusions that simulated leakage is located within 
this area. Moreover, SPE and T2 produced by  are much greater then measures of , hence it 
might suggests that the abnormality took place closer to the node ‘152’ (and it indeed is in this case), however 
one cannot treat this as a straight rule without taking into account the network topology and actual water 
distributions and its ‘trace’. Example of tool enable for analysing the routes of water flowing inside the network 
is an algorithm making possible for water paths (routes) finding [30]. 

MMPCA '152'
MMPCA '144'

Besides of  and , also PCA Monitoring Model ‘029’ indicates the leakage by its TMMPCA '152'
MMPCA '144'

2 
measure but as mentioned earlier it is the model of special sensitivity. 
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Figure 13. Leakage monitoring results by PCA Monitoring Models designed at selected nodes 
(simulation without leakage (training) - blue; simulation with modelled leakage – red)  

 

Figure 14. Fragment of the Chojnice network with broken water pipe flow sensor in pipe ‘152’ 
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5.3.4 Simulation results - sensor fault 

Very important for the monitoring process is quick and correctly distinguishing the process abnormalities 
(e.g. pipe water leakage, pump failure) from the sensor faults (e.g. sensor drift, outliers, missing data). 
The proposed method enables for distinguishing of such cases.  

Following simulations present situation when flow rate sensor in pipe ‘152’ (Fig. 14) broke down. Broken 
sensor delivers measuring data for PCA Monitoring Model ‘123’. The modelled fault took place at about 
50th hour of simulation. 

Fig. 15 shows the monitoring results from all selected regional PCA Monitoring Models. The situation without 
failure is marked blue lines in the figures, while simulations with modelled sensor fault are marked red. 
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Figure 15. Sensor in pipe ‘152’ fault - monitoring results by PCA Monitoring Models designed at 
selected nodes (simulation without leakage (training) - blue; simulation with modelled leakage – red)  

Based on the rules derived in the paper one might try to detect the sensor fault by analyzing the values of 
SPE and T2. If the abnormalities detected by PCAMM are caused by significant changing the operational 
state of the plant (e.g. by leakage) it should be noticeable at least by all sensors inside one of the selected 
subnetworks. Moreover, some of the very sensitive PCAMM (e.g. ‘029’ as it was in case study when 
leakage was simulated inside this particular region) should detect it, as well. However, only PCA 
Monitoring Model ‘123’ indicates the fault. It suggests that one of the measurements is abrupt. In this 
case  consists of measurements from pipes ‘152’, ‘153’ ‘154’ and nodal head ‘123’ and hence we 
are able to state that one of these sensors probably broke down. Having more measuring devices in this 
subnetwork and so PCA Monitoring Models would enable for precise indicating the broken sensor by 
utilizing PCA features [31] or logical elimination.    

MMPCA '123'

6. Conclusions and Future Work 
The paper has introduced a new approach to PCA based methods utilisation in detection and localisation 
of pipe leakage in Drinking Water Distribution System, namely MultiRegional Principal Component 
Analysis. In the first place MR-PCA approach to monitoring and diagnostics of network structured 
Distributed Systems was stated. The key idea is to use several regional PCA models (PCA Monitoring 
Models) identified on the basis of spatially local, available measurements to conclude about DS 
operational state, instead of single ‘global’ model. In particular, this enables for abnormality detection at 
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least. Moreover the network topology of DS may be imbedded into the MR-PCA structure resulting in 
better diagnostic capabilities.  

Since DWDS is a representative of network systems, its abnormal operational states detection and 
identification can be realised by MR-PCA. In the paper pipe leakages are assumed to be the only one 
process abnormalities. MR-PCA methodology illustrating simulations ware presented on a simple 
example of water network first. These, performed for a number of demand scenarios, confirmed the 
ability of MR-PCA to conduct the system diagnosis with regard to leakages detection and localisation. 
Furthermore additional phenomena were observed, providing abnormalities localisation complexity to be 
reduced, due to DWDS subnetworks distinguishing criteria. These are water main and retention tank 
screening effects, as well as isolated subnetwork effect. In practice only small part of the network 
variables can be directly measured. However, this does not constrain MR-PCA capabilities of leakages 
detection and localisation, as long as one is able to ensure at least two local PCA Monitoring Models per 
distinguished DWDS subnetwork, placed in their certain regions. Choice of these regions, i.e. DWDS 
sensors allocation is suggested from the MR-PCA abnormalities detectability point of view. Obtained 
results were successfully applied to case study DWDS Chojnice (Northern Poland). 

At this state of the research the accurate localisation of the leakages is supervised by a man. In the future 
the neural networks and/or fuzzy clustering will be used to complete the process of automatic 
abnormalities localisation. Moreover, MR-PCA will be a part of supervised Fault Tolerant Model 
Predictive Control. Another subject of research in the field of fault detection and localisation will focus 
on identifying the process abnormality type e.g. pipe leakage, pump or valve breakdown. Obtained results 
are promising and have rather generic nature, hence might be transferred into other DSs e.g. pipeline 
systems, telecommunication systems, power systems etc, known as a network systems. 
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