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Abstract: Routing begins to have an important place in the context of high performance distributed systems, with an increasingly 
notable influence on the overall performance of the system under analysis. While many global algorithms have been proposed for 
the routing problem, in this paper we demonstrate how a relatively simple agent-based approach, based on ideas inspired from 
complex systems and reinforcement learning, can generate a highly complex set of local interactions between individual agents, 
whose emergent behaviour results in the desired routing effect. 
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1. Introduction 

Nowadays, one of the important problems of information and communications technology is related to re-
designing interactions between isolated computing elements in order to create large, powerful, and fault 
tolerant distributed systems. There are already many approaches that try to solve this problem, from e-
government to virtual universities and organizations, peer to peer communities, GRID computing, and e-
science computing. If the approaches offered by the traditional engineering cannot keep up with this 
convergence, those conglomerates of computing power can create many problems due to an inherent 
instability and mostly to their non-predictive behaviour if some limits are reached. The analysis of the 
natural complex systems leads us to alternative approaches. The examples under scrutiny refer to animal 
brain, immunity systems, ants colonies, and so on. All these examples have powerful, complex, 
aggregated behaviours obtained from the combination and interactions of simple elements or individuals. 
As a result, this kind of problem solving techniques begins to be used for various specific problems.  

Distributed systems are usually analyzed from the points of view of load balancing, geographical 
distribution of the control, and databases. In most models, the communications are presumed to be very 
good and fault tolerant. Most of the time, these attributes are valuable but in some cases there are serious 
quality of service degradation at the communication line hot spots where bottlenecks appear due to the 
used routing algorithms. Therefore the routing problem begins to have equal importance with the 
previously mentioned basic characteristics of distributed systems. 

In this paper a distributed framework based on intelligent agents was used to propose and test a new 
approach in routing for mobile devices. According to Wooldridge (2000), an agent is a computer system 
that is situated in its environment and is capable of autonomous action in order to meet its design 
objectives. Agent Oriented Programming, AOP, is a fairly new programming paradigm that supports a 
societal view of computation. In AOP, objects known as agents interact to achieve individual goals. 
Agents can exist in a structure as complex as a global internet or one as simple as a module of a common 
program. Agents can be autonomous entities, deciding their next step without the interference of a user, or 
they can be controllable, serving as an intermediary between the user and another agent. 

Intelligent agents retain the properties of autonomous agents, and in addition show a so-called “flexible” 
behaviour (Wooldridge & Jennings, 1995): reactivity (the ability to perceive their environment, and 
respond in a timely fashion to changes that occur in it), pro-activeness (the ability to exhibit goal-directed 
behaviour by taking the initiative), and social ability (to interact with other agents and possibly humans). 
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2. Routing in Mobile Computing 

Due to the inherent mobility of the nodes, the routing protocols at both the ad hoc and internet 
network levels are different from the classical approach. As a result, proactive schemes are used to 
continuously improve the routing tables for mobile nodes. Unfortunately, they use large amounts of 
available broadband and sometimes computing power. On the other hand, the on-demand routing 
protocols spends a lot of time for route discovery and they are sometime not suitable for real-time 
communication or processing.  

There is a third approach which implies mobile agents. They can be used to establish an efficient route 
and also topology discovery, and increase the node connectivity (Marwaha, Tham & Srinivasan, 2005). 
The agent-based approach has some disadvantages related to the total node dependencies on knowledge 
provided by the agent. It is possible that routing can fail when the network topology is dynamic and the 
time to live for a route is short. In agent-based routing, the mobile nodes must wait until the routing agent 
provides the required routes to begin a communication. In some situations, it is possible that the nodes 
that carry the agents to be unexpectedly disconnected from the network. The causes may vary from a too 
long radio signal to entering the sleep mode or shut down. With any closed carrying node, the number of 
routing agents will decrease and so will the routing efficiency  

There are numerous ad-hoc routing algorithms that accept various conditions to connect in the network. 
They can be classified as proactive or reactive. As we previously mentioned, the proactive ones are more 
efficient but sometimes they can generate unjustified overload of computing and communication 
resources, and it may be an idea to create route only on demand like the other class of algorithms. The 
reactive approach can produce undesired delays with route establishment, especially when they cannot 
reach the destination and usually a proactive approach is preferred (Carrillo, Marzo, Vilà & Mantilla, 
2004). Even if the proactive protocols offer a better image of the network when the topology is highly 
dynamic, the routing effort also creates overloads in communication and computation resources levels. 
Some proactive protocols are DSDV (Destination-Sequenced-Distance-Vector Routing Protocol, Perkins 
& Watson, 1994) and WRP (Wireless Routing Protocol, Murthy & Garcia-Luna-Aceves, 1995). They 
differ by the number of the routing tables, table content, and methods used to send the table updates 
between the nodes. Some reactive routing protocols are AODV (Ad Hoc-On Demand-Distance-Vector 
Routing, Das, Perkins & Royer, 2002) and DSR (Dynamic Source Routing, Johnson & Maltz, 2002). This 
protocols are source routing-based, where each packet knows the entire route to be followed or hop by 
hop-based, where each packet knows only the next jump in the net. As expected, some hybrid approaches 
were proposed to improve the performance and decrease disadvantages. The result seems to have a better 
scalability that their ancestors because the near nodes collaborate so the overload of route discovering is 
reduced. Typical examples are ZRP (Zone Routing Protocol, Hass & Pearlman, 1999) and DDR 
(Distributed Dynamic Routing, Nikaein, Laboid & Bonnet, 2000). Each type of protocols can use a plain 
or hierarchic routing approach.  

3. The Model of the Distributed Framework 

The mobile agents framework provides the end-user with the possibility to easily build a virtual cluster 
that fits its needs and also to find and use existing services. This virtual cluster guarantees to contain only 
the nodes that are capable of overall performance increase. The framework was entirely developed using 
the Java programming language. It provides support for developing any kind of agent, such as load 
balancing agents, security agents, communication agents, mobile or stationary agents, intelligent agents or 
state agents and so on. As for the communication protocol, the framework uses Remote Method 
Invocation, RMI. 

In order to create a feasible infrastructure of agents, we must first consider some basic models for the 
entities involved in the system (Zaharia & Leon, 2006; Zaharia, Leon, Calistru & Gâlea, 2008). 

3.1. The Task Model 
In the proposed model a task is defined as a quadruple (dc, dr, tm, cm), where: 

• dc: request size (characteristics of the code to be solved); 

• dr: refers to the estimated size of the result. This is needed to compute the returning costs. Of course 
this is an estimation because there are situations when the user cannot accurately predict this factor 
(e.g. PSpice simulations); 
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• tm: is the maximum time allowed for the task to be executed. This is required because some code 
error can drive to infinite loops, or the task has an undesired high complexity design. The latter 
situation can lead to unjustified higher loads at runtime especially for the NP classes of problems. As 
the result tm was conceived as an estimation of maximum execution time for the task (if the code is 
correct) over a computing node from the lowest speed class. As a result, uniformity in task handling 
is ensured no matter what the computing nodes power is. If the task crosses over this time limit, the 
task will be terminated, and the owner will be notified; 

• cm: represents the maximum cost that a user can afford so as to execute the task. The agents will use 
this cost to place the tasks on the servers. Those with a higher cost available will be placed on 
powerful nodes that have higher costs, and the others will be placed only on lower computing power 
but cheaper nodes. 

3.2. The Server Model  

In this approach we take into account the IP number of the server and also we associate three different 
queues for task receiving and manipulation for each server as follows: 

• An entry queue: receives the task to be solved that comes from users. The user injects a new task in 
the system on a server of his/her choice. The task is entered into the entry queue of the server; 

• An execution queue: stores the tasks selected, using cost analyses, to be executed on the server; 

• An output queue: stores the results that must be returned to the users. 

Because in heterogeneous distributed systems the computing node characteristics may vary throughout a 
large domain, we considered five performance classes. The MIPS factor was used as the parameter to 
scale servers into domains. As a result, we have the following categories: 

• Server with a speed around 1000 MIPS - VS1, that is equivalent to a node with a Pentium II processor 
with 600 MHz working frequency; 

• Server with a speed around 2000 MIPS - VS2, that is equivalent to a node with an AMD Athlon 
processor with 900 MHz working frequency; 

• Server with a speed around 3000 MIPS - VS3, that is equivalent to a node with a Pentium III 
processor with 1.13 GHz working frequency; 

• Server with a speed around 4000 MIPS - VS4, that is equivalent to a node with a Pentium IV 
processor with 2 GHz working frequency; 

• Server with a speed around 5000 MIPS - VS5 that is equivalent to a node with a Pentium IV processor 
with 2.53 GHz working frequency. 

Of course, these domains can be modified in accordance with the newest computer architecture available 
on the market but this is not relevant to the way that agents will interact; therefore no changes are needed 
for the analysis. 

In fact only the price of the resource and the number of MIPS must be changed, because this 
computational price is related to the computer power.  

As a result, we consider the following price classes: 

• Price class S1, related to speed category VS1, around 2.7 ¢/s; 

• Price class S2, related to speed category VS2, around 9 ¢/s (≈ 4.5 ¢/s/computational unit); 

• Price class S3, related to speed category VS3, around 24 ¢/s (≈ 8 ¢/s/computational unit); 

• Price class S4, related to speed category VS4, around 48 ¢/s (≈ 12 ¢/s/computational unit); 

• Price class S5, related to speed category VS5, around 85 ¢/s (≈ 17 ¢/s/computational unit). 
The prices were chosen using a nonlinear manner because that conforms to an economic approach. An 
older machine has already reached its amortisement rates and there will also be fewer requests to be used 
because most of the users need more and more additional computer power in the shortest possible time. 

It is important to note that these prices are only some general recommendations, and processors within the 
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same speed class can have different prices. It is the agents’ responsibility in this case to find the cheapest 
server, whenever possible. 

Most of the available machines on the Internet have operating systems capable of measuring their own 
loads of all the resources. As a result, the agent framework will directly ask this information in order to 
fulfil agent requirements. Due to the fact that we cannot predict which servers will be used in the dynamic 
cluster created by the agents to solve one request, it will not be optimal for the servers to share 
information about their states because this will mean all-to-all continuous communications.  

3.3 The Connection Model  

Another aspect of the heterogeneous distributed systems is related to various available broadband at 
different communication levels. In this approach we used only three types of network connections: 

• Connection class VC1, with a 10 Mb/s broadband; 

• Connection class VC2, with a 100 Mb/s broadband; 

• Connection class VC3, with a 3200 Mb/s broadband. 

Due to the discrete and geographically distributed nature of heterogeneous distributed systems we must 
also analyze the inter-node connection cost. In developed societies these costs begin to be insignificant 
over small and medium clusters. However, these costs must be used in the formula of task execution costs 
especially when the task is time consuming and the amount of returned data is higher. For our model we 
consider the following cost domains: 

• Price category  PC1, corresponding to speed class VC1, around 1 ¢/MB; 

• Price category  PC2, corresponding to speed class VC2, around 1.5 ¢/MB; 

• Price category PC3, corresponding to speed class VC3, around 5 ¢/MB. 

As a result, only the information about local load, speed price class, and communication price class is the 
most interesting about any node in the network. 

4. The Emergent Routing Algorithm 

Most routing solutions are dedicated to obtaining a better performance. Unfortunately, if one takes into 
account other criteria, such as the communicational price, additional constraints need to be considered, 
and therefore several opposite criteria need to be optimized simultaneously. This situation can be 
encountered especially in the case of mobile computing, when a system can be simultaneously connected 
to more than one network. Therefore, the routing decision cannot be made only by a mono-criterial 
analysis. Specific algorithms such as Mobile IP (Perkins, 2002; Johnson, Perkins & Arkko, 2004) are 
based on the idea of finding the “way home”, i.e. wherever he is, the user can connect first to the initial 
provider, and solve the problems from there. If we analyse this method through the associated costs, one 
may want to avoid this method, by using similar entities in the neighbourhood. 

In our present approach, routing was obtained in an implicit, not explicit, fashion by the use of a 
dedicated algorithm, as the result of the aggregation of the local behaviours of individual agents. In order 
to do that each server will maintain a list of agent probabilities to be moved from a server to its 
neighbours. This list has the means of strengthening or weakening its values based on reinforcement 
learning, and are therefore dynamically modified on each transport. Those values exist only for active 
neighbours. If a server is down its transport probability automatically become zero for all neighbours. If a 
new server enters the network, its transport probabilities are automatically initialized by its neighbours 
with random little values which will gradually increase with the time and the use of its services. 

The main idea in transport probabilities updates is depicted in figure 1. When an agent follows a path A-
B-C and passes from server C on server D, at each transport it memorizes the required time to be 
transported on the next server. On D server it will update the reinforcement values that are equivalent to 
transport probabilities corresponding to previously visited servers. This procedure is based on the fact that 
a connection is considered symmetric: the time needed to transport from server A to server B is equal to 
the time needed to transport the agent from server B to server A. 
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Figure 1. The list of reinforcement values of a server 

To compute the reward, , the following equation is used: ]1,0[∈r

dt
nsportTimeMinimumTrar = ,        (1) 

where MinumumTransportTime is a system constant and dt is the time required by an agent to move 
between two servers. In the implementation of the proposed system a MinumumTransportTime of 

s was considered.  6108.2 −⋅

The equation for updating the probabilities is derived from the reinforcement learning paradigm, as 
follows:  

)1( PrPP −⋅+= . (2) 

In figure 1, the updated rewards on server D are presented in the following formulas:  
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For example, the probabilities from the reinforcement list of server C will be updated by the agents that 
come back from D or by the agents sent from it. 

To analyze the routing process using the probabilities of the reinforcement list, let us consider an 
alternative connection between servers A and D, as presented in figure 2.  
 

 

Figure 2. Alternative routes  

If an agent comes using this connection, it will receive the following reward: 
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Let us consider the simplest case when only two agents reach server D, one of them using the direct route 
and the other using the alternative route. We assume that the initial probabilities on D are zero. In order to 
make a decision to move from D to A, if we normalize the probabilities, we will have the situation 
presented in figure 3. The decision is stochastically made with determined probabilities, and thus the 
agent will use the direct route with a probability of 65.24% or will follow the alternative route, through C, 
with a probability of 34.76%. 

As more agents will continue to come and follow the direct route, the associated probability will increase, 
therefore the agents from server D will choose the direct and quickest route increasingly often. 

 

Figure 3. Route selection probabilities 

5. Case Study 

We will consider a scenario that consists of a system with 3 different servers, 5 initial agents, and 10 tasks 
to be deployed and executed in the system. Its structure is presented in figure 4. Servers are represented 
using ellipsoids that contain information about naming, IP, speed, and cost. The connections are arcs, and 
the associated speed and costs for the communication channels are displayed within the rectangles. 
 

 

Figure 4. The structure of the distributed system 

Below we show the way agents execute in this particular configuration. 
 
Configuration 
 
Servers 
Server 1: IP=192.168.0.10 Speed=2979 MIPS Cost=22.733 c/s 
Server 2: IP=192.168.0.11 Speed=1005 MIPS Cost=2.431 c/s 
Server 3: IP=192.168.0.12 Speed=5019 MIPS Cost=84.264 c/s 
 
Agents 
Agents 1 starts on 192.168.0.10 
Agents 2 starts on 192.168.0.10 
Agents 3 starts on 192.168.0.11 
Agents 4 starts on 192.168.0.11 
Agents 5 starts on 192.168.0.12 
 
Connections 
Connection 192.168.0.10 - 192.168.0.11: Speed=10 Mb/s Cost=1.099 c/MB 
Connection 192.168.0.11 - 192.168.0.12: Speed=101 Mb/s Cost=1.506 c/MB 
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Starting framework 
 
Running agent 2 on server 192.168.0.11 
Agent 2 takes task 9 (1854KB, 220KB, 204s, 34.88$) 
 
Running agent 3 on server 192.168.0.11 
 
Running agent 4 on server 192.168.0.12 
Agent 4 takes task 0 (354KB, 227KB, 7s, 0.21$) 
 
Running agent 1 on server 192.168.0.10 
Agent 1 takes task 1 (396KB, 247KB, 78s, 2.41$) 
 
Running agent 0 on server 192.168.0.10 
Agent 0 takes task 3 (1082KB, 274KB, 159s, 19.23$) 
 
Running agent 1 on server 192.168.0.10 
Agent 1 waiting for peer answers on server 192.168.0.10 
 
Running agent 0 on server 192.168.0.10 
Agent 0 waiting for peer answers on server 192.168.0.10 
 
Running agent 4 on server 192.168.0.12 
Agent 4 waiting for peer answers on server 192.168.0.12 
 
Running agent 3 on server 192.168.0.11 
Agent 3 moving randomly to server 192.168.0.12 
 
Running agent 2 on server 192.168.0.11 
Agent 2 waiting for peer answers on server 192.168.0.11 
 
Running agent 4 on server 192.168.0.12 
Agent 4 tries to solve task 0 (354KB, 227KB, 7s, 0.21$) on 192.168.0.11 
Task 0 (354KB, 227KB, 7s, 0.21$) to be sent from 2 to 1 by 1 
 
Running agent 3 on server 192.168.0.12 
Agent 3 waiting for scouts on server 192.168.0.12 
 
Running agent 1 on server 192.168.0.10 
Agent 1 tries to solve task 1 (396KB, 247KB, 78s, 2.41$) on 192.168.0.11 
Task 1 (396KB, 247KB, 78s, 2.41$) to be sent from 0 to 1 by 1 
 
Running agent 2 on server 192.168.0.11 
Agent 2 tries to solve task 9 (1854KB, 220KB, 204s, 34.88$) on 192.168.0.12 
Task 9 (1854KB, 220KB, 204s, 34.88$) to be sent from 1 to 2 by 2 
Server 192.168.0.10 begins solving task 3 (1082KB, 274KB, 159s, 19.23$) 
Link 1-2 sending task 0 (354KB, 227KB, 7s, 0.21$) to server 192.168.0.11. Cost 0.23c Time 62.954ms 
Task 0 (354KB, 227KB, 7s, 0.21$) to be solved on server 192.168.0.11 
Link 1-2 sending task 9 (1854KB, 220KB, 204s, 34.88$) to server 192.168.0.12. Cost 1.20c Time 
329.709ms 
Task 9 (1854KB, 220KB, 204s, 34.88$) to be solved on server 192.168.0.12 
Link 0-1 sending task 1 (396KB, 247KB, 78s, 2.41$) to server 192.168.0.11. Cost 0.35c Time 359.610ms 
Task 1 (396KB, 247KB, 78s, 2.41$) to be solved on server 192.168.0.11 
 
Running agent 2 on server 192.168.0.10 
Agent 2 takes task 8 (133KB, 288KB, 35s, 4.23$) 
Agent 2 tries to solve task 8 (133KB, 288KB, 35s, 4.23$) on 192.168.0.12 
Task 8 (133KB, 288KB, 35s, 4.23$) to be sent from 0 to 2 by 1 
Server 192.168.0.11 continues solving task 7 (906KB, 1370KB, 113s, 3.50$) 
Server 192.168.0.12 continues solving task 4 (1878KB, 358KB, 252s, 43.09$) 
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Server 192.168.0.12: task 4 (1878KB, 358KB, 252s, 43.09$) was successfully solved. Cost 29.74$ / 
43.09$ 
Link 0-1 sending task 8 (133KB, 288KB, 35s, 4.23$) to server 192.168.0.11. Cost 0.26c Time 261.535ms 
Task 8 (133KB, 288KB, 35s, 4.23$) to be sent from 1 to 2 by 2 
Link 1-2 sending task 8 (133KB, 288KB, 35s, 4.23$) to server 192.168.0.12. Cost 0.19c Time 25.608ms 
Task 8 (133KB, 288KB, 35s, 4.23$) returned home on server 192.168.0.12 
 
Running agent 4 on server 192.168.0.10 
Agent 4 waiting for scouts on server 192.168.0.10 
 
Running agent 3 on server 192.168.0.10 
Agent 3 moving randomly to server 192.168.0.11 
 
Running agent 0 on server 192.168.0.10 
Agent 0 moving randomly to server 192.168.0.11 
Link 0-1 sending task 6 (390KB, 253KB, 174s, 5.39$) to server 192.168.0.10. Cost 0.22c Time 
229.751ms 
Task 6 (390KB, 253KB, 174s, 5.39$) returned home on server 192.168.0.10 
 
Running agent 3 on server 192.168.0.12 
 
Running agent 1 on server 192.168.0.11 
Agent 1 moving randomly to server 192.168.0.10 
 
Running agent 4 on server 192.168.0.10 
Agent 4 moving randomly to server 192.168.0.11 
 
Running agent 2 on server 192.168.0.11 
 
Running agent 0 on server 192.168.0.11 
Report: Server 192.168.0.10: task 6 (390KB, 253KB, 174s, 5.39$) was successfully solved. Cost 3.26$ / 
5.39$ 
 
Finished 
 
The statistics referring to task execution are presented in table 1. 

Table 1. Task execution 

Task ID Origin server Executing server 

0 2 1 

9 1 2 

3 0 0 

1 0 1 

2 2 1 

8 2 0 

4 0 2 

7 2 1 

5 0 1 

6 0 1 

 

In table 2 the number of tasks that originate from a server and are executed on other server in the system 
is presented. 
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Table 2. Statistics regarding task execution 

             Origin 

Execution 
0 (192.168.0.10) 1 (192.168.0.11) 2 (192.168.0.12) 

0 (192.168.0.10) 1 3 1 

1 (192.168.0.11) 0 0 1 

2 (192.168.0.12) 1 3 0 

 

6. Conclusions 

In this paper we described a system of autonomous agents, in the sense that each agent decides its actions 
based on its internal state and the state of the environment, without an explicit external command, other 
that the task to be executed, which is the actual goal of the agent. However, the autonomy is not 
incompatible to the global order. The system manifests a form of self-organization, resulting in the 
routing behaviour of the multiagent system as a whole. The proposed emergent routing algorithm has a 
dual effect. An agent discovers the routes but also uses the previous information about the routes stored 
by the previous agents that have already travelled through the local neighbourhood of a server. Since the 
agent-based approaches are scalable and robust by nature, the research can be continued in the future by 
considering a larger number of servers and agents, which will allow the study of the real life problems on 
massive infrastructures, such as the GSM internet servers. 
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