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Abstract: In recent years, the static and the dynamic jobs scheduling onto heterogeneous processors present a very well studied 
problem. Typically the Data Grid Scheduling problem (DGS) has recently become an active research area. The heterogeneous processors 
scheduling problem (HPSP) can be formulated in several ways and the efficient scheduling of the HPSP on the available resources is one 
of the key factors for achieving high performance results. Historically, finding an optimal schedule was an NP-hard problem in practical 
cases; researchers have resorted to devising efficient Heuristics and methods inspired by Nature’s Laws. Moreover, the multi-objective 
scheduling research derives its importance from the need to address the real world of the heterogeneous processors application, which 
rarely has a single objective function. A schedule that is of a high-quality for one objective function may in fact be quite insignificant for 
another. Decision makers must carefully evaluate the compromise involved in considering several different criteria in practical 
scheduling applications. In this paper, we introduce a new hybrid approach that combines ant system optimisation and fuzzy logic 
concept to facilitate the multi-objective HPSP optimisation, such as the makspean, and the processors workload. Based on the concept of 
the ant system and fuzzy controller, we automatically control the ant system parameters evolution for the multi-objective HPSP 
optimisation. 

The simulation results indicate that the combination of the ant system approach and the fuzzy controller is not only an efficient 
metaheuristic tool when we search a multi-objective schedules under constraints but also significantly surpasses other scheduling 
approaches in terms of quality and solution cost. 
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1. Introduction 

Real world heterogeneous processors scheduling systems are complex and diversified, thereby finding an optimal 
multi-objective schedule in practical cases is an NP-hard problem and the heuristic approaches must be used. 

Conventionally, scheduling problem exists in two forms: Static modes and dynamic modes. In the static case 
scheduling (Batch-Mode) the jobs are not scheduled as they arise; but they are collected into a set of jobs for 
the next batch scheduling. While dynamic scheduling case considers a job for scheduling only once. 
Furthermore, due to the theoretical and practical importance of the scheduling problem, several approaches 
issue from the directed acyclic graph theory and the soft computing heuristics have been used to examine this 
problem, [4, 8, 13, 14, 16].  The objective of the scheduling problem is to assign jobs to processors (matching 
problem), and arrange the execution order of the jobs assigned to each machine (scheduling problem) so that 
the minimum time of execution is obtained [3]. In the HPSP system considered here, the jobs are assumed 
independent, i.e. that no constraints of execution exist between the jobs. 

For the resolution of the HPSP problems, there exist two approaches: the heuristic methods and the efficient 
research algorithms including the hybrid heuristics concept. In the static mode of the HPSP, Braun et al. [3] 
present eleven heuristics for matching and scheduling a set of independent jobs onto heterogeneous 
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computing environment, and the goal was to minimise the makespan. Particular modern heuristics 
approaches have been recently presented   for the problem, such as the Tabu Search [1], Simulated Annealing 
[18], Local Search [15, 11], Genetic Algorithms [5, 7,9,13, 16, 20], Particle Swarm Optimization [2], Fuzzy 
based scheduling [10]. Moreover, the single objective is not sufficient in practical case and the decision-
maker has a priori information and intuition regarding the nature of the optimisation to be performed. For 
example, the minimisation of the makespan may be of primary importance and the balance of the processor 
workload and the total workload may be of secondary interest. 

Work with other NP-hard problems has shown that the multi-objective solutions found by the heuristics can 
often be improved by the approaches based on soft computing technique. Essentially, we remark the 
existence of two grand classes of multi-objective optimisation procedures:  

- The Non Pareto approach, that consists in transforming the multi-objective problem to the mono 
objective problem based on an aggregation operator that mixes the different objectives into a weighted 
sum. The weighted sum translates multiple objectives into a single objective value for the schedule 
opportunity [5]. 

- The Pareto approach is directly based on the Pareto optimisation concept. This approach satisfies two 
objectives: converge to the Pareto front and also obtain diversified solutions scattered all over the Pareto 
front [19].Very few researchers have been presented with the multi-objective heterogeneous processors 
scheduling. The complexity of the problem has a major role to play in this.  

In this paper, we propose a new method for finding multi-objective HPSP solutions using metaheuristic 
based on the Ant system and the Fuzzy Logic Controller (AS-FLC).  Moreover the definition of the best 
bounds and the higher bounds of some criteria are presented. The remainder of this paper is organised as 
follows. In the next section, we describe the formulation of the heterogeneous processor scheduling problem. 
A new multi-objective scheduling approach called Ant System and Fuzzy Logic Controller is presented in 
section 3. The illustrative example and the effectiveness of this approach are illustrated in section 4 and 
section 5. Finally, section 6 concludes the paper. 

2. Problem Formulation  

Practically, the heterogeneous processors scheduling problem in computational grids is a multi-objective 
optimisation problem. More precisely, the HPSP problem may be formulated as follows: 

- A set of NJ independent jobs that must be scheduled. Any job has to be processed entirely onto a unique 
resource, furthermore the pre-emption is not authorised. 

- A set of NP heterogeneous processors candidates to participate in the scheduling process. 

- An expected processing time pti,j of each job Jj onto a processor Pi. The pti,j derived from the EPTM 
called Expected Processing Time Matrix, where EPTMi,j = pti,j is expressed in unit of time(ut) 

Our objective is to minimise the completion time (makespan) and balance the exploitation of the resources 
effectively. Note that the makespan, total workload and the workload processor are the most important 
physical parameters of the scheduling problem onto heterogeneous processors. 

3. Applying Ant System and Fuzzy Logic Controller to the HPSP  

3.1 Construction graph and constraints 

Graphically, the HPSP can be represented by the bipartite oriented graph composed of two categories of 
nodes. A Job is associated to a J node; a processor is associated to a P node. There exists an arc between a J 
node and a P node if and only if the job J can be executed on the processor P without exceeding its 
computing capacity.  

The cost of the connection J to P is directly linked to the processing time pti,j , given in unit of time (ut), of the 
j-th job Jj upon the i-th processor  Pi. To model the process in a more straightforward manner, we use the 
construction graph that is derived from the expected processing time matrix EPTM. The expected processing 
time matrix defines the one distance among job Jj and processor Pi. 
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Table 1. Expected processing time matrix for construction graph 

 J1 J2 J3 J4 J5 J6 J7 

P1 6 4 8 6 3 4 5 

P2 7 5 5 7 5 9 6 

P3 6 8 6 8 7 4 5 

P4 9 7 6 6 5 6 7 

 

 

Table 2. Example of solution of construction graph 

 J1 J2 J3 J4 J5 J6 J7 

P1  4   3   

P2   5     

P3 6     4 5 

P4    6    

 

With this construction graph, we can transform the HPSP into a travelling ant problem. 

 

                              

Figure 1.  Ant travelling path solution 

Above, the construction graph represents a simple solution of the travel of the ant on the path. 

Specifically, an ant seeks to travel across the construction graph in such a way that all of the following 
constraints will be satisfied: one and only one node is visited in each of the columns of the graph. In the rest 
of this paper, “path” “tour” and “solution” are used interchangeably; a pair of (Jj, Pi) means: Job Jj is 
assigned to Processor Pi. 

3.2 The ant system optimization and fuzzy logic controller 

Initially, submitted to application by (Dorigo et al., 1992), the ant system optimisation presents a class of 
general algorithms of optimisation. The main underlying idea, essentially inspired by the behaviour of real 
ants, that represents a parallel search of several constructive computational solutions based on the 
characteristics problem data and on a dynamic memory structure containing information on the quality of 
previous solutions. Generally, the behaviour of ant system mechanism depends on many unsure parameters, 
incomplete knowledge of the real ant system attitude and the imprecise information for identification of the 
relationship between the strategy choice of the parameters and the global behaviour of the ant system 
heuristics. In our context, we apply the fuzzy logic controller for adapting and tuning the ant system 
parameters to improve the searching ability in finding the global optimum. 
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3.3 The ant system scheduling 

Typically, ants deposit a chemical pheromone when they move in their environment; they are also able to 
detect and to follow pheromone trails. 

In our case, the pheromone trail describes how the ant system builds the solution of the HPSP problem. On 
the construction graph, the probability of choosing a branch at a certain time depends on the total amount of 
pheromone on the branch, which in turn is proportional to the number of ants that used the branch until that 

time. The probability k
jiP ,  represents the probability of the k-th ant to assign a job jJ  to an available 

processor Pi. Each of the ants builds a solution using a combination of the information provided by the 

pheromone trail ji , and by the heuristic function defined by ,
,

1
i j

i jpt
  .  

Formally, the probability of picking that an ant k-th will assign a job jJ  to the processor Pi is given in 

equation 1. 
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In this equation, D denotes the set of jobs on the path of the ant, where  and  are parameters that control 
the relative importance of the pheromone trail versus heuristic measure. Therefore the transition probability 
is a trade-off between visibility and pheromone trail intensity at the given time. 

Adapting  and  parameters automatically permits firstly to improve the ability of ant system in finding the 
global multi-objective solution and secondly to fine tuning them with respect to the constraints and the 
criteria described in section 2. 

The main idea is to use the fuzzy logic controller to compute new strategy parameter values of the ant system 

probability k
jiP ,  taking into account the workload and the total workload of the heterogeneous processors. 

3.4 Updating the pheromone trail 

To allow the ants to share information about good solutions, the updating of the pheromone trail must be 
established. After each iteration of the ant system algorithm, equation 2 describes in detail the pheromone 
update used when each ant has completed its own scheduling solution denoted Sk, that represents the length 
of the ant path. In order to guide the ant system towards good solutions, a mechanism is required to assess the 
quality of the best solution. The obvious choice would be to use the best makespan Lmin = Cmax of all solutions 
given by a set of ants with minimisation of the criteria C2 and C3 described in section 3.6.1. 

min

,
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Otherwise
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          (2)

 

Where kL represent the makespan of the solution kS  given by the k-th ant. 

After all the ants have completed their tours, the trail levels on each node need to be updated. The 
evaporation factor ensures that the pheromone is not accumulated infinitely and indicates the quantity of the 
pheromone that is approved over to the next algorithm iteration. The equation 3 represents the pheromone-
level-update: 
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where  -  is the pheromone evaporation parameter. 

- NA defines the number of ants to use in the colony. 

 

                     
Figure 2. Start construction graph of the HPSP with 4 ants 

 

                    
Figure 3. After few iteration the construction graph with 4 ants 

 

                    

Figure 4. The updating pheromone trail support the path of the best solution and damage the path of the bad 
solutions. The best path is noted critical path. 

3.5 Tabu search application 

A simple tabu search was also implemented for this optimisation HPSP problem. The main idea is to allow 
the ants to build their solutions as described in section 3.1 and then the resulting best solution is taken to a 
global optimum by the tabu search mechanism. The search process is performed on every critical path, every 
iteration, so it needs to be fairly fast.  

In the case of the HPSP problem, the method is to pick critical path responsible for the Cmax and verify 
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randomly if any job could be swapped between other processors which would result in a lower makespan. 
Following their concept, the tabu search considers one problem processor at a time and attempts to randomly 
swap one job from the problem processor with any other (non-problem) processor. Then the ants are used to 
generate promising HPSP solutions and the tabu search algorithm is used to avoid entrapment in local 
minima and to improve these solutions.  

3.6 Hybrid ant system and the fuzzy logic controller  

Based on the fuzzy system, the fuzzy logic controller appears very useful when the process of the analysis is 
too complex and where the available information is interpreted qualitatively and approximately. Applying 
fuzzy system for the adaptation of the  and  parameters regularly does not only enrich the searching ability 
of the ants mechanism in finding the very good solution but  also permits fine tuning them taking into 
account  the criteria (C2 and C3) described in section 3.6.1    

The fuzzy logic controller is used to automatically adjust the two  and  parameters at different stages in ant 
system scheduling mechanism. 

3.6.1  HPSP Criteria description 

Our objective is to find the scheduling that satisfies a multi-objective function under the constraints of the 
HPSP. In this paper, we consider the balance and compromise between the workload processors and the total 
workload of the processors. 

Let dj the latest finishing time of the job Jj and wi characterise the workload of the processor Pi 

In this study, the following objectives have been optimised: 

- Minimise the makespan or the maximal completion time of the all jobs: 

1 max ( )j
j NJ

C C Max d ut
 

   ,         (4) 

- Maximise the workload of each processor, which try to balance the load processors: 

2 ( )i
i NP

C Min w ut
 

  ,          (5) 

 - Minimise the total workload of the processors, which represents the total processing time of all processors:  

3
1

NP

i
i

C w ut


  ,          (6) 

The criteria C2 and C3 give a physical meaning to the HPSP, which refers to the total processing time 
reduction and to the finding of the workload balance between the set of available processors.  

3.6.2  Criteria aggregation by fuzzy logic controller 

In this section, two criteria C2 and C3 are considered for the multi-objective HPSP problem. C2  and C3 are combined by 
the fuzzy inference. Hence, the fuzzy controller is used to aggregate the criteria. Moreover the decision-maker has to 
preset the objective criteria and the upper bound values are automatically calculated for every criterion. According to the 
fuzzy sets theory, the fuzzy controller is based on four principal components: 

- The knowledge base: shaping the expertise of the basis rules. 

- The fuzzification interface: that transforms the crisp parameters values into fuzzy data. 

- The inference process: that represents the criteria aggregation based on the knowledge base. 

- The defuzzification interface: that transforms the aggregation results into value parameters action. 

3.6.3  Best bounds criteria and fuzzification 

A best bound BB
iC  for each criterion value is determined via the expected processing time matrix EPTM and 

computed by the following relations. 
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that represents the minimal total workload of all processors.   

3
1 ,(( ( ) 1), ( ( ))) , [0,1]
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i j
j NJ

j NP

C
C Max round Max Min pt ut with

NP

 
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
       (8) 

That represents the best Cmax 

where round(x) : round the elements of x to the nearest integer. 

2 3 1 ,( ( 1), ( ( )))BB BB BB
i j

j NJ i NP
C Max C C NP Max Min pt ut

   
          (9) 

At the t-th iteration, we evaluate the quality of solutions according to the criteria objective. The upper bounds 

of the 2
hC  and 3

hC  represent the highest feasible solution obtained by the ant system scheduling mechanism 

at the t-th algorithm iteration. Lastly the fuzzy characterisation of the criteria is given by the membership 

function ic shown in Fig.5. 

                                 

3.6.4  Knowledge basis and the control ant system parameters 

Based on the number of experiments and the expertise in scheduling domain the fuzzy decision rules were 
constructed for controlling the evolution of the parameters  and   related to the ant system strategy 
research solutions. The ant system strategy is given by the following basis rules:  

If C2  is best2 and C3 is best3 then decrease  and increase  for the next iteration ant system algorithm  

If C2  is bad2 and C3 is bad3 then increase  and decrease   for the next iteration ant system algorithm 

In order to implement and facilitate the fuzzy logic controller, we note 2 U   the control ant system 

vector with  T U and  22A   the decision strategy matrices that represent the expert 

decision for increasing or decreasing parameters ( and ) . The equivalent rule bases are given by:  

If C2 is best2 and C3 is best3 then UA 
1 U  

If C2 is bad2 and C3 is bad3  then UA 
2 U  

In our case the  U  represents the control vector of the ant system for the next iteration, for example 

1

0.75 0
 A

0 1.5

 
  
 

,
2

1.8 0
 A

0 0.85

 
  
 

 can be represent respectively the decision strategy of the first 

rule and the second rule. 

3.6.5  Defuzzification and the inference system 

Based on the theory of the fuzzy sets, the fuzzy logic controller concerns the non linear system represented 
by a set of fuzzy rules of which the consequent part are linear equations. The non linearity is transformed in a 
weighted sum of these linear state equations.  
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Figure 5. Fuzzy characterisation of the criteria
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According to the form of rule bases and the fuzzification phase described previously, the final output of the 
fuzzy logic controller is inferred as follows: 






 

2,1

2,1 U

r

r
r

r
r

c

UAc




,          (10) 

where ),,min( .3.2
1

BestBest ccc    and ),,min( .3.2
2

BadBad ccc   and r represent the number of 

fuzzy rules. 

3.6.6  The set up parameter values 

The set up parameter values used in the ant system scheduling algorithms and the fuzzy logic controller are 
often very important in getting good results, however the appropriate values are very often entirely problem 
dependent (Dorigo et al. 2002), and cannot always be derived from features of the problem itself . Generally, 
these parameters are defined by the expertise in the scheduling domain: 

- the control vector  ,
T

U   summarises how the ant system mechanism exploits the fuzzy controller for 

adapting the compromise between the pheromone trail and the heuristic information, 

-  determines the degree to which pheromone trail is used as the ants build their solutions. The lower the 
value, the less ‘attention’ the ants pay to the pheromone trail, but the higher the value, the less exploration the 
ants perform, 

-  determines the extent to which heuristic information is used by the ants, 

- the matrices 1A  and 2A   represent how the fuzzy controller increases or decreases the control vector for 

adapting multi-objective optimisation problems, 

- 0 is the value to which the pheromone trail values are initialised. Initially the value of the parameter 

should be moderately high to encourage initial exploration, while the pheromone evaporation procedure will 
gradually stabilise the pheromone trail, 

-  is the pheromone evaporation parameter and is always set to be in the range [0 1]  . It defines how 

quickly the ants ‘forget’ past solutions. A higher value makes for a more aggressive search; it tests a value of 
around 0.5-0.75 to find good solutions, 

- NA defines the number of ants used in the colony, a low value speeds the algorithm up because less search 
is done, a high value slows the search down, as more ants run before each pheromone update is performed. 
Experimentally, a value of 10 appeared to be a good compromise between execution speed and the quality of 
the solution achieved. 

It is interesting to note that for each value of the parameters the ant system scheduling metaheuristic yields a 
solution. Moreover, its convergence speed depends essentially on the initial number of used ants NA.   

3.6.7  Building solution steps 

The main steps in the strategy of the HPSP by ant system and fuzzy logic controller algorithm are given below: 

- Initialise parameters 0, , , , .NA      

- Create initial solutions and an empty tabu list of a given size. 

In order to generate feasible and diverse solutions, initial ant paths are represented by solutions issued from 
heuristic rules (MET, MCT, MinMin, MaxMin, FIFO, etc)[3] and random solution paths. Heuristics are used 
to approximate an optimum as near as possible. 

- Repeat the following steps until the termination criteria are met: 

- Find new solution by the ant system procedure scheduling given in section 3.1.  

- Evaluate the quality of the new solution.  

- If a new solution is improved then the current best solution becomes new solution 
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  else If no new solution is improved then apply the tabu search optimisation given in section 3.5.  

- Add solution to the tabu list, if the tabu list is full then delete the oldest entry in the list.  

- Apply the updating pheromone trail procedure given in section 3.4  

- Compute the upper bound of criteria hC2  and hC3  given in section 3.6.3 

- Apply the fuzzy logic controller and compute U+ by the  equation 10 

- END Repeat 

4. Illustrative Example 
In order to illustrate the above AS-FLC scheduling methaheuristic, let us consider a HPSP problem 
composed by 16 jobs Jj (j=1,2,…,16) and 4 processors Pi (i = 1,2,3,4). Table 3 depict the EPTM that gives 
for each job the expected processing time required by each processor. With 

010; 0.25; 0.75; 0.7; 0.5NA           

and 
1

0.5 0
 A

0 2

 
  
 

, 
2

2 0
 A

0 0.5

 
  
 

 

Table 3. The expected processing time matrix for 16 Jobs and 4 Processors. 

 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 
P1 4 3 2 5 2 1 1 2 2 3 3 3 4 6 2 5 
P2 3 2 2 2 1 3 3 3 3 3 2 4 5 6 4 5 
P3 4 5 5 1 4 2 3 1 4 2 4 6 2 6 5 4 
P4 3 2 2 4 2 4 6 5 1 2 6 5 1 6 2 4 

In the table 4 we give the values of the best bounds of each criterion; they are computed by the equations 7, 8 and 9.  

Table 4. The best bounds criteria for 16 Jobs and 4 processors 

C1
BB Max( (round(33/4)+1) , 6) = 9 ut 

C2
BB Max((33-9*3) , 6) = 6 ut 

C3
BB 3+2+2+1+1+1+1+1+1+2+2+3+1+6+2+4 = 33 ut 

At the first iteration and via the initial solutions generated by the heuristics and the random method, the AS-
FLC methaheuristic gives the critical path and the next solution as described below.  

 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 
P1 4 3 2 5 2 1 1 2 2 3 3 3 4 6 2 5 
P2 3 2 2 2 1 3 3 3 3 3 2 4 5 6 4 5 
P3 4 5 5 1 4 2 3 1 4 2 4 6 2 6 5 4 
P4 3 2 2 4 2 4 6 5 1 2 6 5 1 6 2 4 

 

St  End 

Figure 6. Initial path issued from the heuristics and random method 

Table 5. Initial scheduling issued from the heuristics and random method C1=10, C2=7 and C3 = 34 

Scheduling 
P1 J12 >>  J6  >> J7  >> J3 
P2 J14  >> J5  >> J11 
P3 J1  >> J8  >> J4  >> J10 
P4 J16  >> J13  >> J9  >> J15  >> J2 

C1=10; C2=7;  C3=34 

The solution given in the table 5 has a C1=10, C2=7 and C3 = 34. The AS-FLC finds that the processor P4 on 
the critical path is the problem. To solve this problem and after a few iterations of the travels of the ants (38 
in this application example) the AS-FLC metaheuristic suggests to swapping J1 and J16 on the processors P3 
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and P4. The swapping of the job J1 and J16 between the processors P3 and P4 gives an amelioration of the 
scheduling with C1=9, C2=7 and C3 = 33. 

 

 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11 J12 J13 J14 J15 J16 
P1 4 3 2 5 2 1 1 2 2 3 3 3 4 6 2 5 
P2 3 2 2 2 1 3 3 3 3 3 2 4 5 6 4 5 
P3 4 5 5 1 4 2 3 1 4 2 4 6 2 6 5 4 
P4 3 2 2 4 2 4 6 5 1 2 6 5 1 6 2 4 

 

St  End 

Figure 7. Solution path generated by the AS-FLC 

Table 6. The best multi- objective scheduling given by the AS-FLC (C1=9, C2=7 and C3 = 33) 

Scheduling 

P1 J12 >>  J6  >> J7  >> J3 

P2 J14  >> J5  >> J11 

P3 J16  >> J8  >> J4  >> J10 

P4 J1  >> J13  >> J9  >> J15  >> J2 

C1=9; C2=7;  C3=33 

5. Experimental Evaluation 

Run by run results Figures 7, 8, 9 depict the results achieved by applying the AS-FLC multi-objective search 
optimisation, we have evaluated, together, the AS-FLC metaheuristic and initial solution given by the MET, 
MCT, MinMin and MaxMin heuristics [3] and random method. When generating the EPTM, giving the 
expected processing time of each job Jj on each of the heterogeneous processors Pi we adopted the procedure 
used in [3] to represent the heterogeneity. In our case, we refer to the inconsistent heterogeneity when no 
consistency is imposed and the expected processing time matrix is randomly generated without enforcing any 
rule for consistency. In the context of this work, firstly the processing time pti,j is chosen Integer randomly 
generated with uniform distribution over the interval [1..100] and secondly we consider 16 processors and 64, 
128, 256, 512 Jobs scheduling . The multi-objective comparisons of the results are based on the makespan 
C1, the work load of processors C2 and the total workload of all processors C3. 

All AS-FLC search optimisation results presented are for 100 iterations runs with 10 the number of ants, and 
each run was performed 10 times and 00.25; 0.75; 0.01; 0.5        
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Figure 8. Comparison of the best bound C1
BB and the C1 given by the initials solutions and AS-FLC 

approach for inconsistent heterogeneity. 
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Figure 9. Comparison of the best bound C2
BB  and C2 value given by the initials solutions and AS-FLC 

approach for inconsistent heterogeneity. 
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Figure 10. Comparison of the best bound C3
BB  and C3 criterion given by the initials solutions and AS-FLC 

approach for inconsistent heterogeneity. 

In our context it is clear from the uniform results that the AS-FLC approach described is competitive with 
other hybrid evolutionary algorithms. Via the benefits of the initial solutions given by the heuristics and  the 
computing of the best bounds of the criteria , these results of experiments clearly show the extent to which 
the ant system rely on the fuzzy logic controller  to find very good solutions. 

6. Conclusions 
In this paper, two related approaches are presented, ant system and fuzzy logic controller for multi-objective 
optimisation techniques (AS-FLC), and this for solving the heterogeneous processors scheduling problem 
(HPSP). Via the new manner of the definition of the best bounds of the criteria (makespan, workload of 
processors and Total workload), the results of the reformulated problems show that the AS-FLC 
metaheuristic can find an optimised multi-objective solution for many different problems, it can be 
effectively adapted to deal with the multi-objective HPSP in computational grids. 

During the simulation phases, the AS-FLC can find a very good quality of solutions for many different 
problems; moreover it does persist to find the optimum for some classes of the multi-objective HPSP 
problems. It is, however, fairly robust as even when an optimal solution is not found, generally very good 
solutions are provided. In conclusion we believe that we have demonstrated that the ant system, when 
associated with fuzzy logic techniques, can be successfully applied to the heterogeneous processors 
scheduling problem in grid application. Hence, illustrative examples are provided to summarise the proposed 
methodology, and verify its effectiveness. 
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