
Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 137

1. Introduction

Optimization Problems

Optimization is one of the most applicable
areas in mathematics and computer science
since most real-life problems can be described
as some kind of optimization problem. The
types of mathematical relationships between
the objective function, potential constraints and
decision variables determine how difficult the
particular problem is. Hard optimization
problems can be combinatorial (discrete) or
continuous (global optimization), where
continuous problems can be constrained or
unconstrained (bound constrained).

The nonlinear constrained optimization
problem in the continuous space can be
formulated as follows:

n
n Rxxxxxxf minimize ),...,,,(),(321 (1)

where xF S. The search space S is an n-
dimensional hyper-rectangular space in Rn
defined by lower and upper bounds for variables:

niubxlb iii  1, (2)

and the feasible region F S is defined by a set
of m linear or nonlinear constraints:

mqjforxh

qjforxg

j

j

,...,1,0)(

,...,1,0)(




 (3)

where q is the number of inequality constraints
and m-q is the number of equality constraints.

Most of the optimization algorithms start with
random, unfeasible solutions in the initialization

phase with expectation that after some number
of iterations these solutions will reach the
feasible area. However, equality constraints
pose a difficult issue since their presence makes
the feasible space very small compared to the
entire search space. The equality constraints
can be replaced by inequality constraints with
some small violation limit  >0 [1]:

0)(xh (4)

The quality of results depends on the choice of
the violation limit value . If it is selected too
small, the algorithm may not find the feasible
solutions, and if the tolerance  is too large the
results may be far from the feasible region.

The promising approaches for handling
equality constraints include dynamic, self-
adaptive tolerance adjustment [2]. The process
should start with a large violation value  ,
which is gradually decreased through the cycles
of the algorithm. A dynamic setting of the
violation value  can be defined as follows:

dec

t
t

)(
)1(

  (5)

where t is the current cycle and dec>1 is the
decreasing rate value of each cycle.

Metaheuristics

Many metaheuristic algorithms have been
developed recently for solving optimization
problems from both domains, numerical and
combinatorial. They include population based,
iterative based, stochastic, deterministic and
other approaches.

Artificial Bee Colony (ABC) Algorithm for Constrained
Optimization Improved with Genetic Operators

Nebojsa Bacanin, Milan Tuba

Megatrend University Belgrade, Faculty of Computer Science,
Bul. Umetnosti 29, 11070 N. Belgrade, Serbia
nbacanin@megatrend.edu.rs, tuba@ieee.org

Abstract: Artificial bee colony (ABC) is a relatively new swarm intelligence based metaheuristic. It was successfully
applied to unconstrained optimization problems and later it was adjusted for constrained problems as well. In this paper
we introduce modifications to the ABC algorithm for constrained optimization problems that improve performance of the
algorithm. Modifications are based on genetic algorithm (GA) operators and are applied to the creation of new candidate
solutions. We implemented our modified algorithm and tested it on 13 standard benchmark functions. The results were
compared to the results of the latest (2011) Karaboga and Akay’s ABC algorithm and other state-of-the-art algorithms
where our modified algorithm showed improved performance considering best solutions and even more considering
mean solutions.

Keywords: Artificial bee colony (ABC), Constrained optimization, Swarm intelligence, Nature inspired metaheuristics.

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 138

One of the oldest metaheuristics for the global
optimization problem is simulated annealing
(SA) which is recognized as a generic
probabilistic method. SA can be applied in
many practical industrial problems, such as part
type selection and operation allocation problem
in flexible manufacturing system (FMS) [3].

Population based algorithms which are working
with a set of solutions and iteratively trying to
improve them were very successful recently. They
can be divided into two groups: evolutionary
algorithms (EA) and swarm intelligence.

Prominent among EA are genetic algorithms
(GA). GA and other EA have been applied to a
wide variety of different problems [4], [5].

Swarm intelligence based on the collective
behavior of the social insect colonies and other
animal societies has recently become an
important research topic. The key concept of
swarm intelligence lies in a simple set of rules
that control each of the individuals which
exhibit remarkable collective intelligence. The
swarming concept can also be extended to
human group decision process [6].

Particle swarm optimization (PSO) is a swarm
intelligence algorithm which simulates social
behavior of fish schooling or bird flocking.
There are also other PSO approaches like
interactive particle-swarm metaheuristic used
for multi-objective optimization (MOO) [7].

Ant colony optimization (ACO) is a technique
that is quite successful in solving many hard
practical optimization problems. The
foundation of the ACO is foraging behavior of
real ants which are able to find the shortest
paths between their nests and food sources due
to the substance called pheromone. ACO has
been applied to the minimum weight vertex
cover problem [8], power distribution problems
[9], and many others.

Several metaheuristics have been developed to
simulate the specific intelligent behavior of
honey bee swarms. Bee colony is a highly
dynamical system which collects information
from its surrounding and adopts its behavior
accordingly. Artificial bee colony (ABC)
algorithm is one of the latest representatives of
the honey bee swarm algorithms. Originally,
the ABC algorithm was proposed by Karaboga
for finding global optimum over continuous
space [10]. ABC was successfully applied to
unconstrained [11] as well as to constrained
function optimization problems [12]. Testing

results show that the performance of ABC
algorithm is comparable to other state-of-the-
art algorithms for high dimensionality
optimization [13]. ABC has recently become
very active research area and many
modifications [14] and enhancements [15] of
the original algorithm were introduced.

Our Improvement

The ultimate goal of any metaheuristic
algorithm is to find the optimal feasible
solution. To achieve this goal, appropriate
balance between exploitation and exploration is
required at each iteration of the algorithm. By
studying the ABC algorithm, we noticed a
deficiency during the solution search process.
After significant number of iterations, when
optimal solution is almost found, scout bees
which perform the exploration process are not
useful any more, just the opposite. This
problem can be treated by better adjustment of
exploration and exploitation balance [16], [5].

In order to improve the exploitation process at
later stages of the algorithm, we adopted
uniform crossover and mutation operators from
GA during the replacement process of the
exhausted food sources. We have found an
appropriate empirical point where some scout
bees (according to an appropriate probability
parameter) are transformed into a new class of
guided onlookers for strong exploitation. This
new mechanism of replacing exhausted food
sources performs intensive exploitation around
current best solution using uniform crossover
operator. After crossover, mutation operator
takes place. Each function parameter is mutated
with small probability thus preventing any
variable to keep fixed value indefinitely.

In such a manner, by integrating GA with the
ABC, we derived a modified ABC algorithm
for constrained optimization improved with
genetic operators and named it genetically
inspired ABC algorithm (GI-ABC).

The rest of this paper is organized as follows.
Section 2 explains the original ABC algorithm;
Section 3 describes the principle of the
crossover and mutation modifications and
adjustment for the GI-ABC algorithm. In
Section 4 an analysis of trade-offs between
exploration and exploitation is performed first,
using various parameter sets. After that, series
of comparison experiments on the set of 13
well known g benchmark functions are
performed to verify the effectiveness of our

Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 139

proposed approach over the latest Karaboga
and Akay’s [14] ABC algorithm and other
state-of-the-art algorithms [17], [18], [19].

2. ABC Algorithm Overview

The artificial bee colony (ABC) algorithm was
designed for numerical optimization problems,
based on the foraging behavior of honey bees
[10]. Since the performance of metaheuristic
algorithms depend on the number and the
choice of parameters, the main advantages of
the ABC algorithm are derived from the fact
that the algorithm uses only 3 control
parameters: colony size, maximum cycle
number and limit.

ABC algorithm employs three classes of
artificial bees: employed bees, onlookers and
scouts. Employed bee stays on a food source
(candidate solution) and examines
neighborhood. Onlookers are allocated to a
food source based on the information which
they gain from employed bees. If a food source
does not improve for a certain number of
cycles, scouts replace that food source with a
new, random one.

The main difference between ABC and other
swarm intelligence algorithms is based on the
fact that the possible solutions are represented
by the food sources, not the individuals in the
population. The quality of the possible solution
is presented as a fitness value that is calculated
from the value of the objective function of the
problem. Each solution xi (i = 1, 2,.., SN) is a
D-dimensional vector, where SN denotes the
size of the population. In the ABC algorithm
onlookers and employed bees carry out the
exploitation process in the search space, while
the scouts control the exploration process.

Pseudo-code of the ABC algorithm for
constrained optimization problems [12] is:

1. Initialize the population of solutions

2. Evaluate the population

3. cycle=1

4. repeat

5. Produce new solutions for the employed bees
by using Equation (6) and evaluate them

 MRRxxx
otherwisexji

jjkjijiji

ji

),(*
,

,,,,

,



(6)

where k is random number between 1 and
SN/2 and different from i.

6. Apply selection process based on Deb’s
method [20].

7. Calculate the probability values pi for the
solutions xi, using fitness of the solutions and
the constraint violations (CV) by

)()(
0 1

xhxgCV
jg

m

q
jj 

 

 (7)









































































infeasibleissolutionif
SN

i
CV

CV

feasibleissolutionif
SN

i
ifitness

ifitness

pi

5.0*

1

1

5.0*

1

5.0

 (8)

8. For each onlooker bee, produce a new
solution vij by Equation

(6) in the

neighborhood of the solution selected
depending on pi and evaluate it

9. Apply selection process between υi and xi
based on Deb’s method

10. Determine the abandoned solutions by
using “limit” parameter for the scout; if
they exist, replace them with new randomly
produced solutions by

)(*)1,0(jjjji lbubrandlbx 

(9)

11. Memorize the best solution achieved so far

12. cycle = cycle+1

13. until cycle = MCN

3. Genetically Inspired ABC

The main difference between the original ABC
and our proposed genetically inspired GI-ABC
algorithm considers the replacement of
exhausted food sources. After a certain number
of cycles, we assume that the ABC algorithm
has found the proper part of the search space.
Thus, there is no longer need for scout’s
random search which is replaced, with certain
probability, with directed search among the
best solutions found so far. A point in the
algorithm’s execution after which scout
mechanism is replaced with guided onlookers
which perform strong exploitation around
current best point is called a breakpoint (abbr.
bp). This process of replacement of food

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 140

sources in later cycles uses crossover and
mutation operators from genetic algorithms.

GA Operators

In genetic algorithms, candidate solution is
often referred to as chromosome. Chromosome
can conceptually be divided into genes. Each
gene represents a particular element of a
candidate solution. Position of the gene in a
chromosome is called locus. Different encoding
schemes can be used for representing a
chromosome, such as binary encoding, real-
value encoding and tree encoding. After
selection which selects chromosomes for
reproduction according to their fitness,
crossover and mutation operators take place.

Crossover consists of exchanging genes
between two chromosomes (parents) and
forming new chromosomes (offspring).
Crossover occurs with some probability
(crossover rate). If no crossover takes place,
offspring is simply a copy of its parent.

There are three basic types of crossover: single-
point, multi-point and uniform. In single-point
crossover a random point is chosen within the
range of the length of chromosome. Then, the
genes to the right of randomly chosen point are
swapped between two parents, generating two
offspring. In multi-point crossover, crossover is
performed at one or more points along
the chromosome.

In the uniform crossover, for each gene
position, the genes from two parents are
swapped with a fixed, position independent
probability p. Unlike single and multi-point
crossover, this crossover method enables the
parents to contribute to the offspring on the
gene level, rather than on the segment level.
Value of p has determinant influence on
forming offspring. If the value of p is close to
0.5, then the gene exchange between two
parents is frequent. In this case, the exploratory
power of uniform crossover is high and the
search process has global tendency.
Oppositely, if the value of p is closer to 0 or 1,
then the number of genes swapped between two
parents is smaller and the search process is
more locally directed.

Mutation is performed by choosing a gene at
randomly chosen locus and replacing that gene
with another one. Mutation operator maintains
diversification in the population ensuring that

no single gene position keeps fixed value
during the algorithm’s run.

GA Operator Implementation for ABC

In the GI-ABC, GA operators are adopted in
the process of replacement of the exhausted
food sources. Candidate solution can be
considered as a chromosome while genes
represent function variables.

As mentioned above, after breakpoint iterations
scouts are being replaced with guided
onlookers with certain probability. This
probability is a new parameter of the algorithm
and it is called the replacement rate (abbr. rr).
We empirically determined that the value 0.9
for rr gives best results. The parameter is not
user adjustable.

If replacement occurs, the best fit and one
random individual are chosen from the
population as parents for recombination
process. Recombination is performed using
uniform crossover operator. According to
conducted empirical experiments, we found
that this crossover method with value of p set to
0.5 achieves best results for our purpose. In GI-
ABC algorithm, after recombination of two
parents, only one offspring is used.

After crossover, mutation operator takes place.
Each gene (function parameter) is mutated with
small probability according to Equation (10).
Mutation probability rate (abbr. mpr) is also a
control parameter of the algorithm that is not
adjustable since algorithm is not very sensitive
to its changes.

)][(*1 offsp[i] irndsol offsp[i]   (10)

where offsp is child solution, i is the i-th gene
and mutation process is applied to all genes for
i between 1 and D, rndsol is one randomly
selected solution, φ1 is random number
between -0.1 and 0.1. As can be seen from
Equation (10), mutation mildly distracts guided
onlooker from strong attraction towards best
solution to some other, random direction.

In both, original ABC and the GI-ABC
algorithm, employed and onlooker bees change
one function parameter. They replace randomly
chosen parameter with a new one, whose value
is a combination of the current value and value
of other randomly selected solution. However,
mutation in guided onlooker phase changes all
parameters but only by a relatively small value,
again in the direction of a random solution, but

Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 141

only after strong bias towards current best
solution has already been applied.

After algorithm has reached bp, guided
onlooker for strong exploitation is triggered
with replacement rate probability. Offspring is
generated and the solution whose number of
trials is exceeded is replaced with the offspring.

If replacement rate condition is not satisfied,
the solution with which exhausted one is
replaced is generated using Equation (9).
Using this mechanism we ensure that the
algorithm does not get stuck in the local
optimum because in some cases, exploration is
still performed.

When algorithm reaches the final stage of its
execution (higher number of cycles), we
introduce another breakpoint which we called
second break point (abbr. sbp). We have
empirically found that optimal setting is
sbp=bp*1.7. The difference between bp and
sbp is in a way how the offspring solution is
generated by guided onlooker. After the sbp
number of cycles, guided onlooker combines
two solutions with the highest fitness in the
population. With assumption that almost
optimum solution is found, this mechanism
performs even stronger exploitation. After the
creation, the offspring is exposed to mutation in
the same way as described above.

Pseudo-code of the GI-ABC algorithm is
given below:

1. Initialize the population of solutions

2. Evaluate the population

3. If there is an equality constraint, then  = 1.0

4. cycle=1

5. repeat

6. Produce new solutions for the employed bees
by using Equation (6) and evaluate them

7. Apply selection process based on
Deb’s method.

8. Calculate the probability values pi for the
solutions xi, using fitness of the solutions
and the constraint violations (CV) by
Equation (8) where CV is defined by
Equation (7).

9. For each onlooker bee, produce a new
solution υi by Equation (6) in the
neighborhood of the solution selected
depending on pi and evaluate it

10. Apply selection process between υi and xi
based on Deb’s method.

11. Determine the abandoned solutions by
using “limit” parameter for the scout, if it
exists, replace it with:

 a) A new randomly produced solution by
Equation (9), if cycle < bp

 b) An offspring solution of the best and
random solution if bp<=cycle<=sbp and if
rr condition is satisfied, otherwise use
procedure like in a).

 c) An offspring solution of two highest
fitness solutions if sbp<cycle and if rr
condition is satisfied, otherwise use
procedure like in a).

12. Memorize the best solution achieved so far

13. If there is an equality constraint and  >
0.0001, then reduce  according to
Equation (5)

14. The constraints of food sources are
recalculated using the new tolerance.

15. cycle = cycle+1

16. until cycle = MCN

With proper adjustment of bp, premature
convergence can be avoided. If bp is set to
lower value, the population of candidate
solutions converges too early to a local
minimum. In this situation, because of the loss
of genetic variation, each candidate solution in
population is almost identical.

Our modified GI-ABC algorithm employs five
additional control parameters, but they all have
fixed values determined empirically. These are
bp, rr, mpr, sbp and p which are all
preconfigured inside the algorithm and cannot
be changed by the user. Original ABC is a
special case of the GI-ABC, with rr set to 0 (or
alternatively, bp>MCN). In this case scout is
never replaced with guided onlooker and scout
generates new solutions as in the original ABC
algorithm according to Equation (9).

4. Experiments and Discussion

In this section we first present results that GI-
ABC algorithm achieved with different
parameter sets as a foundation for exploitation-
exploration trade-off investigation. To evaluate
the performance of the GI-ABC algorithm we

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 142

used the set of 13 benchmark functions for
constrained optimization [21].

All tests were performed on Intel® Core™ 2
Duo T8500 processor @4GHz with 4GB of
RAM memory, Windows 7 x64 Ultimate 64
operating system and Visual Studio 2010 .NET
4.0 Framework.

The same basic parameter set as in Karaboga
and Akay’s ABC [14] algorithm was used for
GI-ABC. The value of the modification rate
(MR) is 0.8, colony size (SN) is 40, and the
maximum cycle number (MCN) is 6000. So,
the total number of objective function
evaluations is 240,000. The value of limit is set
to 150 (MCN/SN). For functions with equality
constraints we used  =1, and dec=1.002.

Exploitation-Exploration Balance

Success of population based algorithm depends
on establishing balance between exploitation
and exploration which contradict each other.
GI-ABC manages exploitation-exploration
balance by adjusting bp and rr parameter
values. By changing these parameters, optimum
and mean results change accordingly. However,
best values for these parameters were
determined empirically and fixed in the
algorithm. Parameter mpr occasionally has
positive influence on both best and mean
results when mutation helps algorithm to leave
local minimum.

With decrease of bp or increase of rr,
exploitation increases and exploration
decreases and vice versa. For most test cases,
with decrease of bp or increase of rr, best
solution discovered within 30 runs gets better,
while mean solution gets worse. This is
because when algorithm in early cycles finds
proper part of the search space (with little
exploration effort), good solutions are
combined, and consequently, better solutions
are achieved. However, if the algorithm misses
right part of the search space in early cycles,
combining such low quality solutions leads
towards worse results. For example, if in 5 of
30 runs algorithm early targets proper part of
the search space, outstanding bests are
discovered in these 5 runs, but, in other 25
runs, best solutions are far away from real
optimum, which in overall leads to worse mean
results. On the other side, by increasing bp and
decreasing rr, best results get worse, while
means get better. In this case, algorithm has
more cycles to find right part of the search

space, but has fewer cycles for combining good
solutions if it enters the right part of the search
space in early cycles.

We performed a set of experiments with
varying GI-ABC specific control parameters
(bp, rr, mpr, sbp, p) in order to investigate
exploitation-exploration tradeoffs and impact
on best and mean results. Parameter sbp
depends on bp, and parameter p for uniform
crossover was fixed and set to 0.5, as described
in Section 3. We present here results of only
few experiments, these with varying bp. Full
spectrum of parameter sets was used for
experiments, but most of them showed low
sensitivity and significant independence of
parameters, so it was easy to select and fix all
other parameters except bp. By these empirical
results we fixed rr to 0.9, mpr to 0.01 and we
set sbp to 1.7*bp. Here we present results for
varying bp set to 500, 1000, 2000 and 3000.

All experiments were repeated 30 times, each
starting from a random population with
different seeds. As expected, each function is
specific and behaves differently, but besides
that, a general rule can be derived. We used the
same random number seed for all four tests for
the same function. Best and mean results with
respective parameters are shown in Table 1.

As bp increases, exploitation power decreases
in favor to exploration. This means that best
results should get worse, while mean results
should get better.

From the Table 1 it can be observed that for
some functions best and mean results are equal
to the function’s optimum, for all tested values
for bp. That means that these functions are easy
for optimization by our algorithm. In this group
of problems belong g01, g03, g04, g06, g08,
g11 and g12.

The most pronounced change in best and mean
results can be seen in g02 problem. Best is the
same for bp=1,000 and bp=2,000, but it gets
somewhat worse for bp=3,000. Means improve
significantly from bp=1,000 to bp=3,000. For
bp=500, both mean and best results are
significantly worse than in all other tests. This is
because within 500 cycles the algorithm cannot
converge to the proper part of the search space.

In g09 problem, known optimum is discovered
no sooner than for bp=2,000. Thus, in this case,
the algorithm cannot converge to the right part
of the search space in smaller number of cycles.
Mean values behave as expected.

Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 143

For bp=500, 1,000 and 2,000 in the g10
problem, the algorithm obtains best which is
very close to optimum. Unfortunately, with bp
set too high (3,000), best gets worse. As
anticipated, means get significantly better from
bp=500 to bp=3,000. We conclude that in g10
problem optimization, the algorithm early hits
the proper part of the search space.

In g13 test, the algorithm converges to the
optimum solution in all tests except for
bp=500. It seems that 500 cycles is not enough
for matching the part of the search space where
optimum solution resides.

GI-ABC achieves best results for bp=1,000 and
for bp=2,000. However, the best balance
between best and mean results (exploration-
exploitation trade-off) is achieved in
benchmarks for bp=3,000. In this case, with
little sacrifice in bests, better means are obtained
(Table 1, better solutions are bold). Because of
this reasonable bests-means trade-off, we
decided to select bp=3,000 and fix it in the
algorithm. For this set of benchmark functions
this looks like the most reasonable solution,
however it can be a user adjustable parameter.
Also, for more comprehensive set of benchmark
functions it may be appropriate to fix bp

parameter in the algorithm not as a constant,
but function of the problem dimensionality.

Comparison with the latest ABC and
Other State-of-the-art Algorithms

As mentioned earlier, direct comparison is
made between our modified GI-ABC and the
latest Karaboga and Akay’s [14] ABC
algorithm, but for more comprehensive
comparison, we added three other state-of-the-
art algorithms: smart flight ABC (SF-ABC) by
Mezura-Montes et al. [17], self-adaptive
penalty function GA (SAPF-GA) by Tassema
and Yen [18], and adaptive tradeoff model
evolutionary strategy (ATMES) by Wang et al.
[19]. Side by side best and mean results
comparison is given in Table 2.In Tables 1 and
2 optimal values for easier comparison are from
[14] (standard definitions are in [21]).

Based on experimental results shown in Table 2
we can see that considering best results, GI-
ABC outperforms ABC algorithm for g02, g07,
g09, g10 and g13 benchmark functions. The
best result for g05 reported in [14] is better than
known optimum as a consequence of larger
equality constraint violation. For g01, g03, g04,
g06, g08, g11 and g12 problems, GI-ABC

Table 1. Best and mean results for GI-ABC with varying bp

Problem Optimum bp=500 bp=1,000 bp=2,000 bp=3,000
g01

-15.000
Best
Mean

-15.000
-15.000

-15.000
-15.000

-15.000
-15.000

-15.000
-15.000

g02
-0.803619

Best
Mean

-0.7946601
-0.7202719

-0.803618
-0.765693

-0.803618
-0.798054

-0.803614
-0.800151

g03
-1.000

Best
Mean

-1.000
-1.000

-1.000
-1.000

-1.000
-1.000

-1.000
-1.000

g04
-30665.539

Best
Mean

-30665.539
-30665.539

-30665.539
-30665.539

-30665.539
-30665.539

-30665.539
-30665.539

g05
5126.498

Best
Mean

5126.497
5258.619

5126.497
5221.603

5126.497
5209.028

5126.497
5164.762

g06
-6961.814

Best
Mean

-6961.814
-6961.814

-6961.814
-6961.814

-6961.814
-6961.814

-6961.814
-6961.814

g07
24.306

Best
Mean

24.306
24.513

24.306
24.481

24.306
24.421

24.306
24.395

g08
-0.095825

Best
Mean

-0.095825
-0.095825

-0.095825
-0.095825

-0.095825
-0.095825

-0.095825
-0.095825

g09
680.63

Best
Mean

680.631
680.648

680.631
680.646

680.630
680.641

680.630
680.635

g10
7049.25

Best
Mean

7049.282
7383.949

7049.282
7282.871

7049.282
7250.293

7049.285
7192.397

g11
0.75

Best
Mean

0.750
0.750

0.750
0.750

0.750
0.750

0.750
0.750

g12
-1.000

Best
Mean

-1.000
-1.000

-1.000
-1.000

-1.000
-1.000

-1.000
-1.000

g13
0.053950

Best
Mean

0.055
0.335

0.054
0.305

0.054
0.279

0.054
0.248

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 144

obtained optimal results, as well as ABC did.
For all test functions, GI-ABC outperformed
latest Karaboga and Akay’s ABC algorithm
[14] when mean results are considered.In
comparison with other three algorithms, for
both, best and mean results, only SF-ABC [17]
and ATMES [19] reach better mean values for
some functions. With respect to SF-ABC, GI-
ABC showed substantially improved best
results in g02 and g07 problems and maintained
similar competitive results in other test
functions. The largest result difference is
observed in g02 problem, where SF-ABC was
affected by premature convergence. SF-ABC
obtained better means than GI-ABC for g05
and g10 problems, where SF-ABC algorithm’s
directed search performs more efficiently than
GI-ABC algorithm’s guided onlooker. On the
other side, GI-ABC is better in g01, g02, g07,
g09 and g13 benchmarks. Both algorithms have
means which are equal to optimums for easy
problems g03, g04, g06, g08, g11 and g12.

GI-ABC outperforms SAPF-GA [18] in all test
functions if we compare both best and
mean results.

GI-ABC obtains better both best and mean
values than ATMES [19] in g02 and g10
problems. ATMES slightly outperforms GI-
ABC only in g05, g07, g09 and g13 mean
values. In g07 test, ATMES obtains mean value
which is very close to optimum, while mean in
g13 test is equivalent to optimum. For other
benchmarks, these algorithms behave similarly.

It should be noted that the latest Karaboga and
Akay’s ABC algorithm [14] was favorable
compared with other 9 state-of-the-art
algorithms: Koziel and Michalewicz’s
homomorphous mappings (HM) [22],
Runarsson and Yao’s stochastic ranking (SR)
[23], improved stochastic ranking (ISR) [24]
and over-penalized approach (OPA) [24],
adaptive segregational constraint handling
evolutionary algorithm (ASCHEA) by Hamida

Table 2. Comparison of best and mean results for our GI-ABC, Karaboga and Akay’s latest ABC and three
other algorithms (SF-ABC, SAPF-GA and ATMES)

Problem Optimum Best
Mean

SF-ABC
[17]

SAPF-GA
[18]

ATMES
[19]

ABC
[14]

GI-ABC

g01
-15.000

Best
Mean

-15.000
-14.13

-15.000
-14.552

-15.000
-15.000

-15.000
-15.000

-15.000
-15.000

g02
-0.803619

Best
Mean

-0.709034
-0.471210

-0.803202
-0.755798

-0.803388
-0.790148

-0.803598
-0.792412

-0.803614
-0.800151

g03
-1.000

Best
Mean

-1.000
-1.000

-1.000
-0.964

-1.000
-1.000

-1.000
-1.000

-1.000
-1.000

g04
-30665.539

Best
Mean

-30665.539
-30665.539

-30665.401
-30665.922

-30665.539
-30665.539

-30665.539
-30665.539

-30665.539
-30665.539

g05
5126.498

Best
Mean

5126.497
5126.526

5126.907
5214.232

5126.498
5127.648

5126.484*
5185.714

5126.497
5164.762

g06
-6961.814

Best
Mean

-6961.814
-6961.814

-6961.046
-6953.061

-6961.814
-6961.814

-6961.814
-6961.814

-6961.814
-6961.814

g07
24.306

Best
Mean

24.316
24.657

24.838
27.328

24.306
24.316

24.330
24.473

24.306
24.395

g08
-0.095825

Best
Mean

-0.095825
-0.095825

-0.095825
-0.095635

-0.095825
-0.095825

-0.095825
-0.095825

-0.095825
-0.095825

g09
680.63

Best
Mean

680.630
680.643

680.773
681.246

680.630
680.633

680.634
680.640

680.630
680.635

g10
7049.25

Best
Mean

7049.547
7116.934

7069.981
7238.964

7052.253
7250.437

7053.904
7224.407

7049.285
7192.397

g11
0.75

Best
Mean

0.750
0.750

0.750
0.751

0.750
0.750

0.750
0.750

0.750
0.750

g12
-1.000

Best
Mean

-1.000
-1.000

-1.000
-1.000

-1.000
-1.000

-1.000
-1.000

-1.000
-1.000

g13
0.053950

Best
Mean

0.054
0.263

0.054
0.286

0.054
0.054

0.760
0.968

0.054
0.248

* Explained in the text

Studies in Informatics and Control, Vol. 21, No. 2, June 2012 http://www.sic.ici.ro 145

and Schoenaeur [25], genetic algorithm (GA)
from [26], simple multimembered evolutional
strategy (SMES) by Mezura-Montes and Coello
Coello [26], particle swarm optimization (PSO)
from [27], and differential evolution (DE).
Most of the mentioned algorithms use larger
number of function evaluations (350,000) and
Karaboga and Akay concluded in [14] that
ABC algorithm can efficiently be used for
solving constrained optimization problems and
that it is very competitive to the other state-of-
the-art approaches. This conclusion holds even
more for our proposed GI-ABC algorithm.

5. Conclusions

A modification to the ABC algorithm, named
GI-ABC (genetically inspired artificial bee
colony), is introduced in this paper. GI-ABC
improves the performance of the ABC
algorithm by applying uniform crossover and
mutation operators from genetic algorithms.

By studying ABC algorithm we found that the
number of scouts is too large for the late phase
of algorithm’s execution. Thus, we set a point
where a large percentage of scouts are
transformed into guided onlookers which are
more exploitation intensive than ordinary
onlookers. From time to time, scout is still
triggered for preventing the algorithm from
being stuck in local optimum.

GI-ABC was tested on 13 standard well-known
benchmark optimization functions. From the
comparative study GI-ABC has shown its
potential to handle various constrained
optimization problems. Our proposed algorithm
was compared directly with the latest ABC
algorithm by Karaboga and Akay [14] and
three other state-of-the-art algorithms where it
showed improved performance considering
best results and even more significant
robustness by outperforming ABC algorithm’s
mean results in all cases. Since Karaboga and
Akay’s in [14] favorably compare ABC with 9
other state-of-the-art algorithms, we conclude
that our proposed GI-ABC algorithm is a very
promising tool for constrained optimization.

Acknowledgement

This research is supported by Ministry of
Education and Science of Republic of Serbia,
Grant No. III-44006

REFERENCES

1. MEZURA-MONTES, E., Constraint-
Handling in Evolutionary Optimization,
Studies in Computational Intelligence, vol.
198, Springer-Verlag, 2009, p. 264.

2. MEZURA-MONTES, E., COELLO
COELLO, A. C., Constraint-Handling in
Nature-Inspired Numerical Optimization:
Past, Present and Future, Swarm and
Evolutionary Computation, vol. 1(4) 2011,
pp. 173-194.

3. TIWARI, M. K., S. KUMAR, S.
PRAKASH, Solving Part-type Selection
and Operation Allocation Problems in
an FMS: An Approach using
Constraints-based fast Simulated
Annealing Algorithm, IEEE Trans. on
Systems, Man and Cybernetics Part A -
Systems and Humans, vol. 36(6), 2006,
pp. 1170-1184.

4. NICOARA, E. S., F. G. FILIP, N. PARASCHIV,
Simulation-based Optimization Using
Genetic Algorithms for Multi-objective
Flexible JSSP, Studies in Informatics and
Control, vol. 20(4), 2011, pp. 333-344.

5. GZARA, M., A.ESSABRI, Balanced
Explore-Exploit Clustering based
Distributed Evolutionary Algorithm for
Multi-objective Optimization, Studies in
Informatics and Control, vol. 20(2), 2011,
pp. 97-106.

6. ZAMFIRESCU, C. B., F. G. FILIP,
Swarming Models for Facilitating
Collaborative Decisions, International
Journal of Computers, Communications &
Control, vol. V(1), 2011, pp. 125-137.

7. AGRAWAL, S., Y. DASHORA, M. K.
TIWARI, Interactive Particle Swarm: A
Pareto-Adaptive Metaheuristic to
Multiobjective Optimization, IEEE
Trans. on Systems, Man and Cybernetics
Part A - Systems and Humans vol. 38(2),
2008, pp. 258-277.

8. JOVANOVIC, R., M. TUBA, An Ant
Colony Optimization Algorithm with
Improved Pheromone Correction
Strategy for the Minimum Weight Vertex
Cover Problem, Applied Soft Computing,
vol. 11(8), 2011, pp. 5360-5366.

9. SECUI, C. D., S. DZITAC, G. V. BANDEA,
An ACO Algorithm for Optimal

http://www.sic.ici.ro Studies in Informatics and Control, Vol. 21, No. 2, June 2012 146

Capacitor Banks Placement in Power
Distribution Networks, Studies in
Informatics and Control, vol. 18(4), 2009,
pp. 305-314.

10. KARABOGA, D., An Idea Based on
Honey Bee Swarm for Numerical
Optimization, Technical Report TR06,
Computer Engineering, Department,
Erciyes University, Turkey, 2005.

11. KARABOGA, D., B. BASTURK, A
Powerful and Efficient Algorithm for
Numerical Function Optimization:
Artificial Bee Colony (ABC) Algorithm.
Journal of Global Optimization, vol. 39(3),
2007, pp. 459-471.

12. KARABOGA, D., B. BASTUK, Artificial
Bee Colony (ABC) Optimization
Algorithm for Solving Constrained
Optimization Problems, Proc. IFSA
2007, LNAI 4529, 2007, pp.789-798.

13. KARABOGA, D., BASTURK, B., On the
Performance of Artificial Bee Colony
(ABC) Algorithm, Applied Soft
Computing, vol. 8 (1), 2007, pp. 687-697.

14. KARABOGA, D., B. AKAY, A Modified
ABC for Constrained Optimization
Problems, Applied soft computing, vol.
11(3), 2011, pp. 3021-3031.

15. BRAJEVIC, I., M. TUBA, An Upgraded
Artificial Bee Colony Algorithm (ABC)
for Constrained Optimization Problems,
Journal of Intelligent Manufacturing, 2012,
available Springer Online First, DOI:
10.1007/s10845-011-0621-6, p. 12.

16. ZHU, G., S. KWONG,, Gbest-guided
Artificial Bee Colony Algorithm for
Numerical Function Optimization,
Applied mathematics and computation, vol.
217(7), 2010, pp. 3166-3173.

17. MEZURA-MONTES, E., M. DAMIAN-
ARAOZ, O. CETINA-DOMINGEZ,
Smart Flight and Dynamic Tolerances
in the Artificial Bee Colony for
Constrained Optimization, Proc. IEEE
Congress on Evolutionary Computation
(CEC’2010), 2010, pp. 1-8.

18. TESSEMA, B., G. G. YEN, A Self-
adaptive Penalty Function based
Algorithm for Constrained Optimization,
IEEE Cong. on Evolutionary Computation
2006 (CEC’2006), 2006, pp. 950-957.

19. WANG, Y., Z. CAI, Y. ZHOU, W. ZENG,
An Adaptive Tradeoff Model for
Constrained Evolutionary Optimization,
IEEE Trans. on Evolutionary Computation,
vol. 12(1), 2008, pp. 80-92.

20. DEB, K., An Efficient Constraint-
handling Method for Genetic
Algorithms, Computer Methods in
Applied Mechanics and Engineering, vol.
186(2-4), 2000, pp. 311-338.

21. LIANG, J. J., T. P. RUNARSSON, E.
MEZURA-MONTES, M. CLERK, P. N.
SUGANTHAN, A. C.COELLO COELLO,
K. DEB, Problem Definitions and
Evaluation Criteria for the CEC 2006
Special Session on Constrained Real-
parameter Optimization, Technical
Report, 2006.

22. KOZIEL, S., Z. MICHALEWICZ,
Evolutionary Algorithms, Homomorphous
Mappings, and Constrained Parameter
Optimization, Evolutionary Computation,
vol. 7, issue 1, 1999, pp. 19-44.

23. RUNARSSON, T. P., X. YAO, Stochastic
Ranking for Constrained Evolutionary
Optimization, IEEE Trans. on Evolutionary
Computation, vol. 4(3), 2000, pp. 284-294.

24. RUNARSSON, T. P., X. YAO, Search
Biases in Constrained Evolutionary
Optimization, IEEE Trans. on Systems,
Man and Cybernetics, vol. 35(2), 2005,
pp.233-243.

25. HAMIDA, S. B., M. SCHOENAUER,
ASCHEA: New Results using Adaptive
Segregational Constraint Handling, Proc.
of the 2002 Congress on Evolutionary
Computation, 2002, pp. 884-889.

26. MEZURA-MONTES, E., A. C. COELLO
COELLO, A Simple Multimembered
Evolution Strategy to Solve Constrained
Optimization Problems, IEEE Trans. on
Evolutionary Computation, vol. 9(1), 2005,
pp. 1-17.

27. ZAVALA, A. E. M., A. H. AGUIRRE, E.
R. V. DIHARCE, Constrained
Optimization via Particle Evolutionary
Swarm Algorithm (PESO), Proc. of the Conf.
on Genetic and Evolutionary Computation
GECCO 2005, 2005pp. 209-216.

