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1. Introduction 

Optimization Problems 

Optimization is one of the most applicable 
areas in mathematics and computer science 
since most real-life problems can be described 
as some kind of optimization problem. The 
types of mathematical relationships between 
the objective function, potential constraints and 
decision variables determine how difficult the 
particular problem is. Hard optimization 
problems can be combinatorial (discrete) or 
continuous (global optimization), where 
continuous problems can be constrained or 
unconstrained (bound constrained). 

The nonlinear constrained optimization 
problem in the continuous space can be 
formulated as follows: 

n
n Rxxxxxxf minimize  ),...,,,(),( 321  (1) 

where xF S. The search space S is an n-
dimensional hyper-rectangular space in Rn 
defined by lower and upper bounds for variables: 
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and the feasible region F S is defined by a set 
of m linear or nonlinear constraints: 
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where q is the number of inequality constraints 
and m-q is the number of equality constraints. 

Most of the optimization algorithms start with 
random, unfeasible solutions in the initialization 

 

 

 

 

 

 

 

 

 

 

 

phase with expectation that after some number 
of iterations these solutions will reach the 
feasible area. However, equality constraints 
pose a difficult issue since their presence makes 
the feasible space very small compared to the 
entire search space. The equality constraints 
can be replaced by inequality constraints with 
some small violation limit  >0 [1]: 
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The quality of results depends on the choice of 
the violation limit value . If it is selected too 
small, the algorithm may not find the feasible 
solutions, and if the tolerance   is too large the 
results may be far from the feasible region.  

The promising approaches for handling 
equality constraints include dynamic, self-
adaptive tolerance adjustment [2]. The process 
should start with a large violation value  , 
which is gradually decreased through the cycles 
of the algorithm. A dynamic setting of the 
violation value   can be defined as follows: 
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where t is the current cycle and dec>1 is the 
decreasing rate value of each cycle. 

Metaheuristics 

Many metaheuristic algorithms have been 
developed recently for solving optimization 
problems from both domains, numerical and 
combinatorial. They include population based, 
iterative based, stochastic, deterministic and 
other approaches. 
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One of the oldest metaheuristics for the global 
optimization problem is simulated annealing 
(SA) which is recognized as a generic 
probabilistic method. SA can be applied in 
many practical industrial problems, such as part 
type selection and operation allocation problem 
in flexible manufacturing system (FMS) [3]. 

Population based algorithms which are working 
with a set of solutions and iteratively trying to 
improve them were very successful recently. They 
can be divided into two groups: evolutionary 
algorithms (EA) and swarm intelligence. 

Prominent among EA are genetic algorithms 
(GA). GA and other EA have been applied to a 
wide variety of different problems [4], [5]. 

Swarm intelligence based on the collective 
behavior of the social insect colonies and other 
animal societies has recently become an 
important research topic. The key concept of 
swarm intelligence lies in a simple set of rules 
that control each of the individuals which 
exhibit remarkable collective intelligence. The 
swarming concept can also be extended to 
human group decision process [6]. 

Particle swarm optimization (PSO) is a swarm 
intelligence algorithm which simulates social 
behavior of fish schooling or bird flocking. 
There are also other PSO approaches like 
interactive particle-swarm metaheuristic used 
for multi-objective optimization (MOO) [7].  

Ant colony optimization (ACO) is a technique 
that is quite successful in solving many hard 
practical optimization problems. The 
foundation of the ACO is foraging behavior of 
real ants which are able to find the shortest 
paths between their nests and food sources due 
to the substance called pheromone. ACO has 
been applied to the minimum weight vertex 
cover problem [8], power distribution problems 
[9], and many others.  

Several metaheuristics have been developed to 
simulate the specific intelligent behavior of 
honey bee swarms. Bee colony is a highly 
dynamical system which collects information 
from its surrounding and adopts its behavior 
accordingly. Artificial bee colony (ABC) 
algorithm is one of the latest representatives of 
the honey bee swarm algorithms. Originally, 
the ABC algorithm was proposed by Karaboga 
for finding global optimum over continuous 
space [10]. ABC was successfully applied to 
unconstrained [11] as well as to constrained 
function optimization problems [12]. Testing 

results show that the performance of ABC 
algorithm is comparable to other state-of-the-
art algorithms for high dimensionality 
optimization [13]. ABC has recently become 
very active research area and many 
modifications [14] and enhancements [15] of 
the original algorithm were introduced. 

Our Improvement 

The ultimate goal of any metaheuristic 
algorithm is to find the optimal feasible 
solution. To achieve this goal, appropriate 
balance between exploitation and exploration is 
required at each iteration of the algorithm. By 
studying the ABC algorithm, we noticed a 
deficiency during the solution search process. 
After significant number of iterations, when 
optimal solution is almost found, scout bees 
which perform the exploration process are not 
useful any more, just the opposite. This 
problem can be treated by better adjustment of 
exploration and exploitation balance [16], [5]. 

In order to improve the exploitation process at 
later stages of the algorithm, we adopted 
uniform crossover and mutation operators from 
GA during the replacement process of the 
exhausted food sources. We have found an 
appropriate empirical point where some scout 
bees (according to an appropriate probability 
parameter) are transformed into a new class of 
guided onlookers for strong exploitation. This 
new mechanism of replacing exhausted food 
sources performs intensive exploitation around 
current best solution using uniform crossover 
operator. After crossover, mutation operator 
takes place. Each function parameter is mutated 
with small probability thus preventing any 
variable to keep fixed value indefinitely.  

In such a manner, by integrating GA with the 
ABC, we derived a modified ABC algorithm 
for constrained optimization improved with 
genetic operators and named it genetically 
inspired ABC algorithm (GI-ABC).  

The rest of this paper is organized as follows. 
Section 2 explains the original ABC algorithm; 
Section 3 describes the principle of the 
crossover and mutation modifications and 
adjustment for the GI-ABC algorithm. In 
Section 4 an analysis of trade-offs between 
exploration and exploitation is performed first, 
using various parameter sets. After that, series 
of comparison experiments on the set of 13 
well known g benchmark functions are 
performed to verify the effectiveness of our 
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proposed approach over the latest Karaboga 
and Akay’s [14] ABC algorithm and other 
state-of-the-art algorithms [17], [18], [19].   

2. ABC Algorithm Overview 

The artificial bee colony (ABC) algorithm was 
designed for numerical optimization problems, 
based on the foraging behavior of honey bees 
[10]. Since the performance of metaheuristic 
algorithms depend on the number and the 
choice of parameters, the main advantages of 
the ABC algorithm are derived from the fact 
that the algorithm uses only 3 control 
parameters: colony size, maximum cycle 
number and limit. 

ABC algorithm employs three classes of 
artificial bees: employed bees, onlookers and 
scouts. Employed bee stays on a food source 
(candidate solution) and examines 
neighborhood. Onlookers are allocated to a 
food source based on the information which 
they gain from employed bees. If a food source 
does not improve for a certain number of 
cycles, scouts replace that food source with a 
new, random one. 

The main difference between ABC and other 
swarm intelligence algorithms is based on the 
fact that the possible solutions are represented 
by the food sources, not the individuals in the 
population. The quality of the possible solution 
is presented as a fitness value that is calculated 
from the value of the objective function of the 
problem. Each solution xi (i = 1, 2,.., SN) is a 
D-dimensional vector, where SN denotes the 
size of the population. In the ABC algorithm 
onlookers and employed bees carry out the 
exploitation process in the search space, while 
the scouts control the exploration process. 

Pseudo-code of the ABC algorithm for 
constrained optimization problems [12] is: 

1. Initialize the population of solutions 

2. Evaluate the population 

3. cycle=1 

4. repeat 

5. Produce new solutions for the employed bees 
by using Equation (6) and evaluate them 
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where k is random number between 1 and 
SN/2 and different from i. 

6. Apply selection process based on Deb’s 
method [20]. 

7. Calculate the probability values pi for the 
solutions xi, using fitness of the solutions and 
the constraint violations (CV) by  
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8. For each onlooker bee, produce a new 
solution vij by Equation 

 
(6) in the 

neighborhood of the solution selected 
depending on pi and evaluate it 

9. Apply selection process between υi and xi 
based on Deb’s method 

10. Determine the abandoned solutions by 
using “limit” parameter for the scout; if 
they exist, replace them with new randomly 
produced solutions by  

)(*)1,0( jjjji lbubrandlbx 
 

(9) 

11. Memorize the best solution achieved so far 

12. cycle = cycle+1 

13. until cycle = MCN 

3. Genetically Inspired ABC 

The main difference between the original ABC 
and our proposed genetically inspired GI-ABC 
algorithm considers the replacement of 
exhausted food sources. After a certain number 
of cycles, we assume that the ABC algorithm 
has found the proper part of the search space. 
Thus, there is no longer need for scout’s 
random search which is replaced, with certain 
probability, with directed search among the 
best solutions found so far. A point in the 
algorithm’s execution after which scout 
mechanism is replaced with guided onlookers 
which perform strong exploitation around 
current best point is called a breakpoint (abbr. 
bp). This process of replacement of food 
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sources in later cycles uses crossover and 
mutation operators from genetic algorithms. 

GA Operators 

In genetic algorithms, candidate solution is 
often referred to as chromosome. Chromosome 
can conceptually be divided into genes. Each 
gene represents a particular element of a 
candidate solution. Position of the gene in a 
chromosome is called locus. Different encoding 
schemes can be used for representing a 
chromosome, such as binary encoding, real-
value encoding and tree encoding. After 
selection which selects chromosomes for 
reproduction according to their fitness, 
crossover and mutation operators take place. 

Crossover consists of exchanging genes 
between two chromosomes (parents) and 
forming new chromosomes (offspring). 
Crossover occurs with some probability 
(crossover rate). If no crossover takes place, 
offspring is simply a copy of its parent. 

There are three basic types of crossover: single-
point, multi-point and uniform. In single-point 
crossover a random point is chosen within the 
range of the length of chromosome. Then, the 
genes to the right of randomly chosen point are 
swapped between two parents, generating two 
offspring. In multi-point crossover, crossover is 
performed at one or more points along            
the chromosome.  

In the uniform crossover, for each gene 
position, the genes from two parents are 
swapped with a fixed, position independent 
probability p. Unlike single and multi-point 
crossover, this crossover method enables the 
parents to contribute to the offspring on the 
gene level, rather than on the segment level. 
Value of p has determinant influence on 
forming offspring. If the value of p is close to 
0.5, then the gene exchange between two 
parents is frequent. In this case, the exploratory 
power of uniform crossover is high and the 
search process has global tendency.  
Oppositely, if the value of p is closer to 0 or 1, 
then the number of genes swapped between two 
parents is smaller and the search process is 
more locally directed.  

Mutation is performed by choosing a gene at 
randomly chosen locus and replacing that gene 
with another one. Mutation operator maintains 
diversification in the population ensuring that 

no single gene position keeps fixed value 
during the algorithm’s run.  

GA Operator Implementation for ABC 

In the GI-ABC, GA operators are adopted in 
the process of replacement of the exhausted 
food sources. Candidate solution can be 
considered as a chromosome while genes 
represent function variables.  

As mentioned above, after breakpoint iterations 
scouts are being replaced with guided 
onlookers with certain probability. This 
probability is a new parameter of the algorithm 
and it is called the replacement rate (abbr. rr). 
We empirically determined that the value 0.9 
for rr gives best results. The parameter is not 
user adjustable. 

If replacement occurs, the best fit and one 
random individual are chosen from the 
population as parents for recombination 
process. Recombination is performed using 
uniform crossover operator. According to 
conducted empirical experiments, we found 
that this crossover method with value of p set to 
0.5 achieves best results for our purpose. In GI-
ABC algorithm, after recombination of two 
parents, only one offspring is used. 

After crossover, mutation operator takes place. 
Each gene (function parameter) is mutated with 
small probability according to Equation (10). 
Mutation probability rate (abbr. mpr) is also a 
control parameter of the algorithm that is not 
adjustable since algorithm is not very sensitive 
to its changes. 

)][(*1 offsp[i] irndsol offsp[i]     (10) 

where offsp is child solution, i is the i-th gene 
and mutation process is applied to all genes for 
i between 1 and D, rndsol is one randomly 
selected solution, φ1 is random number 
between -0.1 and 0.1. As can be seen from 
Equation (10), mutation mildly distracts guided 
onlooker from strong attraction towards best 
solution to some other, random direction. 

In both, original ABC and the GI-ABC 
algorithm, employed and onlooker bees change 
one function parameter. They replace randomly 
chosen parameter with a new one, whose value 
is a combination of the current value and value 
of other randomly selected solution. However, 
mutation in guided onlooker phase changes all 
parameters but only by a relatively small value, 
again in the direction of a random solution, but 
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only after strong bias towards current best 
solution has already been applied. 

After algorithm has reached bp, guided 
onlooker for strong exploitation is triggered 
with replacement rate probability. Offspring is 
generated and the solution whose number of 
trials is exceeded is replaced with the offspring.  

If replacement rate condition is not satisfied, 
the solution with which exhausted one is 
replaced is generated using Equation  (9). 
Using this mechanism we ensure that the 
algorithm does not get stuck in the local 
optimum because in some cases, exploration is 
still performed. 

When algorithm reaches the final stage of its 
execution (higher number of cycles), we 
introduce another breakpoint which we called 
second break point (abbr. sbp). We have 
empirically found that optimal setting is 
sbp=bp*1.7. The difference between bp and 
sbp is in a way how the offspring solution is 
generated by guided onlooker. After the sbp 
number of cycles, guided onlooker combines 
two solutions with the highest fitness in the 
population. With assumption that almost 
optimum solution is found, this mechanism 
performs even stronger exploitation. After the 
creation, the offspring is exposed to mutation in 
the same way as described above. 

Pseudo-code of the GI-ABC algorithm is    
given below: 

1. Initialize the population of solutions 

2. Evaluate the population 

3. If there is an equality constraint, then  = 1.0 

4. cycle=1 

5. repeat 

6. Produce new solutions for the employed bees 
by using Equation (6) and evaluate them 

7. Apply selection process based on        
Deb’s method. 

8. Calculate the probability values pi for the 
solutions xi, using fitness of the solutions 
and the constraint violations (CV) by 
Equation (8) where CV is defined by 
Equation (7). 

9. For each onlooker bee, produce a new 
solution υi by Equation (6) in the 
neighborhood of the solution selected 
depending on pi and evaluate it 

10. Apply selection process between υi and xi 
based on Deb’s method. 

11. Determine the abandoned solutions by 
using “limit” parameter for the scout, if it 
exists, replace it with: 

 a) A new randomly produced solution by 
Equation (9), if cycle < bp 

 b) An offspring solution of the best and 
random solution if bp<=cycle<=sbp and if 
rr condition is satisfied, otherwise use 
procedure like in a).   

 c) An offspring solution of two highest 
fitness solutions if sbp<cycle and if rr 
condition is satisfied, otherwise use 
procedure like in a). 

12. Memorize the best solution achieved so far 

13. If there is an equality constraint and  > 
0.0001, then reduce   according to 
Equation (5) 

14. The constraints of food sources are 
recalculated using the new tolerance. 

15. cycle = cycle+1 

16. until cycle = MCN 

With proper adjustment of bp, premature 
convergence can be avoided. If bp is set to 
lower value, the population of candidate 
solutions converges too early to a local 
minimum. In this situation, because of the loss 
of genetic variation, each candidate solution in 
population is almost identical. 

Our modified GI-ABC algorithm employs five 
additional control parameters, but they all have 
fixed values determined empirically. These are 
bp, rr, mpr, sbp and p which are all 
preconfigured inside the algorithm and cannot 
be changed by the user. Original ABC is a 
special case of the GI-ABC, with rr set to 0 (or 
alternatively, bp>MCN). In this case scout is 
never replaced with guided onlooker and scout 
generates new solutions as in the original ABC 
algorithm according to Equation (9). 

4. Experiments and Discussion 

In this section we first present results that GI-
ABC algorithm achieved with different 
parameter sets as a foundation for exploitation-
exploration trade-off investigation. To evaluate 
the performance of the GI-ABC algorithm we 
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used the set of 13 benchmark functions for 
constrained optimization [21].  

All tests were performed on Intel® Core™ 2 
Duo T8500 processor @4GHz with 4GB of 
RAM memory, Windows 7 x64 Ultimate 64 
operating system and Visual Studio 2010 .NET 
4.0 Framework. 

The same basic parameter set as in Karaboga 
and Akay’s ABC [14] algorithm was used for 
GI-ABC. The value of the modification rate 
(MR) is 0.8, colony size (SN)  is 40, and the 
maximum cycle number (MCN) is 6000. So, 
the total number of objective function 
evaluations is 240,000. The value of limit is set 
to 150 (MCN/SN). For functions with equality 
constraints we used  =1, and dec=1.002.  

Exploitation-Exploration Balance 

Success of population based algorithm depends 
on establishing balance between exploitation 
and exploration which contradict each other. 
GI-ABC manages exploitation-exploration 
balance by adjusting bp and rr parameter 
values. By changing these parameters, optimum 
and mean results change accordingly. However, 
best values for these parameters were 
determined empirically and fixed in the 
algorithm. Parameter mpr occasionally has 
positive influence on both best and mean 
results when mutation helps algorithm to leave 
local minimum. 

With decrease of bp or increase of rr, 
exploitation increases and exploration 
decreases and vice versa. For most test cases, 
with decrease of bp or increase of rr, best 
solution discovered within 30 runs gets better, 
while mean solution gets worse. This is 
because when algorithm in early cycles finds 
proper part of the search space (with little 
exploration effort), good solutions are 
combined, and consequently, better solutions 
are achieved. However, if the algorithm misses 
right part of the search space in early cycles, 
combining such low quality solutions leads 
towards worse results. For example, if in 5 of 
30 runs algorithm early targets proper part of 
the search space, outstanding bests are 
discovered in these 5 runs, but, in other 25 
runs, best solutions are far away from real 
optimum, which in overall leads to worse mean 
results. On the other side, by increasing bp and 
decreasing rr, best results get worse, while 
means get better. In this case, algorithm has 
more cycles to find right part of the search 

space, but has fewer cycles for combining good 
solutions if it enters the right part of the search 
space in early cycles.  

We performed a set of experiments with 
varying GI-ABC specific control parameters 
(bp, rr, mpr, sbp, p) in order to investigate 
exploitation-exploration tradeoffs and impact 
on best and mean results. Parameter sbp 
depends on bp, and parameter p for uniform 
crossover was fixed and set to 0.5, as described 
in Section 3. We present here results of only 
few experiments, these with varying bp. Full 
spectrum of parameter sets was used for 
experiments, but most of them showed low 
sensitivity and significant independence of 
parameters, so it was easy to select and fix all 
other parameters except bp. By these empirical 
results we fixed rr to 0.9, mpr to 0.01 and we 
set sbp to 1.7*bp. Here we present results for 
varying bp set to 500, 1000, 2000 and 3000. 

All experiments were repeated 30 times, each 
starting from a random population with 
different seeds. As expected, each function is 
specific and behaves differently, but besides 
that, a general rule can be derived. We used the 
same random number seed for all four tests for 
the same function. Best and mean results with 
respective parameters are shown in Table 1. 

As bp increases, exploitation power decreases 
in favor to exploration. This means that best 
results should get worse, while mean results 
should get better.  

From the Table 1 it can be observed that for 
some functions best and mean results are equal 
to the function’s optimum, for all tested values 
for bp. That means that these functions are easy 
for optimization by our algorithm. In this group 
of problems belong g01, g03, g04, g06, g08, 
g11 and g12. 

The most pronounced change in best and mean 
results can be seen in g02 problem. Best is the 
same for bp=1,000 and bp=2,000, but it gets 
somewhat worse for bp=3,000. Means improve 
significantly from bp=1,000 to bp=3,000. For 
bp=500, both mean and best results are 
significantly worse than in all other tests. This is 
because within 500 cycles the algorithm cannot 
converge to the proper part of the search space. 

In g09 problem, known optimum is discovered 
no sooner than for bp=2,000. Thus, in this case, 
the algorithm cannot converge to the right part 
of the search space in smaller number of cycles. 
Mean values behave as expected.  
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For bp=500, 1,000 and 2,000 in the g10 
problem, the algorithm obtains best which is 
very close to optimum. Unfortunately, with bp 
set too high (3,000), best gets worse. As 
anticipated, means get significantly better from 
bp=500 to bp=3,000. We conclude that in g10 
problem optimization, the algorithm early hits 
the proper part of the search space.  

In g13 test, the algorithm converges to the 
optimum solution in all tests except for 
bp=500. It seems that 500 cycles is not enough 
for matching the part of the search space where 
optimum solution resides. 

GI-ABC achieves best results for bp=1,000 and 
for bp=2,000. However, the best balance 
between best and mean results (exploration-
exploitation trade-off) is achieved in 
benchmarks for bp=3,000. In this case, with 
little sacrifice in bests, better means are obtained 
(Table 1, better solutions are bold). Because of 
this reasonable bests-means trade-off, we 
decided to select bp=3,000 and fix it in the 
algorithm. For this set of benchmark functions 
this looks like the most reasonable solution, 
however it can be a user adjustable parameter. 
Also, for more comprehensive set of benchmark 
functions it may be appropriate to fix bp 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

parameter in the algorithm not as a constant, 
but function of the problem dimensionality. 

Comparison with the latest ABC and 
Other State-of-the-art Algorithms  

As mentioned earlier, direct comparison is 
made between our modified GI-ABC and the 
latest Karaboga and Akay’s [14] ABC 
algorithm, but for more comprehensive 
comparison, we added three other state-of-the-
art algorithms: smart flight ABC (SF-ABC) by 
Mezura-Montes et al. [17], self-adaptive 
penalty function GA (SAPF-GA) by Tassema 
and Yen [18],  and adaptive tradeoff model 
evolutionary strategy (ATMES) by Wang et al. 
[19]. Side by side best and mean results 
comparison is given in Table 2.In Tables 1 and 
2 optimal values for easier comparison are from 
[14] (standard definitions are in [21]). 

Based on experimental results shown in Table 2 
we can see that considering best results, GI-
ABC outperforms ABC algorithm for g02, g07, 
g09, g10 and g13 benchmark functions. The 
best result for g05 reported in [14] is better than 
known optimum as a consequence of larger 
equality constraint violation. For g01, g03, g04, 
g06, g08, g11 and g12 problems, GI-ABC 

Table 1. Best and mean results for GI-ABC with varying bp 

Problem Optimum  bp=500 bp=1,000 bp=2,000 bp=3,000 
g01 

-15.000 
Best 
Mean 

-15.000 
-15.000 

-15.000 
-15.000 

-15.000 
-15.000 

-15.000 
-15.000 

g02 
-0.803619 

Best 
Mean 

-0.7946601 
-0.7202719 

-0.803618 
-0.765693 

-0.803618 
-0.798054 

-0.803614 
-0.800151 

g03 
-1.000 

Best 
Mean 

-1.000 
-1.000 

-1.000 
-1.000 

-1.000 
-1.000 

-1.000 
-1.000 

g04 
-30665.539 

Best 
Mean 

-30665.539 
-30665.539 

-30665.539 
-30665.539 

-30665.539 
-30665.539 

-30665.539 
-30665.539 

g05 
5126.498 

Best 
Mean 

5126.497 
5258.619 

5126.497 
5221.603 

5126.497 
5209.028 

5126.497 
5164.762 

g06 
-6961.814 

Best 
Mean 

-6961.814 
-6961.814 

-6961.814 
-6961.814 

-6961.814 
-6961.814 

-6961.814 
-6961.814 

g07 
24.306 

Best 
Mean 

24.306 
24.513 

24.306 
24.481 

24.306 
24.421 

24.306 
24.395 

g08 
-0.095825 

Best 
Mean 

-0.095825 
-0.095825 

-0.095825 
-0.095825 

-0.095825 
-0.095825 

-0.095825 
-0.095825 

g09 
680.63 

Best 
Mean 

680.631 
680.648 

680.631 
680.646 

680.630 
680.641 

680.630 
680.635 

g10 
7049.25 

Best 
Mean 

7049.282 
7383.949 

7049.282 
7282.871 

7049.282 
7250.293 

7049.285 
7192.397 

g11 
0.75 

Best 
Mean 

0.750 
0.750 

0.750 
0.750 

0.750 
0.750 

0.750 
0.750 

g12 
-1.000 

Best 
Mean 

-1.000 
-1.000 

-1.000 
-1.000 

-1.000 
-1.000 

-1.000 
-1.000 

g13 
0.053950 

Best 
Mean 

0.055 
0.335 

0.054 
0.305 

0.054 
0.279 

0.054 
0.248 
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obtained optimal results, as well as ABC did. 
For all test functions, GI-ABC outperformed 
latest Karaboga and Akay’s ABC algorithm 
[14] when mean results are considered.In 
comparison with other three algorithms, for 
both, best and mean results, only SF-ABC [17] 
and ATMES [19] reach better mean values for 
some functions. With respect to SF-ABC, GI-
ABC showed substantially improved best 
results in g02 and g07 problems and maintained 
similar competitive results in other test 
functions. The largest result difference is 
observed in g02 problem, where SF-ABC was 
affected by premature convergence. SF-ABC 
obtained better means than GI-ABC for g05 
and g10 problems, where SF-ABC algorithm’s 
directed search performs more efficiently than 
GI-ABC algorithm’s guided onlooker. On the 
other side, GI-ABC is better in g01, g02, g07, 
g09 and g13 benchmarks. Both algorithms have 
means which are equal to optimums for easy 
problems g03, g04, g06, g08, g11 and g12.  

 

GI-ABC outperforms SAPF-GA [18] in all test 
functions if we compare both best and         
mean results. 

GI-ABC obtains better both best and mean 
values than ATMES [19] in g02 and g10 
problems. ATMES slightly outperforms GI-
ABC only in g05, g07, g09 and g13 mean 
values. In g07 test, ATMES obtains mean value 
which is very close to optimum, while mean in 
g13 test is equivalent to optimum. For other 
benchmarks, these algorithms behave similarly. 

It should be noted that the latest Karaboga and 
Akay’s ABC algorithm [14] was favorable 
compared with other 9 state-of-the-art 
algorithms: Koziel and Michalewicz’s 
homomorphous mappings (HM) [22], 
Runarsson and Yao’s stochastic ranking (SR) 
[23], improved stochastic ranking (ISR) [24] 
and over-penalized approach (OPA) [24], 
adaptive segregational constraint handling 
evolutionary algorithm (ASCHEA) by Hamida  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparison of best and mean results for our GI-ABC, Karaboga and Akay’s latest ABC and three 
other algorithms (SF-ABC, SAPF-GA and ATMES) 

Problem Optimum Best 
Mean 

SF-ABC 
[17] 

SAPF-GA 
[18] 

ATMES 
[19] 

ABC 
[14] 

GI-ABC 

g01 
-15.000 

Best 
Mean 

-15.000 
-14.13 

-15.000 
-14.552 

-15.000 
-15.000 

-15.000 
-15.000 

-15.000 
-15.000 

g02 
-0.803619 

Best 
Mean 

-0.709034 
-0.471210 

-0.803202 
-0.755798 

-0.803388 
-0.790148 

-0.803598 
-0.792412 

-0.803614
-0.800151 

g03 
-1.000 

Best 
Mean 

-1.000 
-1.000 

-1.000 
-0.964 

-1.000 
-1.000 

-1.000 
-1.000 

-1.000 
-1.000 

g04 
-30665.539 

Best 
Mean 

-30665.539 
-30665.539 

-30665.401 
-30665.922 

-30665.539 
-30665.539 

-30665.539 
-30665.539 

-30665.539 
-30665.539 

g05 
5126.498 

Best 
Mean 

5126.497 
5126.526 

5126.907 
5214.232 

5126.498 
5127.648 

5126.484* 
5185.714 

5126.497 
5164.762 

g06 
-6961.814 

Best 
Mean 

-6961.814 
-6961.814 

-6961.046 
-6953.061 

-6961.814 
-6961.814 

-6961.814 
-6961.814 

-6961.814 
-6961.814 

g07 
24.306 

Best 
Mean 

24.316 
24.657 

24.838 
27.328 

24.306 
24.316 

24.330 
24.473 

24.306
24.395 

g08 
-0.095825 

Best 
Mean 

-0.095825 
-0.095825 

-0.095825 
-0.095635 

-0.095825 
-0.095825 

-0.095825 
-0.095825 

-0.095825 
-0.095825 

g09 
680.63 

Best 
Mean 

680.630 
680.643 

680.773 
681.246 

680.630 
680.633 

680.634 
680.640 

680.630
680.635 

g10 
7049.25 

Best 
Mean 

7049.547 
7116.934 

7069.981 
7238.964 

7052.253 
7250.437 

7053.904 
7224.407 

7049.285
7192.397 

g11 
0.75 

Best 
Mean 

0.750 
0.750 

0.750 
0.751 

0.750 
0.750 

0.750 
0.750 

0.750 
0.750 

g12 
-1.000 

Best 
Mean 

-1.000 
-1.000 

-1.000 
-1.000 

-1.000 
-1.000 

-1.000 
-1.000 

-1.000 
-1.000 

g13 
0.053950 

Best 
Mean 

0.054 
0.263 

0.054 
0.286 

0.054 
0.054 

0.760 
0.968 

0.054
0.248 

* Explained in the text 
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and Schoenaeur [25], genetic algorithm (GA) 
from [26], simple multimembered evolutional 
strategy (SMES) by Mezura-Montes and Coello 
Coello [26], particle swarm optimization (PSO) 
from [27], and differential evolution (DE). 
Most of the mentioned algorithms use larger 
number of function evaluations (350,000) and 
Karaboga and Akay concluded in [14] that 
ABC algorithm can efficiently be used for 
solving constrained optimization problems and 
that it is very competitive to the other state-of-
the-art approaches. This conclusion holds even 
more for our proposed GI-ABC algorithm. 

5. Conclusions 

A modification to the ABC algorithm, named 
GI-ABC (genetically inspired artificial bee 
colony), is introduced in this paper. GI-ABC 
improves the performance of the ABC 
algorithm by applying uniform crossover and 
mutation operators from genetic algorithms.  

By studying ABC algorithm we found that the 
number of scouts is too large for the late phase 
of algorithm’s execution. Thus, we set a point 
where a large percentage of scouts are 
transformed into guided onlookers which are 
more exploitation intensive than ordinary 
onlookers. From time to time, scout is still 
triggered for preventing the algorithm from 
being stuck in local optimum.     

GI-ABC was tested on 13 standard well-known 
benchmark optimization functions. From the 
comparative study GI-ABC has shown its 
potential to handle various constrained 
optimization problems. Our proposed algorithm 
was compared directly with the latest ABC 
algorithm by Karaboga and Akay [14] and 
three other state-of-the-art algorithms where it 
showed improved performance considering 
best results and even more significant 
robustness by outperforming ABC algorithm’s 
mean results in all cases. Since Karaboga and 
Akay’s in [14] favorably compare ABC with 9 
other state-of-the-art algorithms, we conclude 
that our proposed GI-ABC algorithm is a very 
promising tool for constrained optimization. 
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