

Studies in Informatics and Control, Vol. 17, No. 1, March 2008 71

ESA_PetriNet: a Tool for Extracting Scenarios in
Computer Controlled Systems

Malika Medjoudj

LAGIS, Ecole Centrale de Lille

Cité Scientifique, BP 48

Villeneuve d'Ascq, 59651, France

malika.medjoudj@ec-lille.fr

Abstract: This paper deals with the dynamic reliability of a computer-controlled system by means of deriving critical scenarios
from its Petri net model. These scenarios characterize how the system leaves the normal operating to go to the feared state by
determining the sequences of actions (events) and state changes leading to dangerous situation. We present a method (algorithm)
that takes into account the continuous dynamic of the system by a temporal abstraction, which makes it possible to determine more
precisely the exact conditions of the occurrence of the feared event. The originality is that the order of occurrence of the events is
taken into account, and impossible scenarios with respect to the continuous dynamic of the system are eliminated. The automation
of all the steps of this method has led to the development of ESA_PetriNet tool (Extraction Scenarios & Analyzer by Petri Net
model) and was applied on real industrial systems.

Keywords: dynamic reliability, critical scenarios, computer-controlled systems, hybrid aspect, Petri nets, temporal abstraction.

Malika Medjoudj was born in Tizi-ouzou (Algeria) on February 21, 1977. She received the Engineer Diploma degree in
Electronics (Control) and the Diploma of Higher Education Applied in Technical English from Mouloud Mammeri University of
Tizi-ouzou (Algeria) in 2001. She obtained the Master in Industrial Systems from UPS-LAAS-CNRS of Toulouse (France) in 2002
and the PhD in Industrial Systems from the same university and laboratory in March 2006. She is actually a Post Doctorate at the
Ecole Centrale de Lille after a scientific stay of six months in the nuclear metrology service of the Université Libre de Bruxelles
(FNRS-Belgium). Her research is related to the reliability of hybrid and dynamic systems (computer-controlled systems, embedded
systems), checking of temporal constraints, extended Petri Nets for safety (transportation systems), feared scenarios and simulation.

1. Introduction

Computer-controlled systems are energy systems (mechanical, hydraulic, electrical) ordered and
controlled by one or several computers (computer science and electronics). These systems are used in the
field of defense, space, nuclear (control of the nuclear power stations); car and avionic (embedded
systems as mechatronic systems and computers flight, landing gear systems, ect). The software and
material suppleness of these systems allowed a progressive integration of electronics in these named
fields to improve both functions and services. However, this has caused an increased complexity in the
design of these systems typically involving computers, which makes the control of their reliability
difficult. In addition, the phase of design must be fast and inexpensive (i.e. less prototypes and at the later
stages) with a level of guaranteed safety. In more cases for reasons of cost and implementation, material
resources are limited and the system designers must avoid component redundancies within the system as
much as possible. Reliability studies performed at the design phase have allowed a better control of the
risks and reliability of the conceived systems. Indeed, the evaluation of the safety level during the systems
conception allows the specification of piloting strategies and reconfiguration modes before the first tests
on a real prototype. Computer-controlled systems are hybrid: continuous dynamics is applied to the power
characteristics, and discrete dynamics is related to the numerical control and the existence of discrete
events (failures and thresholds). The study of reliability of these hybrid and dynamic systems named
dynamic reliability [1] [2] [3] or probabilistic dynamics [4] [5] must necessarily take into account the
existing interactions between their physical parameters (temperature, pressure, speed, etc.) and the failure
of their components.

One way to evaluate the reliability of such complex systems is the extraction of critical scenarios leading
to feared states. From a qualitative point of view, this is a question of characterizing these scenarios as
soon as possible in the design phase, which makes it possible to evaluate their probabilities of occurrence
in order to validate the architecture of the system or to evaluate the safety level of existent systems.

Traditional methods for reliability are insufficient because they don’t take into account the
reconfiguration and the hybrid dynamic of the system. For example classical Failures Trees [6] are static
and don’t take into account the order of appearance of the events. In effect, a sequence of events can lead
to a feared event while the same events occurring in a different order or in different dates can avoid it.
The time separating two events is not taken into account in the Failures Trees method; therefore,
reconfigurations cannot be represented. Temporary failures are not either taken into account. Several

 Studies in Informatics and Control, Vol. 17, No. 1, March 2008 72

extensions of classical methods were proposed to extend their field of application like Failure Trees with
gates (A before B). These methods remain combinatory and unable to take into account the states changes
and reconfigurations in the feared scenarios. Other methods were introduced as the Events Sequence
Diagrams (ESD) [7] to allow a better visual presentation of the events ordered in time. Although the ESD
represents in a clear way the scenarios in competition, they cannot be generated automatically and require
a definition of states and transitions. All order and reconfiguration states must therefore be listed by the
designer and in the case of the hybrid dynamic systems; the number of states is infinite if the energy party
is taken into account. This problem is also encountered in the analytical methods based on Markov
graphs. To take into account partially the dynamic of the system, methods of discretization were
developed as the Discrete Dynamic Event Trees (DDET). The DDET generates the feared scenarios by
failure propagation of the elementary components of the system. The limit of this method is that all the
sequences of event constituting possible scenarios are generated. In order to better manage the multiple
generated scenarios by the DDET, methods as DYLAM (Dynamic Logical Analytical Methodology) and
DETAM (Dynamic Event Tree Analysis Method) were developed. Therefore, the time and order of
execution of the events must be taken into account [8]. Limits of quantitative methods based on
simulation [9] are owed to the combinative states explosion. Because of the scarcity of the feared
scenarios, these methods simulate in the most part of time the normal operating. It is however necessary
to mention the existence of theoretical developments and methods to resolve the problem encountered in
the simulation of systems in the presence of rare events [10]. Indeed, techniques of acceleration of the
simulation were developed and largely used with success, in particular in nuclear engineering. We can
mention Monte Carlo Dynamic Event Tree (MCDET) [11] which is a coupling of the DDET with Monte
Carlo Simulation [12] to investigate in a more efficient way the whole tree of events.

In the case of Petri nets [13], the combinative explosion affects the accessibility graph and not the original
Petri net. So to avoid this combinative states explosion, a qualitative analysis method of reliability aiming
to directly use the Petri net model of the system to extract the feared scenarios without generating the
reachability graph was developed by [14]. Unfortunately this method based on Linear Logic [15] operated
only on the discrete aspect of the system and lot of impossible scenarios is generated. To determine more
precisely the exact conditions of the occurrence of the feared event, i.e what has led the system to leave
its normal operation and to evolve into the feared state, a method taking into account the continuous
aspect and the temporal specifications of the system is developed by [16] [17]. The originality of this
approach, automated to result ESA_PetriNet tool [18], is that the order of occurrence of the events is
taken into account, and impossible scenarios with respect to the continuous dynamic and the temporal
specifications of the system are eliminated. ESA_PetriNet tool has been interfaced with TINA tool (Time
Petri Net Analyzer) [19].

We will present the method and the basic of the algorithm in section 2, the ESA_PetriNet tool in section
3, the selected case study and the scenarios generation in section 4, and we will end by a conclusion.

2. Method of Extraction of Feared Scenarios

We call a scenario, a set of events (here transitions firing) leading from one partial state (here partial
marking) to another one and verifying a partial order. We assume that the system is made up of a set of
components. A partial state is the conjunction of the states of a subset of these components.

Definition 1: A partial order is defined by a directed graph (E, A) where the nodes E are a set of
transitions firing and the arcs A are pairs (ti, tj) such that ti precedes tj (ti and tj are transitions firing).

The application of this method requires the modeling of the system by a Petri Net model and identifying
the places of nominal behavior. The appropriate Petri net modeling of computer controlled systems is a
Predicate Transitions Differential Stochastic Petri net (PTDS Petri net) [14] as they are generally hybrid
(discrete and continuous dynamics) and there reliability analysis require taking into account the failures.
This modeling approach that associates Petri nets and differential equations [20] has the advantage to
clearly separate the continuous aspect from the discrete one; the Petri net model describes the operation
modes, the failures and the reconfiguration mechanisms. The differential equations represent the
evolution of the continuous variables of the energetic part of the system. A temporal abstraction is
necessary to translate this model to a time Petri net by associating to the transitions a temporal interval of
firing corresponding to the time which the system can spend to reach the state in question. A preliminary
analysis will refine the fields of variables according to various accessible marking by reasoning on the
invariants of places. Indeed, the invariants of places determine the possible dynamics, and which other
places can be simultaneously marked when a token is present in a given place.

Studies in Informatics and Control, Vol. 17, No. 1, March 2008 73

2.1 Principal

The method of extraction of feared scenarios is made up of two steps [16]: a backward reasoning and a
forward reasoning. The backward reasoning takes as an initial marking in the reversed Petri net model
(the initial Petri net in which all the arcs are reversed), the only target state (feared) and seeks
exhaustively all the scenarios making it possible to consume the initial marking (feared state since
forward reasoning) and reach a final marking composed only of places associated to the normal operation.
The forward reasoning takes as an initial state these places of normal operation in the initial Petri net
model. The objective is to locate the junctions between the feared behavior and the normal operation of
the system as well as the conditions implied in these junctions. Thus we have not only the explanation of
the dangerous behavior but also of strategies allowing its avoidance. A significant point of the method is
that the context in which occurred the feared event is enriched gradually.

Definition 2: let us consider a marked Petri net R. A potentially enabled transition is a transition that has
at least a marked input place (contains a token at least) and at least a non marked input place (lacks a
token at least).

The process of enrichment of marking consists in adding the missing tokens to the potentially enabled
transition to become enabled. This makes evolve the system to generate the scenarios. It is necessary to
verify that all components composing the system are not in two different configurations with this
enrichment what would be contradictory with the reality of the physical system. Indeed the new added
tokens are removed if they are contradictory with the structure of the system (for example a component
can not be in its activated and deactivated mode at the same time). The invariants of places are used as a
mechanism to verify the coherence of the enrichment of marking. Each scenario is given in the form of a
partial order between the events necessary to the appearance of the feared event what differs from a
failures tree, which gives a whole of static combinations of the partial states necessary for obtaining the
feared state.

2.2 Dealing with continuous dynamic by temporal abstraction

Figure 1. Temporal abstraction and direct and indirect causality

This method takes into account conditions associated to the firing of certain transitions. These conditions
are thresholds involving continuous variables. By temporal approximation of the hybrid dynamic, these
thresholds are transformed to durations, which correspond to the time that the system puts to reach when
the transitions are enabled. From a qualitative point of view, the objective is to determine the firing order
of the transitions. Thus, when we enrich the marking, we can find situation where two transitions t1 and
t2 are enabled if only the ordinary Petri net is considered, but whose are such as t1 will be always fired
before t2 if the temporal abstraction is also considered. In the generation of the scenarios only the firing
of t1 will be considered since that of t2 before t1 would be in fact incoherent with the continuous
dynamic. This appears in the form of a priority of firing: if t1 and t2 are enabled, only the case of t1,
priority, is examined. The taking into account of these precedence relations coming from the continuous
dynamic and not specified by the ordinary Petri net allows reducing the number of generated scenarios by
eliminating a certain number of incoherent scenarios with respect to the continuous dynamic.

Let us consider an example. In the Figure 1a we suppose that the differential-algebra system associated to
the place P1 guarantees that the variable x is increasing. We associate to the transition t1 the threshold x =
v1 and to the transition t2 the threshold x = v2 with v1 < v2. Finally, we suppose that when the token

 Studies in Informatics and Control, Vol. 17, No. 1, March 2008 74

arrives in the place P1 we have always x < v1. So, if the place P3 is marked, the transition t1 will be fired
before t2 since the threshold associated to t1 is lower than that of t2. In this case we don't consider the
scenario associated to the firing of t2. On the other hand, if t3 is already fired for example if we consider
that t1 is a stochastic transition corresponding to a failure (place P3 empty) and if the place P2 is marked,
t1 cannot be fired and then t2 will be fired.

2.3 Precedence and direct and indirect causality

In the example above, finally only one type of scenarios is examined, those for which the transition t2 is
fired after t3. So, there is a precedence relation between the firing of t3, which empties the place P3 and
that of t2, however there is no place connecting t3 to t2. This precedence relation is so, a consequence of
continuous dynamic and thresholds associated to transitions t1 and t2. We are talking in this case about
indirect precedence relation and about indirect causality. The direct precedence relation and causality are
those that are highlighted by the only Petri net, i.e. by the only discrete aspect. For example place P2 in
the Figure 1b leads to a direct causality relation between the firing of t1 and that of t2. It is necessary to
have produced a token in the place P2 by firing t1 to be able to fire t2.

2.4 Case of priority between transitions firing

Figure 2. Case of direct and indirect causality

We have seen above that continuous dynamic could lead to precedence relations between the firing of
transitions. A similar phenomenon can occur if we introduce rules of priority between the firing of
transitions. Although we do not introduce rules of priority explicitly between firing transitions, they can
be necessary to represent strategies of order and of reconfiguration in a simple way. Besides, because of
what precedes, they will be taken into account in a simple way in our algorithm.

Let consider the Petri net of Figure 2a. It represents a temporal window (place p1 contains a token
between the firing of transition t1 and t2) during which the treatment of t4 can not only be performed, but
must be performed without waiting if there is a request (presence of a token in the place P2 resulted by
the firing of the transition t3). In a classical way, it can be expressed by returning firing of t4 priority in
comparison with that of t2. Regarding precedence relations, only two types of scenarios will be generated.
In the first scenario (Figure 2b), t3 is fired after t2. In the second (Figure 2c), t4 is fired before t2. The
precedence relation and causality between t2 and t3 in the Figure 2b is an indirect relation as before
because it does not correspond to a place linking up both transitions.

3. ESA_PetriNet Tool

ESA_PetriNet tool has been developed in JAVA to have a better portability (use on various material
platforms and under various operating systems). The current version of ESA_PetriNet uses two output
files of TINA tool version 2.8.4.

3.1 Algorithm

The temporal abstraction of the continuous dynamic allows the identification of the precedence relations
and indirect causality between certain transitions firing. This is expressed in the algorithm in the form of
rules of priority (after the enrichment of the marking, a certain transition is not fired if another is
enabled). In the expression of the results (scenarios), this appears in the form of indirect
precedence/causality relations between transitions which are not related with a place. So we restrain the
number of generated scenarios and for each scenario the set of sequences of transitions firing is consistent

Studies in Informatics and Control, Vol. 17, No. 1, March 2008 75

with the strict partial order associated to the scenario. We note that only one execution of the algorithm
generates automatically several scenarios. All the possible and coherent scenarios with respect to the
continuous dynamic and the temporal constraints of the system are generated. The principal dada
structures and functions are illustrated in the appendixes (more details are given in [17]).

3.2 TINA tool

Although TINA tool is dedicated to the ordinary Petri nets and the t-temporal Petri nets and not to Petri
nets associated with differentials-algebra equations, it has several advantages. First, its graphic editor
permits to describe the Petri net model of the system: the transition time interval of TINA is used to
express the rule of priority between transitions firing, the label of places is used to define the nominal
behavior (N) and the label of transitions to define the feared events (red) and forbidden transitions (F),
ect. Then we generate two input files of ESA_PetriNet: the first file corresponds to a textual description
of the Petri net model of the system and the second contains the invariants of places (structural analysis).

3.3 Principal Functions

Operating mode: extraction of feared scenarios for reliability needs a backward and a forward reasoning
(mode 2). Our approach (tool) is extended towards the checking of certain properties of the computer-
controlled systems as it will be shortly mentioned in the conclusion. In this case, the generation of
scenarios is done only by a simple backward research (mode 1).

Extraction of scenarios: it is the principal function. After analysis of the input files, the tool extracts the
necessary data structure for the algorithm and generates the scenarios.

Recording results: generated scenarios are memorized in a textual file. We extract all the scenarios
(normal operation, reconfigurations and feared scenarios) to obtain precise information concerning the
dynamic of the system.

Precedence graph: we have chosen precedence graph to present the generated scenarios. Direct and
indirect causality relations are illustrated in different color.

4. Case Study

Figure 3. Case study

 Studies in Informatics and Control, Vol. 17, No. 1, March 2008 76

4.1 Presentation

It concerns a volume regulation system of two tanks (Figure 3) that was presented in [21]. The operating
of this simple academic case study can be similar to a reel industrial hybrid system. It is made up of a
computer, two pumps, three electro-valves, two volume sensors, the two regulated tanks (tank1 and
tank2) and a third tank for draining. The demand is specified by a function of time (outgoing flowrates
ds1(t) and ds2(t)). The volume of each tank i must be kept within a given interval [Vimin, Vimax]. The
volume is controlled by the computer, which decides, according to the values given by the volume
sensors, to fill (or not) the concerned tank by opening (or not) the concerned electro-valve. The control
law of the computer is such that the electro-valve is closed when the volume of the controlled tank
oversteps the upper limit Vimax. In the other hand, the computer commands the opening of the electro-
valve each time the value of the volume in the controlled tank is lower than the limit Vimin. We
distinguish two normal phases of the system, corresponding to the state of the electro-valve:

- A conjunction phase when the electro-valve is open. The volume in the tank is going up; no matter
what is the value of the outgoing flowrate (the pump flowrate is much higher than the outgoing
flowrate).

- A disjunction phase when the electro-valve is closed. The volume in the tank is decreasing.

This system must avoid the overflow of the tanks. A backup electro-valve is added to the system in order
to drain the tanks in case of overflow. This third electro-valve is viewed as a shared resource between the
two tanks, and it can be used to drain a unique tank at a time. When the volume of one tank oversteps the
security limit ViL, the computer commands the opening of the backup electro-valve until the volume
becomes lower than Vimin. As we focus our study on critical scenarios, and in order to simplify the
problem we consider that only the electro-valves can have failures. A typical failure of the electro-valves
EV1 and EV2 corresponds to a blocked open state in which the electro-valve does not react to a closure
command of the computer. These two electro-valves can be repaired after a failure occurrence. When the
electro-valve EV3 has a failure it is considered to be definitively out of service

4.2 Petri Net Modeling

Figure 4. Petri net model of the regulation system

We have used the same Petri net model of [21] and we have added the temporal abstraction on the
transition [16] as presented in Figure 4. Place V1_dec of the net represents the disjunction phase (the
volume is decreasing); place V1_cr represents the conjunction phase in which the volume is increasing.
Place EV1_OK corresponds to a state where the electro-valve EV1 works. Transition t11 represents the
closing command of the electro-valve EV1 when the volume oversteps V1max. Transition t12 represents
the opening command of the same electro-valve when the volume becomes lower than V1min. Transitions
def1 and rep1 represent the fact that the electro-valve can stay blocked in an open state (def1), and can be
repaired (rep1). Tank2 is modeled in the same way. When the volume in the tank1 oversteps the high
security limit (V1L), and the backup electro-valve is available (place EV3_OK is marked) then t14
becomes enabled and the draining process of tank1 can start via the backup electro-valve by marking

Studies in Informatics and Control, Vol. 17, No. 1, March 2008 77

place EV3_oc1. The backup electro-valve is no longer available for use to drain tank2; this corresponds to
the place EV3_OK empty. This phase last the time that it takes for the volume to reach the low threshold
V1min. Then, the electro-valve EV3 is released (place EV3_OK is newly marked), and a conjunction
phase is started again (place V1_cr is marked) by firing transition t15. The electro-valve EV3 can have a
failure (modeled by transition def3). In this case, place EV3_HS is marked and the electro-valve is set out
of order. The system contains the following invariants of places:

M(EV1_BO) + M(EV1_OK) = 1

M(EV2_BO) + M(EV2_OK) = 1

M(EV3_oc1) + M(E_red1) + M(V1_cr) + M(V1_dec) = 1

M(EV3_oc2) + M(E_red2) + M(V2_cr) + M(V2_dec) = 1

M(EV3_HS) + M(EV3_oc1) + M(EV3_oc2) +M(EV3_OK) = 1

We have chosen the following parameters:

tmax = [1, 1], tl = [2, 2], ts = [3, 3], tdefi = trepi = [0, ∞[(time unite)

4.3 Extraction of feared scenarios

Figure 5. Screen shots of TINA and ESA_PetriNet tools

A general view of ESA_PetriNet and TINA tools is given in Figure 5. Places labeled with N represent
normal operating and transitions labeled with F are forbidden to avoid loops due to reparations. To use
ESA_PetriNet, we first edit the Petri net model of the system on the graphic editor of TINA tool to
generate two input files: a descriptive file of the Petri net model and a file containing the invariants of
places. Generated scenarios can be illustrated in the form of a precedence graph (feared scenarios are
illustrated with a different color to facilitate their identification among those of normal operating and
reconfiguration). ESA_PetriNet generates a total of 12 scenarios (nominal, reconfiguration and feared) in
which 8 are feared (Figure 6a). Note that the actual version of ESA_PetriNet generates non minimal
scenarios, so most of the generated scenarios are redundant. This explains the important number of the

TINA Input files ESA_PetriNet Scenarios

 Studies in Informatics and Control, Vol. 17, No. 1, March 2008 78

generated scenarios. Note also that this version takes into account continuous dynamic and temporal
constraints and an important number of impossible scenarios are yet eliminated. Indeed because the
continuous dynamic of the system is not taken into account in [14], not only the number of the generated
scenarios is important (29 feared scenarios among a total of 51 scenarios) but also the order of appearance
of the events is not respected. This order is not respected also by the failure trees.

The 8 feared scenarios (overflow) correspond to the following situations: 1) Failure of the electro-valve
EV1 (firing of the transition def1) and the failure of the backup electro-valve EV3 (firing of the transition
def3): sc1, sc2, sc4 and sc6. These scenarios are represented by {def1, def3, t13}. 2) Failure of the electro-
valve EV1 (firing of the transition def1) and the use of the backup electro-valve EV3 by the second tank
(firing of the transition t24): sc7, sc9, sc11, sc12. These scenarios are represented by {def1, t24, t13}. As a
matter of fact the consequence of the thresholds associated with transitions t11, t14 and t13, is that the
transition t13 will be fired only if t11 and t14 are not enabled. This means that the feared scenarios are
composed by fragments containing transitions in conflict with t11 and t14, and by the firing of t13. For
example the following scenario {t13, def1, t23, def2} given by an old version [14] (that does not take into
account the continuous aspect of the system) is not produced in this new version because transition t14
that is in conflict with t13 has an inferior threshold so it is fired before and forbids the firing of t13. In the
precedence graph of scenario cs1 (Figure 6b), the indirect precedence relation is presented with the red
color. The blue color corresponds to the indirect precedence relation of the second feared state (E_red2).
Note that the minimal scenario (only the necessary events to reach the feared state) of sc1 is {def1, def3, t13}.

Figure 6. The generated feared scenarios

5. Conclusion

We have presented in this paper a method automated to result ESA_PetriNet tool (Extraction & Scenarios
Analyzer by Petri Net model) developed for extraction of feared scenarios from the Petri net model of
computers-controlled systems. The taking into account of the continuous dynamic of these systems by
temporal abstraction allows the elimination of a significant number of incoherence scenarios (relating to
the continuous dynamic) and the respect of the order of appearance of the events. The computing time
takes only few seconds. This tool has been used to generate feared scenarios from reel industrial systems
of significant size: a Rafale landing gears control system of Dassault Aviation [18] and a decentralized
radio-based railway level crossing control system [22]. The aim in the last system, taken from a realistic
specification of a new radio-based train control system [23] developed for the German Railways, was the
evaluation of the safety [24] level to avoid collision. Note that we have improved some functions of
ESA_PetriNet in [22] relating to the exploration way of the Petri net.

As it is mentioned in section 4, ESA_PetriNet was adapted to the checking of some properties
(determining if the system satisfies certain properties like the duration of a scenario or accessibility
between two states). A simple back exploration is enough to generate all the scenarios leading to the
target state. Then a temporal abstraction is used to obtain temporal constraints networks. ESA_PetriNet
has been used in the precedent landing gears system to check that the duration of a scenario is lower than
certain limit [25] [17]. It is important to note that we have implemented Monte Carlo simulation [12] in
this tool to quantify the probability of occurrence of these scenarios [26]. To improve this tool, we have to
take into account the minimality of the scenarios to eliminate the unnecessary events and redundancy. We

Studies in Informatics and Control, Vol. 17, No. 1, March 2008 79

have also to improve the mechanism of enrichment of the marking (in some complex systems the
invariants of places is not sufficient). The checking part can be supported by algorithms of research
longest ways [27] [28].

Appendix 1: Principal data structure

1.1 Input data: they are composed of the list of initial tokens (Li) and of the list of the normal tokens (Ln)
which will be used as one of the two stops criteria of the algorithm. This one corresponds to the presence of
only nominal tokens those are not initials (LjnInit) in the current list. A list of forbidden transitions LintEntree
used to block certain transitions of the Petri net from the beginning of the reasoning.

1.2 Output data: the algorithm generates a set of partial orders; some corresponds to the nominal
operating, others to the reconfigurations or to the different feared scenarios. Each partial order is defined
by a triplet of the form (E, A, B) such as E is the list of firing transitions, A and B are lists of precedence
relation generating partial orders. A is the list of arcs linking up elements of E having direct causality
relations, B the list of the arcs linking up elements of E having indirect causality relations. The algorithm
generates also a list of enrichment tokens (Le) created when we enrich the marking.

1.3 Internal data: they are composed of the list C {C0, C1,…,Ci,…,Cn} containing n elements of the
context Ci (Lc, Lint1, Lint2, Lint3, E, A, B, Le, LeInt, LjnInit).

 Lc is the current list. It contains the set of the current tokens which is updated after each transition
firing. The consumed tokens are taken away and the produced one are added. To generate the list Lc,
each token is represented in the form of a couple (e, p); e is the event which produced this token and
p the place which contains it.

 Le is the list of the tokens of the marking enrichment. A couple (e, p) is added to this list, after (each)
coherent enrichment.

 LeInt is the list of forbidden tokens because of conflict in the enrichment of the marking.

 LjnInit is the list of nominal but not initial tokens. It contains the tokens of Ln those are not initial.
For each transition firing tk, the couple (tk, p) is added to this list. After checking, if the place pLn,
it will be added to LjnInit (used as one of the two stop criteria).

 Lint1 is the list of forbidden transitions of the first level. It contains the list of transitions that would
not be fired from a current given stage. It allows managing conflicts of transitions. When a transition
in conflict with other one of the same priority, is fired, it is added in this list in order to not be fired a
second time; what avoids the generation of the same partial order more then once.

 Lint2 is the list of forbidden transitions of the second level. It contains the list of enabled or
potentially enabled transitions that would not be fired because they are in conflict with an enabled
transition that has an inferior firing threshold.

 Lint3 is the list of forbidden transitions of the third level. It contains the list of transitions which
cannot be enriched to avoid loops by trying to enrich them.

 Other lists of internal data are generated from the current list Lc. These data concern all enabled and
potentially enabled transitions knowing that enabled transitions are priority then those potentially
enabled. The priority of treatment of transitions of these lists is:

 tfcEsc is the list of enabled transitions in conflict or without conflict.

 Tpfc is the list of potentially enabled transitions in conflict either with enabled transitions, or
with potentially enabled transitions.

 Tpfsc is the list of potentially enabled transitions without conflict.

Appendix 2: Principal functions

2.1 Fire transition tk: in this function, the current list is updated after the firing of the transition tk by
removing the consumed tokens from the list Lc and by adding the produced one. Events are memorized in
the list E and all arcs corresponding to a precedence relation between two events in the list A. As each

 Studies in Informatics and Control, Vol. 17, No. 1, March 2008 80

token is linked to the event having produced it, the correspondent precedence relation is directly obtained
when it is consumed. The procedure is identical to the labeling of a proof tree in Linear Logic [6].

Fire_transition_tk
Add tk to E;
For each token (ti, P) necessary to fire tk remove (ti, p) from Lc and add (ti, tk) to A;
For each output place Ps of tk, add a token (tk, Ps) to Lc;
If Ps is a nominal place, add it to LjnInit;

2.2 Enrich marking tk: it consists in adding tokens to the list of current tokens Lc to enable the
potentially enabled transitions. This corresponds to the taking into account of the state of new
components of the studied system because their interaction with the components already taken into
account can provide state changes. We consider two types of enrichment. The first noted
Enrich_marking1 allows the enrichment of transition tk of the list Tfcpf. The second noted
Enrich_marking2 allows the enrichment of the others potentially enabled transitions tk.

Enrich_marking1_tk
L: internal list of tokens initially empty;
For each transitions tj, potentially enabled in conflict with tk;

 For each input place pl of tj add a token (ek, pl) to the list L;
 Verify the coherence of the marking;

Enrich_marquage2_tk
L: internal list of tokens initially empty;
For each input place pl of tj add a token (ek, pl) to the list L;
Verify the coherence of the marking;

2.3 Marking coherence: it verifies the coherence of the marking. It uses the list L of the enrichment
tokens (ek, pl), the list of invariants of places and the conservative component of each invariant of places
those are input dada.

Marking_coherence_tk
For each token pl of L;
For each invariant i, verify if it contains pl;
Verify the number of tokens in the places composing the invariant i, If the number is upper then
the corresponding conservative component, remove the place pl from L;
If the list L is not empty, the enrichment is coherent, add the tokens of L to Lc and Le;
Else add tk to the list Lint3 to avoid loops;

2.4 Enrichment conflict: during the enrichment, we can meet situation in which we can not add tokens to
all the places that need enrichment because of the incoherence of the marking. So, we add gradually the
tokens in these places and we verify each time the coherence. In the case of incoherence because of an
enrichment token in a current state, we memorize the context and we continue the enrichment. This
procedure allows the consideration of all possible context of the system

Enrichment_conflict_pk
Add an enrichment token to the place pk;
Verify the marking coherence;
Add gradually tokens to the others places that need enrichment;
If incoherence because of pk, Memorize_context_conflict_enrichment_pk;

Memorize_ context_conflict_enrichment_pk
Add the token of place pk to the list of forbidden tokens LeInt;
Add a new element Ci (Lc, Lint1, Lint2, Lint3, E, A, B, Le, LeInt LjnInit) to C. Lint2 and Lint3
are initially empty in this new context;

After each context memorization, the token is added to the list IntEnrich to avoid the memorization of the
same context enrichment. IntEnrich is a global variable of the algorithm.

Studies in Informatics and Control, Vol. 17, No. 1, March 2008 81

2.5 Memorize context conflict transitions: as it was mentioned before, each time transitions conflict
(with the same priority) is encountered during the construction of the scenario; this last is split to the same
number of different scenarios as that of transitions implicated in the conflict. This procedure allows the
memorization of all the necessary information for the construction of another scenario corresponding to
the firing of another transition in conflict with this last.

Memorize_Context_tk
Add the transition tk to the list Lint1;
Add a new element Ci (Lc, Lint1, Lint2, Lint3, E, A, B, Le, LeInt LjnInit) to C. Lint2 and Lint3
are initially empty in this new context;

Others functions are used like: verifying if transition tk is in conflict with tj (they are in a structural
conflict if they have at least a same input place), sorting transitions following the increasing threshold,
construction the list of forbidden transitions Lint2, verifying if two conflict transitions have separated
firing threshold to choose the priority of transitions.

Appendix 3: Different steps of the algorithm

0. Initial step
0.1. Initialize C with C0(Lc, Lint1, Lint2, Lint3, E, A, B, Le, LeInt) to generate the first partial order.

Lint1, Lint2, Lint3, LjnInit, Le, A and B are empty, Lc = Li (set of initial tokens), E{I1} such as
I1 is an initial event, the natural number Inc = 1, C{C0};

0.2. Define the priority of transitions firing due to the continuous aspect by associating to each
transition tk a temporal threshold of firing [dmin, dmax]. The transition tk will be fired at the
moment k [dmin, dmax].

1. Build new partial order
Let Ci(Lc, Lint1, Lint2, Lint3, A, B, E, Le, LeInt, LjnInit) the current context initially empty;

1.1. If C is empty Goto step 8;
1.2. Else

1.2.1. Memorize the first element of C in Ci;
1.2.2. Delete this element from C;
1.2.3. Goto step 2;

2. Different transitions lists
2.1. Generate from Lc all enabled (tfcEsc) and potentially enabled transitions (Ltpf);
2.2. Delete from these lists: transitions of E, Lint1, Lint3 and LintEntree;
2.3. Generate the lists: Tpfsc and Tpfc;
2.4. Goto step 3;

3. Stop criteria of construction of a partial order
3.1. If Lc contains only tokens of Ln whose are not initial (LjnInit) or the lists tfcEsc, Tpfsc, and Tpfc

are all empty Goto step 7;
3.2. Else Goto step 4;

4. tfcEsc
The transitions are sorting in priority. This step solves the transitions conflict by memorizing the
necessary information for the construction of the other partial orders relating to the firing of the other
transitions implied in the conflict. An enrichment of the marking will be carried out if necessary.

4.1. If TfcEsc is empty Goto step 5;
4.2. Else

4.2.1. Sort tfcEsc according to the increasing threshold;
4.2.2. Let tk the first transition of tfcEsc;
4.2.3. Add to Lint2 any enabled transition tj of higher threshold in conflict with tk (temporal

intervals of firing are disjoined);
 4.2.4. Enrich_marking1_tk if it is necessary and Memorize_ context_conflict_enrichment_pk if
necessary;

 4.2.5. If the enrichment is not coherent;
4.2.5.1. If tk is not in conflict with an enabled transition of lower threshold;

4.2.5.1.1. If tk is in conflict with a transition which does not belong to Lint1, Lint2,
 Lint3, E or LintEntree (intersection of temporal interval of firing);

 Studies in Informatics and Control, Vol. 17, No. 1, March 2008 82

4.2.5.1.1.1. Memorize_context_tk;
4.2.5.1.1.2. Add if necessary the indirect causality relation (tj, tk) to B;

4.2.5.2. Fire_transition_tk;
 4.3. Goto step 2;
5. Tpfc

5.1. If Tpfc is empty do step 6;
5.2. Else

5.2.1. Sort the Tpfsc transitions according to the increasing threshold;
5.2.2. Choose the first transition tk in Tpfc;
5.2.3. Put the other transitions of higher threshold in structural conflict with tk in Lint2;
5.2.4. Enrich_marking2_tk;
5.2.5. If the enrichment is coherent;

5.2.5.1. If tk is not in conflict with an enabled transition of lower threshold;
5.2.5.1.1. Add if necessary the indirect causality relation (tj, tk) to B;
5.2.5.1.2. Fire_transition_tk;

5.3. Goto step 2;
6. Tpfsc
The marking of a potentially enabled transition without conflict is enriched and the transition is fired.

6.1. If Tpfsc is empty Goto step 7;
6.2. Else

6.2.1. Sort the Tpfsc list according to their increasing threshold;
6.2.2. Choose the first transition tk in Tpfsc;
6.2.3. Enrich_marking2_tk;
6.2.4. If the enrichment is coherent;

6.2.4.1. Fire_transition_tk;
6.3. Goto step 2;

7. Generate scenario
Memorize the constructed partial order and return to step 1;

7.1. For each atom (ti, p) of Lc, add (ti, F) to A; F is the final event;
7.1.1. Memorize the derived scenario Inc such as: E(Inc) = E, A(Inc) = A, B(Inc) = B;
7.1.2. Increment Inc;

7.2. Goto step 1;
8. Final step
Post all the generated scenarios;

Acknowledgment

The author would like to thank Hamid Demmou, Assistant Professor at Paul Sabatier University of
Toulouse (France), Robert Valette, Directeur de recherche 2ème classe at LAAS-CNRS of Toulouse
(France) for supervising this work during my PhD thesis at LAAS-CNRS. To access this tool, contact the
author (malika.medjoudj@ec-lille.fr, actually a post doctorate under the support of the pole ST2 and the
region Nord-Pas de Calais at LAGIS- Ecole Centrale de Lille) or Hamid Demmou (hamid@laas.fr).

REFERENCES

1. DUFOUR, F. and DUTUIT Y., Dynamic Reliability: A New Model, 13-ESREL2002 European
Conference, Lyon-France, 18 au 21 Mars 2002.

2. DEVOOGHT, J., Dynamic reliability, Advances in Nuclear Science and Technology 25, pp.
215-278, 1997.

3. LABEAU, P.E., SMIDTS C., SWAMINATHAN S., Dynamic Reliability: Towards an
Integrated Platform for Probabilistic Risk Assessment. Reliability Engineering and System
Safety 68, pp. 219-254, 2000.

4. DEVOOGHT, J., SMIDTS C., Probabilistic Reactor Dynamics - I: The Theory of Continuous
Event Trees, Nuclear Science and Engineering, Vol. 111, pp. 229-240, 1992.

Studies in Informatics and Control, Vol. 17, No. 1, March 2008 83

5. DEVOOGHT, J., SMIDTS C., Probabilistic Reactor Dynamics - II: A Monte-Carlo Study of
a Fast Reactor Transcient , Nuclear Science and Engineering, Vol. 111, pp. 241-256, 1992.

6. LEE, W.S., GROSH, D.L., TILLMAN, F.A., LIE, C.H., Fault Tree Analysis, Methods, and
Applications - A Review, IEEE Transactions on Reliability, ISSN 0018-9529; r-34, pp. 194-203,
August 1st 1985.

7. SWAMINATHAN, S., SMIDTS C., The Event Sequence Diagram Framework for Dynamic
PRA, Reliability Engineering and System Safety 63, 1999, pp. 73-90.

8. GARRET, C.J., GUARRO S.B., The Dynamic Flow graph Methodology for Assessing the
Dependability of Embedded Software Systems, IEEE Transactions On Systems, Man, and
Cybernetics, Vol. 25, No. 5, May 1995.

9. MONCELET, G., CHRISTENSEN S., DEMMOU H., PALUDETTO M., PORRAS J.,
Qualitative an Quantitative Dependability Evaluation of a Simple Mechatronic System
Using Colored Petri Nets, Workshop on practical use of colored Petri nets and DesignCPN,
Aarhus, Denmark, June 98.

10. VILLÉN-ALTAMIRANO, M., VILLÉN-ALTAMIRANO J., RESTART: A Straightforward
Method for Fast Simulation of Rare Events, Proceedings of the 1994 Winter Simulation
Conference, 1994, pp. 282-294.

11. HOFER, E., KLOOS M., KRZYKACZ-HAUSMANN B., PESCHKE J., SONNENKALB M.,
Method enentwicklung zur simulativen Behandlung der Stochastik in probabilistischen,
Sicherheitsanalysen der Stufe 2, Abschlußbericht, GRS-A-2997, Gesellschaft für Anlagen- und
Reaktorsicherheit, Germany (2001).

12. KALOS, M.H. and WHITLOCK P.A., Mont Carlo Methods, Vol. 1: Basics, John Wiley and
Sons, New York, 1986.

13. MURATA, T., Petri Nets: Properties, Analysis and Applications, IEEE Proc, Vol. 77, pp. 541-
580, April 1989.

14. DEMMOU, H., KHALFAOUI S., RIVIERE N., VALETTE R., Extracting Critical Scenarios
from a Petri Net Model Using Linear Logic, Journal Européen des Systèmes Automatisés
(APII-JESA), Vol. 36, N7, 2002, pp. 987-999.

15. GIRARD, J.Y., Linear Logic, Theoretical Computer Science, Vol. 50, 1987, pp. 1-102.

16. MEDJOUDJ, M., KHALFAOUI S., DEMMOU H., VALETTE R., A Method for Deriving
Feared Scenarios in Hybrid Systems, Probabilistic Safety Assessment and Management
(PSAM7-ESREL04), Berlin-Germany, 14-18 June 2004.

17. MEDJOUDJ, M., Contribution à l'analyse des systèmes pilotés par calculateurs: Extraction
de scénarios redoutés et vérification de contraintes temporelles, Thèse doctorale de
l'Université Paul Sabatier, Toulouse-France, Mars 2006.

18. MEDJOUDJ, M., DEMMOU H., VALETTE R., ESA_PetriNet tool: Extraction Scenarios &
Analyzer by Petri Net Model : Application to the Extraction of Feared Scenarios in a
Landing Gear System, European Simulation and Modeling Conference (ESM2006), LAAS-
Toulouse-France, 23-25 October 2006, pp. 375-382.

19. BERTHOMIEU, B., RIBET P.O., VERNADAT F., The tool TINA - Construction of Abstract
State Spaces for Petri Nets and Time Petri Nets, International Journal of Production Research,
Vol. 42, No. 14, 15 July 2004, pp. 2741-2756.

20. CHAMPAGNAT, R., ESTEBAN P., PINGAUD H., VALETTE R., Modeling and Simulation
of a Hybrid System Through Pr/Tr PN DAE Model, ADPM'98 3rd International Conference
on Automation of Mixed Processes, Reims-France, 19-20 March 1998, pp. 131-137.

21. DEMMOU, H., KHALFAOUI S., GUILHEM E., VALETTE R., Critical Scenarios Derivation
Methodology for Mechatronic Systems, Reliability Engineering & System Safety, Vol. 84, No.
1, April 2004, pp.33-44.

22. MEDJOUDJ, M. and YIM P., Extraction of Critical Scenarios in a Railway Level Crossing
Control System, International Journal of Computers, Communication and Control (IJCCC) Vol.
II, No. 3, 2007, pp. 252-268.

 Studies in Informatics and Control, Vol. 17, No. 1, March 2008 84

23. JANSEN, L. and SCHNIEDER E., Traffic Control Systems Case Study: Problem Description
and a Note on Domain-based Software Specification, Technical rapport, Technical University
of Braunschweig, 2000.

24. LAPRIE, J.C., Dependability: Basic Concepts and Terminology, Vol. 5, Springer, 1992.

25. RIVIERE, N., DEMMOU H., VALETTE R., MEDJOUDJ M., Symbolic Temporal Constraint
Analysis, an Approach for Verifying Hybrid Systems, 16th IFAC World Congress, Prague-
République Tchèque, 3-8 July 2005.

26. MEDJOUDJ, M. and LABEAU P.E., Estimation Monte Carlo de la probabilité d'atteindre
des états redoutés basée sur la prédétermination de ces scénarios, 12P, PENTOM, Mons-
Belgique. 9-10 juillet 2007.

27. FLOYD, R.W., Algorithm 97: Shortest Path, Communications of the ACM Vol.5 Issue 6, page
345, June 1962.

28. WARSHALL, S., A Theorem on Boolean Matrices, Journal of the ACM Vol. 9 Issue .1, pp. 11-
12, January 1962.

