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1. Introduction 

Many optimization problems such as combinatorial optimization [3, 31] ones are usually N-P hard 
problems which prevent the implementation of exact used solving methodologies. It is the reason why 
engineers prefer to use metaheuristics which are able to produce good solutions in a reasonable 
computation time. The metaheuristic approaches can be separate in two classes: the local search 
techniques and the global ones. Among the local search techniques the Tabu search [14] is the more 
known. The other methods usually involve a part of stochastic approach, like the Simulated Annealing [1, 
6, 27], the Genetic or Evolutionary Algorithms [28, 29, 36], the Ant Colony Optimization [11] or the 
Particle Swarm Optimisation [4, 8].An important difficulty which appears in complex optimization 
problems is the existence of constraints which can be strict and inviolable or soft but with penalization 
which increase strongly with the degree of violation. 

A possible acceleration of the convergence can be obtained by using tunnelling algorithms.  

The muliobjective optimization is considered at the end of this paper with presentation of the OWA 
approach, of the Choquet integral and the Pareto optimality.  

2. Tabu Search 

Tabu search [12, 15, 16] is a local optimization method which enhances the performance of a local search 
method by using memory of the previous obtained solutions in order to permit to escape to a local  
optimum. It is an iterative local search procedure which enables to move from a solution to another 
solution in its neighbourhood until stopping criterion is satisfied. In practice the main Tabu search 
approach consists to determine, starting from a solution, the best solution in its immediate neighbourhood 
with interdiction to go to one of the N previous obtained solutions. Let us denote N(x) the list of the N 
solutions that have been visited in the recent past, at each step of iteration we eliminate the oldest solution 
of the list and we add the new on. With this method we avoid to have a cyclic evolution. It can appear that 
during some time we can have a degradation of the solution but it enables us to get out of a local optimum 
and to enlarge the search space. 
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Another type of Tabu search corresponds to another definition of the Tabu list: which can prohibit solutions 
that have certain attributes or which can prevent certain solutions that contain prohibited attributes. 

An example of Tabu search corresponds to the research of the smallest value in the following Notice Board.  

The initial solution corresponds to a fitness equal to 12 and the Tabu list comports 5 elements, figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 1. The research of smallest value 
 
 

3. Simulated Annealing 

3.1 Principle 
Simulated annealing [23, 32] is a generic probabilistic algorithm developed to solve global optimization 
problems for a function defined in a large search space. The simulated annealing has obtained excellent 
results in various complex problems known for their important combinatory properties. It is inspired of 
the physical thermic annealing. At each step of calculation of this algorithm the current solution is 
replaced by a nearly one chosen with a probability that depends of the variation of a fitness function 
(called the energy function by analogy with the physical process) via a parameter T (called the 
temperature) which gradually and regularly decrease during the process. In this approach the solution 
changes almost randomly for the large value of T and tends globally to obtain the minimum of the energy 
function as T tends to zero. The random evolution enables motions in which the energy can sometime 
increase which avoid falling and being trapped in a local minimum which can appear with usual downhill 
methods as the gradient method.  

This algorithm can be presented as follows: let us denote s, T and e respectively the current state, 
temperature and energy, and sn and en respectively the new state and energy.  

The process is initialize with s: = so and e: = eo which correspond to the initial state so of energy eo at 
time k = 0. 

While the stopping condition is not satisfied (time k < km, and energy e>em), pick some state in the 
neighbourhood and compute its energy. 

3.2 Example of simulated annealing algorithm 

Initialization: 

0 0( ), , 0,e E ss s k T T== = =  

while mk k<  and me e>  

1ks + = neighbour ( )ks  

( )1 1 1,k k k k ke E s e e e+ + += Δ = −  

if random [ ] ( )0,1 exp /k ke T< −Δ  

then 1 1 1: , : , : , 1k k k k k ks s e e T T k k+ + += = = = +  
return while 
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After stabilization, decrease T and return to s. 

We always save the best solution that will be the final solution given by the simulated annealing 
algorithm. 

4. Genetic Algorithms 

4.1 Principle 

Genetic algorithms [9, 13, 17, 18, 26] are iterative algorithms whose aim is to optimize a fitness function. 
These exploration algorithms are a particular class of evolutionary algorithms [2, 19, 30, 37] based on 
natural biological evolution of a population who evolve by selection, crossover between individuals and 
mutation.  

4.2 Crossover 

The crossover corresponds to an exchange of genes usually between two individuals of the population. 
For example if we have two parents, the two points crossover corresponds to the exchange of genes 
represented in Figure 2.   

The two parents are selected according to their fitness via a probability defined by the roulette wheel and 
the crossover points can be decided with a stochastic approach or using special rules. 

 
 
 
 
 
 
 
 

Figure 2. Two point’s crossover 

4.3 Example of mutation 

Several positions are randomly chosen in the chromosome and the corresponding genes are randomly 
modified. The mutation enables to keep a sufficient diversity in the population and enables to acquire a 
chromosome gene value which was not already present in the population.  

4.4 General algorithm 

With each generation a new set of individuals (population) is created by using best parts of the precedent 
generation as well as innovating parts. The genetic algorithms are not purely random. They effectively 
exploit information obtained previously to speculate in the choice of new solutions to explore, with the 
hope to improve the performance. The main difficulty in the implementation of the genetic algorithms to 
solve an optimization problem is to determine a good coding of the problem called chromosome. Each 
chromosome represents an individual (a   solution). An individual can have a binary representation using 
number 0 and 1, but any other alphanumerical encoding can be used. The algorithm is initialized by a 
population that can be determined by another approach or whose individuals are randomly generated. 
Starting from this initial population new generations are created from which the fitness of every 
individual is evaluated. 

An example of implementation of genetic algorithm can be summarized as follows, figure 3: 

1. Create an initial population 

2. Evaluate the fitness of each individual of this population 

3. While the terminating condition is not satisfied, repeat: 

- Select best ranking individuals to reproduce. 

Parent1

Parent2

Child2

Child1
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- Breed new generation through crossover and mutation to create offspring. 

- Evaluate the fitness of the new individuals. 

- Replace worst ranked individuals of the population by the new ones. 

In practice, the algorithm needs to be adapted to the specificities of the studied problem and in particular 
crossover and mutation are to be defined in order to create viable individuals satisfying all the conditions 
needed for the specific problem. 

 

 
 

Figure 3. Genetic Algorithms 

The more important is to choose the good chromosome for the encoding of the solution. The mutations 
which correspond to the random change of some characteristics of individual insure to maintain a 
sufficient diversity in the population and avoid converging prematurely towards local optimum rather 
than to the global optimum of the problem. 

4.5 Example of coding for planning and scheduling optimization  

 

 
O11, k11, t11 O21, k21, t21 O31, k31, t31 

O12, k12, t12 O22, k22, t22 O32, k32, t32 

O13, k13, t13 O23, k23, t23 

The various operations have to satisfy various constraints: 

- precedence, 

- resource disponibility, 

- preemption possible or not, 

- earliest starting time, 

- due date, 

- perisability,… 

For optimizing various criteria 

- makespan, 

Mutation 

Population 
Generation i

Probability 
Pm 

Selection 

Evaluation 

Crossover 

P2 P1 
 

P 

E1 E2 E 

Probability
Pc

Population 
Generation i+1

Oij   : operation i of job j  
kij    :  machine use to achieve operation Oij  
tij   : starting time of the operation Oij  
For example for three jobs, two with three operations and 
one with two operations 
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- maximum workload, 

- maximum delay penalty,… 

5. Ant Colony Optimization 

5.1. Principle 

Initially, the ant colony optimization [10, 25] was inspired by the ability and the organisation of real ant 
colony using external chemical pheromone trails acting as means of communication, figure 4.  

 

 
The main idea is that of a parallel search over several constructive computational solutions based on 
characteristics problem data and on a dynamic memory structure containing information on the quality of 
the previous obtained solutions. Generally the behaviour of an ant system optimization mechanism 
depends on many unsure parameters, incomplete knowledge of the real ant system attitude and the 
imprecise information for the identification of the relationship, the strategy of choice of the parameters 
and the global behaviour of the ant system metaheuristics. In practice, ants looking for food at the 
beginning wander randomly and having found food return to their colony while laying down pheromone 
trails. So other ants finding such a path are likely not to keep travelling at random but prefer generally to 
follow the trail, returning and reinforcing it. In fact pheromone trail slowly evaporate, reducing its 
attractive strength, so the more time it takes for an ant to achieve its trip to the food, the more time the 
pheromones have to evaporate. So the shortest path keep the highest density of pheromone trail as 
pheromone is laid on the path faster as it can evaporate. The evaporation is necessary in order to avoid the 
premature convergence to a locally optimal solution. Once an ant has found a short path from the colony 
to a food source, other ants prefer to follow that path, which involves a positive feedback such as finally 
all the ants will follow this single path. The ant colony optimization algorithms mimic this behaviour with 
simulated ants evolving on the graph representing the problem to solve. 

5.2. Example of application of ACO to planning and scheduling 

f
ijkP        : Probability for the ant f to assign the operation i of  job j  (Oij) to machine k (Oijk) 

ijkp        : Processing time of Oij with the machine k  

ijkτ         : Pheromone trail related to Oijk 

D              : Set of none performed operations 

, ,α β ρ  : Parameters of the algorithm (positive) 

f
ijkL         : Minimum value of the criterion obtained by the ant f performing  Oijk 

minL        : Global obtained minimum 
 

Pheromone trails  

Food Ants nest

Figure 4. Pheromone trail for ants’ communication 
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• Example of ACO Algorithm 
 
 

                                                                                                                                         (1) 
 
 
                                                                                                                                                                     (2) 
 
 
 
                                                                                                                                                                     (3) 
 
 
 
                                                                                                                                                                     (4) 
 

,α β  positive parameters of the algorithm. 

5.3 Application 

Let us consider a flexible job shop scheduling problem composed by three jobs Jj (j=1,2,3) and six 
machines Mk, k = 1;:: 6.  

The objective is to optimize the completion time of scheduling, the makespan. 

Table 1 depicts, for each job, the operation ordering and the processing time required by each machine. 

Table.1. Example: benchmark 3 jobs - 6 machines: processing time 

 
 M1 M2 M3 M4 M5 M6 

O1,1 10 7 6 13 5 1 
O2,1 4 5 8 12 7 11 
O3,1 9 5 6 12 6 17 

J1 

O4,1 7 8 4 10 15 3 
O1,2 15 12 8 6 10 9 
O2,2 9 5 7 13 4 7 J2 
O3,2 14 13 14 20 8 17 
O1,3 7 16 5 11 17 9 
O2,3 9 16 8 11 6 3 J3 
O3,3 6 14 8 18 21 14 

Applying the ant colony optimization meta-heuristic, the results simulation propose different scheduling with  

Cmax = 19 ut (unit of time), table 2 and table 3. 

Table.2. Solution for benchmark 3 jobs - 6 machines. 
0.3α = ; 0.7β = ; 0.5ρ =  

S1 O1 O2 O3 O4 
J1 M6: [0,1] M1: [1,5] M5: [5,11] M6: [10,13] 
J2 M4: [0,6] M2: [6,11] M5: [11,19] *** 
J3 M3: [0,5] M6: [5,8] M1: [8,14] *** 

The solution given in the table 2 has a makespan equal to 19 ut. The machine M5 is the cause of this value 
of makespan. To solve this problem, the tabu search optimisation work is applied for this solution. This 
method finds the operation O2,2 for job J2 on M2 that can be swapped with other machines which will 
reduce makespan to 18 ut. And this method finds that the operation O3,1 for the job J1 executed by M2 and 
can be swapped with M5 who will execute the operation O2,2 for the job J2. The obtained solution by the 
tabu search method presented in table 3, [25]. 
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Table.3. Tabu search optimisation solution. 

S1 O1 O2 O3 O4 
J1 M6: [0,1] M1: [1,5] M2: [5,10] M6: [10,13] 
J2 M4: [0,6] M5: [6,10] M5: [11,18] *** 
J3 M3: [0,5] M6: [5,8] M1: [8,14] *** 

6. Particle Swarm Optimization 

6.1 Principle 

Particle swarm optimization [21, 22] is a population based stochastic optimization technique. It is 
founded on the notion of cooperation between agents (the particles) that can be seen as animals with 
limited intellectual capacities: small memory and small intelligence. The exchange of information 
between them permits nevertheless that globally they succeed to solve difficult problems as it appears 
with bees, fishes or birds. It appears that social sharing of information among individuals in competition 
offers an evolutionary advantage. In the particle swarm optimization algorithm, particles move in 
multidimensional space and are characterized by a position and a velocity. They have two essential 
reasoning capabilities: the memory of their own best position and the knowledge of their neighbourhood 
best position. 

The standard version of the algorithm can be summarized as follows: 

At the beginning the particles of the swarm have a random repartition in the search space and a random 
velocity [5]. 

Then at each time step: 

- Each particle evaluates the quality of its position and memorizes the best position it has reached 
at this time and its quality. 

- Each particle exchanges information with other particles in its neighbourhood in order to know 
the best performance of each of them. 

- At each time step each particle choose the best performance it knows and modify its velocity 
according to the whole data it has, to define its moving as a compromise between three tendencies 
: to keep on its present velocity, to go back towards its own previous best position and to move 
towards the overall best position it knows, figure 5. 

6.2 Particle swarm optimization algorithm 
 

 

 
 
 

 
 

 
 

 
 
 

Figure 5. Particle swarm optimization principle 

xi ( t )    : position of the particle i at time t 
vi( t )     : velocity of the particle i at time t 
xim ( t )  : best known position reached by the particle   
              i at time t  
xM ( t ) : best known position reached by the swarm  
              at time t  
xi ( t+1 ) = f ( xi ( t ), vi( t ), xim ( t ), xM ( t ) ) 
Very often this relation is linear 

Present  
Position 

Toward my best performance 

Toward the best  
performance I know 

Present velocity 

New position 
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7. Tunneling Algorithms 

7.1. Principle 

Tunneling algorithms [24] enable to escape to local optima. The idea is the following: each time a local 
optimum is reached the algorithm bore a tunnel towards a new valley of the objective function f, figure 6. 

At the origin tunneling approaches have been defined for problems with continuous variables and have 
been adapted to combinatorial problems later. 

Two main strategies have been proposed: the stochastic tunneling and tunneling with penalty functions: 
 

   
Figure 6. Tunneling algorithm 

7.2 Stochastic tunneling  

The stochastic tunneling [34] was initially defined to escape to local minima when implementing the 
simulated annealing algorithms at low temperature. The idea was to circumvent the slow dynamics of ill-
shaped energy function by applying a non-linear transformation to the objective function. 

7.3 Tunneling with penalty function   

The tunneling with penalty functions modifies the value of local optima by adding penalty values in order 
to facilitate the algorithm to escape to these local optima. 

7.4 Example of penalty function for Tunneling 

If ( )f x  is the fitness function we can choose the new fitness function ( )Tunf x : 

( ) ( ) ( )( )( )1 exp *Tunf x f x f xγ= − − −                                                                                                    (5) 
where *x corresponds to the best known solution and 0γ > . 

8. Multiopjective Optimization 

When we have several criteria in competition to optimize, various approaches can be considered: 

8.1 Ordered Weighted Operator (OWA) 

The operator of aggregation OWAC  has been introduced by Yager [35]. After normalisation, the various 

criteria ( )iC x are aggregate in a single one with weight coefficients  

global optimum tunneling

Local search 
f(x) 

x 
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( ) ( )
1

n

OWA i i
i

C x w C x
=

= ∑                                                                                                                                (6) 

With [ ]
1

0,1 , 1
n

i i
i

w w
=

∈ =∑                                                                                                                            (7) 

8.2 Choquet Integral [7] 

It is an OWA type approach in which the weights  iw  are calculated according to the interaction between 
various criteria. 

In order to be self-contained as far as possible, necessary definitions are given in this section, adapted for 
multi-criteria decision making. 

Let consider a finite interval set { }1,...,c cN n= , which can be thought as an index set of the given criteria. 

• Definition 1 

 A fuzzy measure over { }1,...,c cN n= is a set function ( ) [ ]: 0,1P Ncμ → , such that: 

1. ( ) ( )..0, 1cNμ φ μ= =  

2. ( ) ( ) .. .. cA B whenever A B Nμ μ≤ ⊂ ⊂  

The meaning attributed to ( )Aμ is usually the importance or the power of the coalition A (e.g., for 
decision making)  

• Definition 2 

 Let μ  be a fuzzy measure over Nc and ( )1,..., cna a a= the vector of criteria. The discrete Choquet 

integral Cμ  with respect to μ is defined by: 

( ) ( ) { }( )1 1
1

,..., ,...,
c

c

n

n i i c
i

C a a a a i nμ μ−
=

= −∑                                                                                             (8) 

with 0 1.. ..0 ...
cna and a a= ≤ ≤ .                                                                                                                 (9) 

• Definition 3 

 Let μ  be a fuzzy measure over Nc . The shapely index iI , for every ci N∈ , is defined by: 

( )
{ }

{ }( ) ( )( )| | 1 !| |!
!

c

c
i

k N i c

n k k
I k i k

n
μ μ

∈ −

− −
= ∪ −∑                                                                             (10) 

where | |k  indicates the cardinal of k and 0! 1= . 

• Definition 4  

The average interaction index ijI between two criteria i and j , with respect to a fuzzy measure μ , is 
defined by: 

( )
( ){ }

{ }( ) { }( ) { }( ) ( )( )
,

| | 2 !| | !
,

1 !
c

c
ij

k N i j c

n k k
I k i j k i k j k

n
μ μ μ μ

∈ −

− −
= ∪ − ∪ − ∪ +

−∑                       (11) 

the interaction index, ranged in [ ]1,1− , is negative in the case of redundancy, and positive in the case of 
synergy. 

• Definition 5 

The Choquet integral formulation in terms of interaction representation is reduced to an easily interpretable form 
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in the case of (at most) 2-additive measures, which is for any ( )1,..., cna a a= , as following: 

( ) ( ) ( )
0 0 1

1| | | | | |
2

c

ij ij

n

i j ij i j ij i i ij
I I i i j

C a a a I a a I a I Iμ
> < = ≠

⎛ ⎞
= ∧ + ∨ + −⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ∑                                             (12) 

with ∧ and ∨  denote min and max respectively.   

8.3. Pareto optimality approach 

Pareto optimality [20, 33] is a measure of efficiency in multicriteria problems.  

In this approach, a non dominated solution is such that there is no other solution that performs at best as 
well on every criterion and which is strictly better on at least one of criteria. For a Pareto optimal solution 
a criterion cannot be improved without damaging at least one of the other criteria.The set of Pareto-
optimal solutions corresponds to the Pareto optimal curve also called front of Pareto, figure 7. 

 

 
If we have the possibility to determine lower bounds of the various criteria the Pareto optimality approach can be 
associate with the OWA approach. After normalisation of the criteria, we realize an aggregation of the various 
criteria with adaptive weights which enable a dynamic search in the direction of the lower bounds point.  

For example if the optimisation is realised with a genetic algorithm, figure 8 represents the evolution of 
the population. 

 

 
Figure 8. The population evolution 
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C1 Search direction 

C2
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C1
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Front of Pareto 
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C1 

Unattainable 
solution

Minimum  
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Minimum  
for criterion C2

Figure 7.  Pareto optimal solution for a 
problem with two criteria 
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9. Conclusions 

The various metaheuristics which have been presented here have been implemented in various 
applications such as the optimization manufacturing problems but in each case the formulation of the 
problem have to be adapting to the chosen algorithm. 

Very often hybrid approaches are implemented using simultaneously several metaheuristics and usual 
local search like the hill climbing methods. 
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