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Abstract: This paper deals with the dynamic reliability of a computer-controlled system by means of deriving critical scenarios 
from its Petri net model. These scenarios characterize how the system leaves the normal operating to go to the feared state by 
determining the sequences of actions (events) and state changes leading to dangerous situation. We present a method (algorithm) 
that takes into account the continuous dynamic of the system by a temporal abstraction, which makes it possible to determine more 
precisely the exact conditions of the occurrence of the feared event. The originality is that the order of occurrence of the events is 
taken into account, and impossible scenarios with respect to the continuous dynamic of the system are eliminated. The automation 
of all the steps of this method has led to the development of ESA_PetriNet tool (Extraction Scenarios & Analyzer by Petri Net 
model) and was applied on real industrial systems. 
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1. Introduction 

Computer-controlled systems are energy systems (mechanical, hydraulic, electrical) ordered and 
controlled by one or several computers (computer science and electronics). These systems are used in the 
field of defense, space, nuclear (control of the nuclear power stations); car and avionic (embedded 
systems as mechatronic systems and computers flight, landing gear systems, ect). The software and 
material suppleness of these systems allowed a progressive integration of electronics in these named 
fields to improve both functions and services. However, this has caused an increased complexity in the 
design of these systems typically involving computers, which makes the control of their reliability 
difficult. In addition, the phase of design must be fast and inexpensive (i.e. less prototypes and at the later 
stages) with a level of guaranteed safety. In more cases for reasons of cost and implementation, material 
resources are limited and the system designers must avoid component redundancies within the system as 
much as possible. Reliability studies performed at the design phase have allowed a better control of the 
risks and reliability of the conceived systems. Indeed, the evaluation of the safety level during the systems 
conception allows the specification of piloting strategies and reconfiguration modes before the first tests 
on a real prototype. Computer-controlled systems are hybrid: continuous dynamics is applied to the power 
characteristics, and discrete dynamics is related to the numerical control and the existence of discrete 
events (failures and thresholds). The study of reliability of these hybrid and dynamic systems named 
dynamic reliability [1] [2] [3] or probabilistic dynamics [4] [5] must necessarily take into account the 
existing interactions between their physical parameters (temperature, pressure, speed, etc.) and the failure 
of their components.  

One way to evaluate the reliability of such complex systems is the extraction of critical scenarios leading 
to feared states. From a qualitative point of view, this is a question of characterizing these scenarios as 
soon as possible in the design phase, which makes it possible to evaluate their probabilities of occurrence 
in order to validate the architecture of the system or to evaluate the safety level of existent systems.  

Traditional methods for reliability are insufficient because they don’t take into account the 
reconfiguration and the hybrid dynamic of the system. For example classical Failures Trees [6] are static 
and don’t take into account the order of appearance of the events. In effect, a sequence of events can lead 
to a feared event while the same events occurring in a different order or in different dates can avoid it. 
The time separating two events is not taken into account in the Failures Trees method; therefore, 
reconfigurations cannot be represented. Temporary failures are not either taken into account. Several 
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extensions of classical methods were proposed to extend their field of application like Failure Trees with 
gates (A before B). These methods remain combinatory and unable to take into account the states changes 
and reconfigurations in the feared scenarios. Other methods were introduced as the Events Sequence 
Diagrams (ESD) [7] to allow a better visual presentation of the events ordered in time. Although the ESD 
represents in a clear way the scenarios in competition, they cannot be generated automatically and require 
a definition of states and transitions. All order and reconfiguration states must therefore be listed by the 
designer and in the case of the hybrid dynamic systems; the number of states is infinite if the energy party 
is taken into account. This problem is also encountered in the analytical methods based on Markov 
graphs. To take into account partially the dynamic of the system, methods of discretization were 
developed as the Discrete Dynamic Event Trees (DDET). The DDET generates the feared scenarios by 
failure propagation of the elementary components of the system. The limit of this method is that all the 
sequences of event constituting possible scenarios are generated. In order to better manage the multiple 
generated scenarios by the DDET, methods as DYLAM (Dynamic Logical Analytical Methodology) and 
DETAM (Dynamic Event Tree Analysis Method) were developed. Therefore, the time and order of 
execution of the events must be taken into account [8]. Limits of quantitative methods based on 
simulation [9] are owed to the combinative states explosion. Because of the scarcity of the feared 
scenarios, these methods simulate in the most part of time the normal operating. It is however necessary 
to mention the existence of theoretical developments and methods to resolve the problem encountered in 
the simulation of systems in the presence of rare events [10]. Indeed, techniques of acceleration of the 
simulation were developed and largely used with success, in particular in nuclear engineering. We can 
mention Monte Carlo Dynamic Event Tree (MCDET) [11] which is a coupling of the DDET with Monte 
Carlo Simulation [12] to investigate in a more efficient way the whole tree of events.  

In the case of Petri nets [13], the combinative explosion affects the accessibility graph and not the original 
Petri net. So to avoid this combinative states explosion, a qualitative analysis method of reliability aiming 
to directly use the Petri net model of the system to extract the feared scenarios without generating the 
reachability graph was developed by [14]. Unfortunately this method based on Linear Logic [15] operated 
only on the discrete aspect of the system and lot of impossible scenarios is generated. To determine more 
precisely the exact conditions of the occurrence of the feared event, i.e what has led the system to leave 
its normal operation and to evolve into the feared state, a method taking into account the continuous 
aspect and the temporal specifications of the system is developed by [16] [17]. The originality of this 
approach, automated to result ESA_PetriNet tool [18], is that the order of occurrence of the events is 
taken into account, and impossible scenarios with respect to the continuous dynamic and the temporal 
specifications of the system are eliminated. ESA_PetriNet tool has been interfaced with TINA tool (Time 
Petri Net Analyzer) [19].  

We will present the method and the basic of the algorithm in section 2, the ESA_PetriNet tool in section 
3, the selected case study and the scenarios generation in section 4, and we will end by a conclusion.  

2. Method of Extraction of Feared Scenarios  

We call a scenario, a set of events (here transitions firing) leading from one partial state (here partial 
marking) to another one and verifying a partial order. We assume that the system is made up of a set of 
components. A partial state is the conjunction of the states of a subset of these components. 

Definition 1: A partial order is defined by a directed graph (E, A) where the nodes E are a set of 
transitions firing and the arcs A are pairs (ti, tj) such that ti precedes tj (ti and tj are transitions firing). 

The application of this method requires the modeling of the system by a Petri Net model and identifying 
the places of nominal behavior. The appropriate Petri net modeling of computer controlled systems is a 
Predicate Transitions Differential Stochastic Petri net (PTDS Petri net) [14] as they are generally hybrid 
(discrete and continuous dynamics) and there reliability analysis require taking into account the failures. 
This modeling approach that associates Petri nets and differential equations [20] has the advantage to 
clearly separate the continuous aspect from the discrete one; the Petri net model describes the operation 
modes, the failures and the reconfiguration mechanisms. The differential equations represent the 
evolution of the continuous variables of the energetic part of the system. A temporal abstraction is 
necessary to translate this model to a time Petri net by associating to the transitions a temporal interval of 
firing corresponding to the time which the system can spend to reach the state in question. A preliminary 
analysis will refine the fields of variables according to various accessible marking by reasoning on the 
invariants of places. Indeed, the invariants of places determine the possible dynamics, and which other 
places can be simultaneously marked when a token is present in a given place. 
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2.1 Principal 

The method of extraction of feared scenarios is made up of two steps [16]: a backward reasoning and a 
forward reasoning. The backward reasoning takes as an initial marking in the reversed Petri net model 
(the initial Petri net in which all the arcs are reversed), the only target state (feared) and seeks 
exhaustively all the scenarios making it possible to consume the initial marking (feared state since 
forward reasoning) and reach a final marking composed only of places associated to the normal operation. 
The forward reasoning takes as an initial state these places of normal operation in the initial Petri net 
model. The objective is to locate the junctions between the feared behavior and the normal operation of 
the system as well as the conditions implied in these junctions. Thus we have not only the explanation of 
the dangerous behavior but also of strategies allowing its avoidance. A significant point of the method is 
that the context in which occurred the feared event is enriched gradually.  

Definition 2: let us consider a marked Petri net R. A potentially enabled transition is a transition that has 
at least a marked input place (contains a token at least) and at least a non marked input place (lacks a 
token at least). 

The process of enrichment of marking consists in adding the missing tokens to the potentially enabled 
transition to become enabled. This makes evolve the system to generate the scenarios. It is necessary to 
verify that all components composing the system are not in two different configurations with this 
enrichment what would be contradictory with the reality of the physical system. Indeed the new added 
tokens are removed if they are contradictory with the structure of the system (for example a component 
can not be in its activated and deactivated mode at the same time). The invariants of places are used as a 
mechanism to verify the coherence of the enrichment of marking. Each scenario is given in the form of a 
partial order between the events necessary to the appearance of the feared event what differs from a 
failures tree, which gives a whole of static combinations of the partial states necessary for obtaining the 
feared state. 

2.2 Dealing with continuous dynamic by temporal abstraction 

 

Figure 1. Temporal abstraction and direct and indirect causality 

This method takes into account conditions associated to the firing of certain transitions. These conditions 
are thresholds involving continuous variables. By temporal approximation of the hybrid dynamic, these 
thresholds are transformed to durations, which correspond to the time that the system puts to reach when 
the transitions are enabled. From a qualitative point of view, the objective is to determine the firing order 
of the transitions. Thus, when we enrich the marking, we can find situation where two transitions t1 and 
t2 are enabled if only the ordinary Petri net is considered, but whose are such as t1 will be always fired 
before t2 if the temporal abstraction is also considered. In the generation of the scenarios only the firing 
of t1 will be considered since that of t2 before t1 would be in fact incoherent with the continuous 
dynamic. This appears in the form of a priority of firing: if t1 and t2 are enabled, only the case of t1, 
priority, is examined. The taking into account of these precedence relations coming from the continuous 
dynamic and not specified by the ordinary Petri net allows reducing the number of generated scenarios by 
eliminating a certain number of incoherent scenarios with respect to the continuous dynamic.  

Let us consider an example. In the Figure 1a we suppose that the differential-algebra system associated to 
the place P1 guarantees that the variable x is increasing. We associate to the transition t1 the threshold x = 
v1 and to the transition t2 the threshold x = v2 with v1 < v2. Finally, we suppose that when the token 
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arrives in the place P1 we have always x < v1. So, if the place P3 is marked, the transition t1 will be fired 
before t2 since the threshold associated to t1 is lower than that of t2. In this case we don't consider the 
scenario associated to the firing of t2. On the other hand, if t3 is already fired for example if we consider 
that t1 is a stochastic transition corresponding to a failure (place P3 empty) and if the place P2 is marked, 
t1 cannot be fired and then t2 will be fired.  

2.3 Precedence and direct and indirect causality  

In the example above, finally only one type of scenarios is examined, those for which the transition t2 is 
fired after t3. So, there is a precedence relation between the firing of t3, which empties the place P3 and 
that of t2, however there is no place connecting t3 to t2. This precedence relation is so, a consequence of 
continuous dynamic and thresholds associated to transitions t1 and t2. We are talking in this case about 
indirect precedence relation and about indirect causality. The direct precedence relation and causality are 
those that are highlighted by the only Petri net, i.e. by the only discrete aspect. For example place P2 in 
the Figure 1b leads to a direct causality relation between the firing of t1 and that of t2. It is necessary to 
have produced a token in the place P2 by firing t1 to be able to fire t2.  

2.4 Case of priority between transitions firing  

 
Figure 2. Case of direct and indirect causality 

We have seen above that continuous dynamic could lead to precedence relations between the firing of 
transitions. A similar phenomenon can occur if we introduce rules of priority between the firing of 
transitions. Although we do not introduce rules of priority explicitly between firing transitions, they can 
be necessary to represent strategies of order and of reconfiguration in a simple way. Besides, because of 
what precedes, they will be taken into account in a simple way in our algorithm.   

Let consider the Petri net of Figure 2a. It represents a temporal window (place p1 contains a token 
between the firing of transition t1 and t2) during which the treatment of t4 can not only be performed, but 
must be performed without waiting if there is a request (presence of a token in the place P2 resulted by 
the firing of the transition t3). In a classical way, it can be expressed by returning firing of t4 priority in 
comparison with that of t2. Regarding precedence relations, only two types of scenarios will be generated. 
In the first scenario (Figure 2b), t3 is fired after t2. In the second (Figure 2c), t4 is fired before t2. The 
precedence relation and causality between t2 and t3 in the Figure 2b is an indirect relation as before 
because it does not correspond to a place linking up both transitions.                   

3. ESA_PetriNet Tool  

ESA_PetriNet tool has been developed in JAVA to have a better portability (use on various material 
platforms and under various operating systems). The current version of ESA_PetriNet uses two output 
files of TINA tool version 2.8.4. 

3.1 Algorithm  

The temporal abstraction of the continuous dynamic allows the identification of the precedence relations 
and indirect causality between certain transitions firing. This is expressed in the algorithm in the form of 
rules of priority (after the enrichment of the marking, a certain transition is not fired if another is 
enabled). In the expression of the results (scenarios), this appears in the form of indirect 
precedence/causality relations between transitions which are not related with a place. So we restrain the 
number of generated scenarios and for each scenario the set of sequences of transitions firing is consistent 
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with the strict partial order associated to the scenario. We note that only one execution of the algorithm 
generates automatically several scenarios. All the possible and coherent scenarios with respect to the 
continuous dynamic and the temporal constraints of the system are generated. The principal dada 
structures and functions are illustrated in the appendixes (more details are given in [17]). 

3.2 TINA tool 

Although TINA tool is dedicated to the ordinary Petri nets and the t-temporal Petri nets and not to Petri 
nets associated with differentials-algebra equations, it has several advantages. First, its graphic editor 
permits to describe the Petri net model of the system: the   transition time interval of TINA is used to 
express the rule of priority between transitions firing, the label of places is used to define the nominal 
behavior (N) and the label of transitions to define the feared events (red) and forbidden transitions (F), 
ect. Then we generate two input files of ESA_PetriNet: the first file corresponds to a textual description 
of the Petri net model of the system and the second contains the invariants of places (structural analysis).  

3.3 Principal Functions  

Operating mode: extraction of feared scenarios for reliability needs a backward and a forward reasoning 
(mode 2). Our approach (tool) is extended towards the checking of certain properties of the computer-
controlled systems as it will be shortly mentioned in the conclusion. In this case, the generation of 
scenarios is done only by a simple backward research (mode 1). 

Extraction of scenarios: it is the principal function. After analysis of the input files, the tool extracts the 
necessary data structure for the algorithm and generates the scenarios. 

Recording results: generated scenarios are memorized in a textual file. We extract all the scenarios 
(normal operation, reconfigurations and feared scenarios) to obtain precise information concerning the 
dynamic of the system. 

Precedence graph: we have chosen precedence graph to present the generated scenarios. Direct and 
indirect causality relations are illustrated in different color. 

4. Case Study  

 

Figure 3. Case study 
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4.1 Presentation 

It concerns a volume regulation system of two tanks (Figure 3) that was presented in [21]. The operating 
of this simple academic case study can be similar to a reel industrial hybrid system. It is made up of a 
computer, two pumps, three electro-valves, two volume sensors, the two regulated tanks (tank1 and 
tank2) and a third tank for draining. The demand is specified by a function of time (outgoing flowrates 
ds1(t) and ds2(t)). The volume of each tank i must be kept within a given interval [Vimin, Vimax]. The 
volume is controlled by the computer, which decides, according to the values given by the volume 
sensors, to fill (or not) the concerned tank by opening (or not) the concerned electro-valve. The control 
law of the computer is such that the electro-valve is closed when the volume of the controlled tank 
oversteps the upper limit Vimax. In the other hand, the computer commands the opening of the electro-
valve each time the value of the volume in the controlled tank is lower than the limit Vimin. We 
distinguish two normal phases of the system, corresponding to the state of the electro-valve: 

- A conjunction phase when the electro-valve is open. The volume in the tank is going up; no matter 
what is the value of the outgoing flowrate (the pump flowrate is much higher than the outgoing 
flowrate). 

- A disjunction phase when the electro-valve is closed. The volume in the tank is decreasing.  

This system must avoid the overflow of the tanks. A backup electro-valve is added to the system in order 
to drain the tanks in case of overflow. This third electro-valve is viewed as a shared resource between the 
two tanks, and it can be used to drain a unique tank at a time. When the volume of one tank oversteps the 
security limit ViL, the computer commands the opening of the backup electro-valve until the volume 
becomes lower than Vimin. As we focus our study on critical scenarios, and in order to simplify the 
problem we consider that only the electro-valves can have failures. A typical failure of the electro-valves 
EV1 and EV2 corresponds to a blocked open state in which the electro-valve does not react to a closure 
command of the computer. These two electro-valves can be repaired after a failure occurrence. When the 
electro-valve EV3 has a failure it is considered to be definitively out of service  

 

4.2 Petri Net Modeling 

 

Figure 4. Petri net model of the regulation system 

 

We have used the same Petri net model of [21] and we have added the temporal abstraction on the 
transition [16] as presented in Figure 4. Place V1_dec of the net represents the disjunction phase (the 
volume is decreasing); place V1_cr represents the conjunction phase in which the volume is increasing. 
Place EV1_OK corresponds to a state where the electro-valve EV1 works. Transition t11 represents the 
closing command of the electro-valve EV1 when the volume oversteps V1max. Transition t12 represents 
the opening command of the same electro-valve when the volume becomes lower than V1min. Transitions 
def1 and rep1 represent the fact that the electro-valve can stay blocked in an open state (def1), and can be 
repaired (rep1). Tank2 is modeled in the same way. When the volume in the tank1 oversteps the high 
security limit (V1L), and the backup electro-valve is available (place EV3_OK is marked) then t14 
becomes enabled and the draining process of tank1 can start via the backup electro-valve by marking 
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place EV3_oc1. The backup electro-valve is no longer available for use to drain tank2; this corresponds to 
the place EV3_OK empty. This phase last the time that it takes for the volume to reach the low threshold 
V1min. Then, the electro-valve EV3 is released (place EV3_OK is newly marked), and a conjunction 
phase is started again (place V1_cr is marked) by firing transition t15. The electro-valve EV3 can have a 
failure (modeled by transition def3). In this case, place EV3_HS is marked and the electro-valve is set out 
of order. The system contains the following invariants of places:  

M(EV1_BO) + M(EV1_OK) = 1 

M(EV2_BO) + M(EV2_OK) = 1 

M(EV3_oc1) + M(E_red1) + M(V1_cr) + M(V1_dec) = 1 

M(EV3_oc2) + M(E_red2) + M(V2_cr) + M(V2_dec) = 1 

M(EV3_HS) + M(EV3_oc1) + M(EV3_oc2)  +M(EV3_OK) = 1 

We have chosen the following parameters:  

tmax = [1, 1], tl = [2, 2], ts = [3, 3], tdefi =  trepi = [0, ∞[ (time unite) 

 

4.3 Extraction of feared scenarios  

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Screen shots of TINA and ESA_PetriNet tools  

 

A general view of ESA_PetriNet and TINA tools is given in Figure 5. Places labeled with N represent 
normal operating and transitions labeled with F are forbidden to avoid loops due to reparations. To use 
ESA_PetriNet, we first edit the Petri net model of the system on the graphic editor of TINA tool to 
generate two input files: a descriptive file of the Petri net model and a file containing the invariants of 
places. Generated scenarios can be illustrated in the form of a precedence graph (feared scenarios are 
illustrated with a different color to facilitate their identification among those of normal operating and 
reconfiguration). ESA_PetriNet generates a total of 12 scenarios (nominal, reconfiguration and feared) in 
which 8 are feared (Figure 6a). Note that the actual version of ESA_PetriNet generates non minimal 
scenarios, so most of the generated scenarios are redundant. This explains the important number of the 

TINA Input files ESA_PetriNet Scenarios 
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generated scenarios. Note also that this version takes into account continuous dynamic and temporal 
constraints and an important number of impossible scenarios are yet eliminated. Indeed because the 
continuous dynamic of the system is not taken into account in [14], not only the number of the generated 
scenarios is important (29 feared scenarios among a total of 51 scenarios) but also the order of appearance 
of the events is not respected. This order is not respected also by the failure trees.  

The 8 feared scenarios (overflow) correspond to the following situations: 1) Failure of the electro-valve 
EV1 (firing of the transition def1) and the failure of the backup electro-valve EV3 (firing of the transition 
def3): sc1, sc2, sc4 and sc6. These scenarios are represented by {def1, def3, t13}. 2) Failure of the electro-
valve EV1 (firing of the transition def1) and the use of the backup electro-valve EV3 by the second tank 
(firing of the transition t24): sc7, sc9, sc11, sc12. These scenarios are represented by {def1, t24, t13}. As a 
matter of fact the consequence of the thresholds associated with transitions t11, t14 and t13, is that the 
transition t13 will be fired only if t11 and t14 are not enabled. This means that the feared scenarios are 
composed by fragments containing transitions in conflict with t11 and t14, and by the firing of t13. For 
example the following scenario {t13, def1, t23, def2} given by an old version [14]  (that does not take into 
account the continuous aspect of the system) is not produced in this new version because transition t14 
that is in conflict with t13 has an inferior threshold so it is fired before and forbids the firing of t13. In the 
precedence graph of scenario cs1 (Figure 6b), the indirect precedence relation is presented with the red 
color. The blue color corresponds to the indirect precedence relation of the second feared state (E_red2). 
Note that the minimal scenario (only the necessary events to reach the feared state) of sc1 is {def1, def3, t13}.  

 

 
Figure 6. The generated feared scenarios 

 

5. Conclusion 

We have presented in this paper a method automated to result ESA_PetriNet tool (Extraction & Scenarios 
Analyzer by Petri Net model) developed for extraction of feared scenarios from the Petri net model of 
computers-controlled systems. The taking into account of the continuous dynamic of these systems by 
temporal abstraction allows the elimination of a significant number of incoherence scenarios (relating to 
the continuous dynamic) and the respect of the order of appearance of the events. The computing time 
takes only few seconds. This tool has been used to generate feared scenarios from reel industrial systems 
of significant size: a Rafale landing gears control system of Dassault Aviation [18] and a decentralized 
radio-based railway level crossing control system [22].  The aim in the last system, taken from a realistic 
specification of a new radio-based train control system [23] developed for the German Railways, was the 
evaluation of the safety [24] level to avoid collision. Note that we have improved some functions of 
ESA_PetriNet in [22] relating to the exploration way of the Petri net.  

As it is mentioned in section 4, ESA_PetriNet was adapted to the checking of some properties 
(determining if the system satisfies certain properties like the duration of a scenario or accessibility 
between two states). A simple back exploration is enough to generate all the scenarios leading to the 
target state. Then a temporal abstraction is used to obtain temporal constraints networks. ESA_PetriNet 
has been used in the precedent landing gears system to check that the duration of a scenario is lower than 
certain limit [25] [17]. It is important to note that we have implemented Monte Carlo simulation [12] in 
this tool to quantify the probability of occurrence of these scenarios [26]. To improve this tool, we have to 
take into account the minimality of the scenarios to eliminate the unnecessary events and redundancy. We 
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have also to improve the mechanism of enrichment of the marking (in some complex systems the 
invariants of places is not sufficient). The checking part can be supported by algorithms of research 
longest ways [27] [28]. 

 

Appendix 1: Principal data structure   

1.1 Input data: they are composed of the list of initial tokens (Li) and of the list of the normal tokens (Ln) 
which will be used as one of the two stops criteria of the algorithm. This one corresponds to the presence of 
only nominal tokens those are not initials (LjnInit) in the current list. A list of forbidden transitions LintEntree 
used to block certain transitions of the Petri net from the beginning of the reasoning.  

1.2 Output data: the algorithm generates a set of partial orders; some corresponds to the nominal 
operating, others to the reconfigurations or to the different feared scenarios. Each partial order is defined 
by a triplet of the form (E, A, B) such as E is the list of firing transitions, A and B are lists of precedence 
relation generating partial orders. A is the list of arcs linking up elements of E having direct causality 
relations, B the list of the arcs linking up elements of E having indirect causality relations. The algorithm 
generates also a list of enrichment tokens (Le) created when we enrich the marking.  

1.3 Internal data: they are composed of the list C {C0, C1,…,Ci,…,Cn} containing n elements of the 
context Ci (Lc, Lint1, Lint2, Lint3, E, A, B, Le, LeInt, LjnInit).  

 Lc is the current list. It contains the set of the current tokens which is updated after each transition 
firing. The consumed tokens are taken away and the produced one are added. To generate the list Lc, 
each token is represented in the form of a couple (e, p); e is the event which produced this token and 
p the place which contains it. 

 Le is the list of the tokens of the marking enrichment. A couple (e, p) is added to this list, after (each) 
coherent enrichment.  

 LeInt is the list of forbidden tokens because of conflict in the enrichment of the marking.  

 LjnInit is the list of nominal but not initial tokens. It contains the tokens of Ln those are not initial. 
For each transition firing tk, the couple (tk, p) is added to this list. After checking, if the place pLn, 
it will be added to LjnInit (used as one of the two stop criteria). 

 Lint1 is the list of forbidden transitions of the first level. It contains the list of transitions that would 
not be fired from a current given stage. It allows managing conflicts of transitions. When a transition 
in conflict with other one of the same priority, is fired, it is added in this list in order to not be fired a 
second time; what avoids the generation of the same partial order more then once.  

 Lint2 is the list of forbidden transitions of the second level. It contains the list of enabled or 
potentially enabled transitions that would not be fired because they are in conflict with an enabled 
transition that has an inferior firing threshold. 

 Lint3 is the list of forbidden transitions of the third level. It contains the list of transitions which 
cannot be enriched to avoid loops by trying to enrich them.  

 Other lists of internal data are generated from the current list Lc. These data concern all enabled and 
potentially enabled transitions knowing that enabled transitions are priority then those potentially 
enabled. The priority of treatment of transitions of these lists is:  

 tfcEsc is the list of enabled transitions in conflict or without conflict. 

 Tpfc is the list of potentially enabled transitions in conflict either with enabled transitions, or 
with potentially enabled transitions.  

 Tpfsc is the list of potentially enabled transitions without conflict.  

 

Appendix 2: Principal functions  

2.1 Fire transition tk: in this function, the current list is updated after the firing of the transition tk by 
removing the consumed tokens from the list Lc and by adding the produced one. Events are memorized in 
the list E and all arcs corresponding to a precedence relation between two events in the list A. As each 
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token is linked to the event having produced it, the correspondent precedence relation is directly obtained 
when it is consumed. The procedure is identical to the labeling of a proof tree in Linear Logic [6].  

Fire_transition_tk 
Add tk to E; 
For each token (ti, P) necessary to fire tk remove (ti, p) from Lc and add (ti, tk) to A; 
For each output place Ps of tk, add a token (tk, Ps) to Lc; 
If Ps is a nominal place, add it to LjnInit; 

2.2 Enrich marking tk: it consists in adding tokens to the list of current tokens Lc to enable the 
potentially enabled transitions. This corresponds to the taking into account of the state of new 
components of the studied system because their interaction with the components already taken into 
account can provide state changes. We consider two types of enrichment. The first noted 
Enrich_marking1 allows the enrichment of transition tk of the list Tfcpf. The second noted 
Enrich_marking2 allows the enrichment of the others potentially enabled transitions tk.  

Enrich_marking1_tk 
L: internal list of tokens initially empty; 
For each transitions tj, potentially enabled in conflict with tk;  

              For each input place pl of tj add a token (ek, pl) to the list L;  
             Verify the coherence of the marking;  
 

Enrich_marquage2_tk 
L: internal list of tokens initially empty; 
For each input place pl of tj add a token (ek, pl) to the list L; 
Verify the coherence of the marking; 

2.3 Marking coherence: it verifies the coherence of the marking. It uses the list L of the enrichment 
tokens (ek, pl), the list of invariants of places and the conservative component of each invariant of places 
those are input dada.  

Marking_coherence_tk 
For each token pl of L;  
For each invariant i, verify if it contains pl;  
Verify the number of tokens in the places composing the invariant i, If the number is upper then 
the corresponding conservative component, remove the place pl from L;  
If the list L is not empty, the enrichment is coherent, add the tokens of L to Lc and Le; 
Else add tk to the list Lint3 to avoid loops; 

2.4 Enrichment conflict: during the enrichment, we can meet situation in which we can not add tokens to 
all the places that need enrichment because of the incoherence of the marking. So, we add gradually the 
tokens in these places and we verify each time the coherence. In the case of incoherence because of an 
enrichment token in a current state, we memorize the context and we continue the enrichment. This 
procedure allows the consideration of all possible context of the system  

Enrichment_conflict_pk 
Add an enrichment token to the place pk; 
Verify the marking coherence;   
Add gradually tokens to the others places that need enrichment;  
If incoherence because of pk, Memorize_context_conflict_enrichment_pk;  

Memorize_ context_conflict_enrichment_pk 
Add the token of place pk to the list of forbidden tokens LeInt; 
Add a new element Ci (Lc, Lint1, Lint2, Lint3, E, A, B, Le, LeInt LjnInit) to C. Lint2 and Lint3 
are initially empty in this new context;  

After each context memorization, the token is added to the list IntEnrich to avoid the memorization of the 
same context enrichment. IntEnrich is a global variable of the algorithm.  
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2.5 Memorize context conflict transitions: as it was mentioned before, each time transitions conflict 
(with the same priority) is encountered during the construction of the scenario; this last is split to the same 
number of different scenarios as that of transitions implicated in the conflict. This procedure allows the 
memorization of all the necessary information for the construction of another scenario corresponding to 
the firing of another transition in conflict with this last.  

Memorize_Context_tk 
Add the transition tk to the list Lint1; 
Add a new element Ci (Lc, Lint1, Lint2, Lint3, E, A, B, Le, LeInt LjnInit) to C. Lint2 and Lint3 
are initially empty in this new context;  

Others functions are used like: verifying if transition tk is in conflict with tj (they are in a structural 
conflict if they have at least a same input place), sorting transitions following the increasing threshold, 
construction the list of forbidden transitions Lint2, verifying if two conflict transitions have separated 
firing threshold to choose the priority of transitions.  

 

Appendix 3: Different steps of the algorithm 

0. Initial step  
0.1. Initialize C with C0(Lc, Lint1, Lint2, Lint3, E, A, B, Le, LeInt) to generate the first partial order. 

Lint1, Lint2, Lint3, LjnInit, Le, A and B are empty, Lc = Li (set of initial tokens), E{I1} such as 
I1 is an initial event, the natural number Inc = 1, C{C0}; 

0.2. Define the priority of transitions firing due to the continuous aspect by associating to each 
transition tk a temporal threshold of firing [dmin, dmax]. The transition tk will be fired at the 
moment k [dmin, dmax]. 

1. Build new partial order  
Let Ci(Lc, Lint1, Lint2, Lint3, A, B, E, Le, LeInt, LjnInit) the current context initially empty;  

1.1. If C is empty Goto step 8;  
1.2. Else  

1.2.1. Memorize the first element of C in Ci; 
1.2.2. Delete this element from C; 
1.2.3. Goto step 2;  

2. Different transitions lists  
2.1. Generate from Lc all enabled (tfcEsc) and potentially enabled transitions (Ltpf);  
2.2. Delete from these lists: transitions of E, Lint1, Lint3 and LintEntree; 
2.3. Generate the lists: Tpfsc and Tpfc; 
2.4. Goto step 3;  

3. Stop criteria of construction of a partial order 
3.1. If Lc contains only tokens of Ln whose are not initial (LjnInit) or the lists tfcEsc, Tpfsc, and Tpfc 

are all empty Goto step 7; 
3.2. Else Goto step 4; 

4. tfcEsc 
The transitions are sorting in priority. This step solves the transitions conflict by memorizing the 
necessary information for the construction of the other partial orders relating to the firing of the other 
transitions implied in the conflict. An enrichment of the marking will be carried out if necessary.  

4.1. If TfcEsc is empty Goto step 5; 
4.2. Else  

4.2.1. Sort tfcEsc according to the increasing threshold; 
4.2.2. Let tk the first transition of tfcEsc; 
4.2.3. Add to Lint2 any enabled transition tj of higher threshold in conflict with tk (temporal 

intervals of firing are disjoined); 
          4.2.4. Enrich_marking1_tk if it is necessary and Memorize_ context_conflict_enrichment_pk if 
necessary; 

 4.2.5. If the enrichment is not coherent; 
4.2.5.1. If tk is not in conflict with an enabled transition of lower threshold;  

4.2.5.1.1. If tk is in conflict with a transition which does not belong to Lint1, Lint2, 
                               Lint3, E or LintEntree (intersection of temporal interval of firing); 
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4.2.5.1.1.1. Memorize_context_tk; 
4.2.5.1.1.2. Add if necessary the indirect causality relation (tj, tk) to B; 

4.2.5.2. Fire_transition_tk; 
   4.3. Goto step 2; 
5. Tpfc 

5.1. If Tpfc is empty do step 6; 
5.2. Else  

5.2.1. Sort the Tpfsc transitions according to the increasing threshold; 
5.2.2. Choose the first transition tk in Tpfc; 
5.2.3. Put the other transitions of higher threshold in structural conflict with tk in Lint2; 
5.2.4. Enrich_marking2_tk; 
5.2.5. If the enrichment is coherent; 

5.2.5.1. If tk is not in conflict with an enabled transition of lower threshold; 
5.2.5.1.1. Add if necessary the indirect causality relation (tj, tk) to B; 
5.2.5.1.2. Fire_transition_tk; 

5.3. Goto step 2; 
6. Tpfsc  
The marking of a potentially enabled transition without conflict is enriched and the transition is fired.  

6.1. If Tpfsc is empty Goto step 7; 
6.2. Else  

6.2.1. Sort the Tpfsc list according to their increasing threshold; 
6.2.2. Choose the first transition tk in Tpfsc; 
6.2.3. Enrich_marking2_tk; 
6.2.4. If the enrichment is coherent; 

6.2.4.1. Fire_transition_tk; 
6.3. Goto step 2; 

7. Generate scenario 
Memorize the constructed partial order and return to step 1;  

7.1. For each atom (ti, p) of Lc, add (ti, F) to A; F is the final event; 
7.1.1. Memorize the derived scenario Inc such as: E(Inc) = E, A(Inc) = A, B(Inc) = B; 
7.1.2. Increment Inc; 

7.2. Goto step 1; 
8. Final step 
Post all the generated scenarios; 
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