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1. Introduction  
Conjugate gradient methods represent an important class of unconstrained optimization algorithms with 
strong local and global convergence properties and modest memory requirements. An excellent survey of 
development of different versions of nonlinear conjugate gradient methods, with special attention to 
global convergence properties, is presented by Hager and Zhang [23]. This family of algorithms includes 
a lot of variants, well known in the literature, with important convergence properties and numerical 
efficiency. The purpose of this paper is to present these algorithms as well as their performances to solve 
a large variety of large-scale unconstrained optimization problems. 

For solving the nonlinear unconstrained optimization problem 

{ }min ( ): ,nf x x R∈          (1) 

where : nf R R→  is a continuously differentiable function bounded from below, starting from an initial 

guess 0
nx R∈  a nonlinear conjugate gradient method, generates a sequence { }kx  as 

1k k k kx x dα+ = + ,         (2) 

where 0kα >  is obtained by line search, and the directions kd  are generated as 

1 1k k k kd g sβ+ += − + ,   0 0d g= − .       (3) 

In (3) kβ  is known as the conjugate gradient parameter, 1k k ks x x+= −  and ( )k kg f x= ∇ . Consider 

.  the Euclidean norm and define 1k k ky g g+= − . The line search in the conjugate gradient algorithms 
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often is based on the standard Wolfe conditions: 

( ) ( ) ,T
k k k k k k kf x d f x g dα ρα+ − ≤        (4) 

1
T T
k k k kg d g dσ+ ≥ ,         (5) 

where kd  is a descent direction and 0 1.ρ σ< ≤ <  For some conjugate gradient algorithms, stronger 
versions of the Wolfe conditions are needed to ensure convergence and to enhance stability. According to 
formula for kβ  computation, the conjugate gradient algorithms can be classified as: classical, hybrid, 
scaled, modified and parametric. In the following we shall present these algorithms and insist on their 
numerical Dolan and Moré’s performances profiles for solving large-scale unconstrained 
optimization problems.  

The history of conjugate gradient method begins with the seminal paper of Hestenes and Stiefel [24] who 
presented an algorithm for solving symmetric, positive definite linear algebraic systems. In 1964 Fletcher 
and Reeves [19] extended the domain of application of conjugate gradient method to nonlinear problems, 
thus starting the nonlinear conjugate gradient research direction. The main advantages of the conjugate 
gradient method are its low memory requirements, and its convergence speed. A large variety of 
nonlinear conjugate gradient algorithms are known. For each of them convergence results have been 
proved in mild conditions which refer to the Lipschitz and boundedness assumptions. To prove the global 
convergence of nonlinear conjugate gradient methods, often the Zoutendijk condition is used combined 

with analysis showing that the sufficient descent condition 
2T

k k kg d c g≤ −  holds, and that there exists 

a constant δ  such that 
2 .kd kδ≤  Often, the convergence analysis of conjugate gradient algorithms, 

for general nonlinear functions, follows insights developed by Gilbert and Nocedal [20]. The idea is to 
bound the change 1k ku u+ −  in the normalized direction / ,k k ku d d=  which is used to conclude, by 
contradiction, that the gradients cannot be bounded away from zero. 

2. Classical Conjugate Gradient Algorithms  

These algorithms are defined by (2) and (3), where the parameter kβ  is computed as in Table 1. Observe 

that these algorithms can be classified as algorithms with 
2

1kg +  in the numerator of kβ  and algorithms 

with 1
T
k kg y+  in the numerator of parameter kβ .  

Table 1. Classical conjugate gradient algorithms. 

Nr. Formula Author(s) 

1. 1
T

HS k k
k T

k k

y g
y s

β +=  
Hestenes and Stiefel [24] (HS). The 
first conjugate gradient algorithm for 
linear algebraic systems. 

2. 1 1
T

FR k k
k T

k k

g g
g g

β + +=  
Fletcher and Reeves [19] (FR). The 
first conjugate gradient algorithm for 
nonlinear functions. 

3. 1
T

P R P k k
k T

k k

y g
g g

β +=  
Polak-Ribiere [33] and Polyak [34] 
(PRP) 

4. 10,
T

PRP k k
k T

k k

y gmax
g g

β + + 
=  

 
 

Polak-Ribiere and Polyak + (PRP+) 
suggested by Powell [35] 

5. 1 1
T

C D k k
k T

k k

g g
g d

β + += −  
Conjugate Descent (CD) introduced 
by Fletcher [18] 
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6. 1
T

L S k k
k T

k k

y g
g d

β += −  
Liu and Storey [27] (LS) 

7. 1 1
T

DY k k
k T

k k

g g
y s

β + +=  
Dai and Yuan [13] (DY) 

The FR, CD and DY with 
2

1kg +  in the numerator of kβ  have strong convergence theory, but all these 
methods are susceptible to jamming. They begin to take small steps without making any significant 
progress to the minimum. On the other hand, HS, PRP and LS methods with 1

T
k kg y+  in the numerator of 

parameter kβ , have a built-in restart feature that addresses the jamming phenomenon. When the step ks  

is small, the factor 1k k ky g g+= −  in the numerator of kβ  tends to zero. Therefore, kβ  becomes small 

and the new direction 1kd +  in (3) is essentially the steepest descent direction 1.kg +− With other words, 

HS, PRP and LS methods automatically adjust kβ  to avoid jamming, and their performances are better 

than the performance of methods with 
2

1kg +  in the numerator of kβ . 

3. Hybrid Conjugate Gradient Methods  

These algorithms have been devised to exploit the attractive features of the classical conjugate gradient 
algorithms. They are defined by (2) and (3) where the parameter kβ  is as in Table 2. There are two 
classes of hybrid algorithms. The first class of the hybrid algorithms combines in a projective manner the 

algorithms having 
2

1kg +  in the numerator of kβ  with the algorithms having 1
T
k kg y+  in the numerator 

of parameter kβ . The second class of hybrid algorithms, more recent established, considers convex 

combinations of algorithms with 
2

1kg +  in the numerator of kβ  and the algorithms having 1
T
k kg y+  in 

the numerator of parameter kβ . In general, the performances of hybrid conjugate gradient algorithms are 
higher than the performances of classical conjugate gradient algorithms. 

Table 2. Hybrid conjugate gradient algorithms.  

Nr. Formula Author(s) 

1. { }{ }, ,hDY DY HS DY
k k k kmax c minβ β β β=  Hybrid Dai-Yuan 

[15](hDY) 

2. { }{ }0, ,hDYz HS DY
k k kmax minβ β β=  Hybrid Dai-Yuan zero 

[15] (hDYz) 

3. { }{ }, ,GN FR PRP FR
k k k kmax minβ β β β= −  Gilbert and Nocedal 

[20] (GN) 

4. { }{ }0, ,HuS PRP FR
k k kmax minβ β β=  Hu and Storey [25] 

(HuS) 

5. 0 ,
otherwise

PRP PRP FR
TaS k k k
k FR

k

β β β
β

β
 ≤ ≤

= 


 
Touati-Ahmed and 
Storey [39] (TaS) 

6. { }{ }0, ,LS CD LS CD
k k kmax minβ β β− =  Hybrid Liu-Storey, 

Conjugate-Descent  
(LS-CD) 
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7. 
1 1 1(1 )

T T
CCOMB k k k k
k k kT T

k k k k

g y g g
g g y s

β θ θ+ + += − + , 

1 1
2 2

1 1

( )( ) ( )( ) .
( )( )

T T T T
k k k k k k k k

k T T
k k k k k k

y g y s y g g g
y g y s g g

θ + +

+ +

−
=

−
 

If 0,kθ ≤  then set 0kθ = , i.e. ;CCOMB PRP
k kβ β=  

if 1kθ ≥ , then take 1kθ = , i.e. .CCOMB DY
k kβ β=  

Convex combination of 
PRP and DY where kθ  
is obtained by 
conjugacy condition. 
Andrei [7] (CCOMB) 

 

8. 
1 1 1(1 )

T T
NDOMB k k k k
k k kT T

k k k k

g y g g
g g y s

β θ θ+ + += − + , 

2
1 1 1

2 2
1 1

( ) ( )( )
.

( )( )

T T T T
k k k k k k k k k

k T T
k k k k k k

y g s g g g y y s

g g g y y s
θ + + +

+ +

− −
=

−
 

If 0,kθ ≤  then set 0kθ = , i.e. ;NDOMB PRP
k kβ β=  

if 1kθ ≥ , then take 1kθ = , i.e. .NDOMB DY
k kβ β=  

Convex combination of 
PRP and DY where kθ  
is obtained using the 
Newton direction. 
Andrei [7] (NDOMB) 

 

9. 
1 1 1(1 )

T T
NDHSDY k k k k
k k kT T

k k k k

g y g g
y s y s

β θ θ+ + += − + , 

1

1

T
k k

k T
k k

s g
g g

θ +

+

= − . 

If 0,kθ ≤  then set 0kθ = , i.e. ;NDHSDY HS
k kβ β=  

if 1kθ ≥ , then take 1kθ = , i.e. .NDHSDY DY
k kβ β=  

Convex combination of 
HS and DY, where kθ  
is obtained using the 
Newton direction. 
Andrei [8] (NDHSDY) 

4. Scaled Conjugate Gradient Algorithms  
The algorithms in this class generates a sequence xk of approximations to the minimum x * of f ,         
in which 

x x dk k k k+ = +1 α ,          (6) 

d g sk k k k k+ + += − +1 1 1θ β ,         (7) 

where θ k+1 is a parameter. The iterative process is initialized with an initial point x0 and d g0 0= − .  
Observe that if θ k+ =1 1,  then we get the classical conjugate gradient algorithms according to the value 
of the scalar parameter β k .  On the other hand, if  β k = 0, then we get another class of algorithms 
according to the selection of the parameter θ k+1 . Considering  β k = 0,  there are two possibilities for 

θ k+1 : a positive scalar or a positive definite matrix. If 11 =+kθ , then we have the steepest descent 

algorithm. If θ k kf x+ +
−= ∇1

2
1

1( ) , or an approximation of it, then we get the Newton or the quasi-
Newton algorithms, respectively. Therefore, we see that in the general case, when θ k+ ≠1 0 is selected in 
a quasi-Newton manner, and β k ≠ 0,  (7) represents a combination between the quasi-Newton and the 
conjugate gradient methods. However, if θ k+1 is a matrix containing some useful information about  the 
inverse Hessian of function f , we are better off using d gk k k+ + += −1 1 1θ since the addition of the term 
β k ks in (7) may prevent the direction dk  from being a descent direction unless the line search is 

sufficiently accurate. Therefore, in the following we shall consider θ k+1 as a positive scalar which 
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contains some useful information to the inverse Hessian of function f .  

To determine β k  consider the following procedure [1-4]. As we know, the Newton direction for solving 

(1) is given by d f x gk k k+ +
−

+= −∇1
2

1
1

1( ) .  Therefore, from the equality 

− ∇ = − ++
−

+ + +
2

1
1

1 1 1f x g g sk k k k k k( ) ,θ β  

we get:  

β
θ

k
k
T

k k k k
T

k

k
T

k k

s f x g s g
s f x s

=
∇ −

∇
+ + + +

+

2
1 1 1 1
2

1

( )
( )

.       (8) 

Using the Taylor development, after some algebra we get: 

β
θ

k
k k k

T
k

k
T

k

y s g
y s

=
−+ +( )

,1 1         (9) 

where y g gk k k= −+1 .  Birgin and Martínez [10], who firstly introduced scaled conjugate gradient 
algorithms, arrived at the same formula for β k , but using a geometric interpretation of quadratic 

function minimization. The parameter kβ  in (7) can be defined, as in Table 3, where the scaling 

parameter kθ  is computed as: 

θ k
k
T

k

k
T

k

s s
y s+ =1 .           (10) 

Table 3. Scaled conjugate gradient algorithms. 

Nr. Formula Author(s) 
  
 1. 1( )T

BM k k k k
k T

k k

g y s
y s
θβ + −

=  
Scaled Perry. Suggested by 
Birgin and Martínez [10] and 
Andrei [1-4] (BM) 

 
2. 1 10,

T T
BM k k k k k
k T T

k k k k

g y g smax
y s y s

θβ + + + 
= − 

 
 

Scaled Perry+. Suggested by 
Birgin and Martínez [10] (BM+) 

 
3. 1

1

T
sPRP k k k
k T

k k k k

g y
g g

θβ
α θ

+

−

=  
Scaled Polak-Ribière-Polyak. 
Suggested by Birgin and Martínez 
[10] and Andrei [1-4] (sPRP) 

 
4. 1 1

1

T
sFR k k k
k T

k k k k

g g
g g

θβ
α θ

+ +

−

=  
Scaled Fletcher-Reeves. Suggested 
by Birgin and Martínez [10] and 
Andrei [1-4] (sFR) 

 
5. 1

1

T
sHS k k
k k T

k k

g y
y s

β θ +
+=  

Scaled Hestenes-Steifel 
(sHS)[1] 

Another scaled conjugate gradient algorithm has been presented by Andrei [1-4]. This is a scaled 
memoryless BFGS preconditioned conjugate gradient algorithm. The basic idea is to combine the scaled 
memoryless BFGS method and the preconditioning technique in the frame of conjugate gradient method. 
The preconditioner, which is also a scaled memoryless BFGS matrix, is reset when the Powell restart 
criterion holds. The parameter scaling the gradient is selected as the spectral gradient (10). 

Algorithm SCALCG [1-4] 

Step 1. Initialization. Select x R n
0∈ ,  and the parameters 0 11 2< ≤ <σ σ .  Compute f x( )0  and 

g f x0 0= ∇ ( ).  Set d g0 0= −  and α 0 01= / .g  Set k = 0.  

Step 2. Line search. Compute α k satisfying the Wolfe conditions (4) and (5). Update the variables 
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x x dk k k k+ = +1 α .  Compute f x gk k( ),+ +1 1 and s x xk k k= −+1 ,  y g gk k k= −+1 .   

Step 3. Test for continuation of iterations. If this test is satisfied the iterations are stopped, else set 
k k= +1.  

Step 4. Scaling factor computation. Compute θ k using (10). 

Step 5. Restart direction. Compute the (restart) direction dk  as: 

1 1 1
1 1 1 1 1 11 .

T T T T
k k k k k k k k

k k k k k k k kT T T T
k k k k k k k k

g s y y g s g yd g y s
y s y s y s y s

θ θ θ θ+ + +
+ + + + + +

    
= − + − + −    

     
 

Step 6. Line search. Compute the initial guess:α αk k k kd d= − −1 1 2 2
/ .  Using this initialization 

compute α k satisfying the Wolfe conditions. Update the variables x x dk k k k+ = +1 α .  Compute 
f xk( ),+1  gk+1  and s x xk k k= −+1 ,  y g gk k k= −+1 .  

Step 7. Store: θ θ= k ,  s sk=  and y yk= .  

Step 8. Test for continuation of iterations. If this test is satisfied the iterations are stopped, else set 
k k= +1.  

Step 9. Restart. If the Powell restart criterion: 
2

1 10.2 ,T
k k kg g g+ +≥  is satisfied, then go to step 4 (a 

restart step); otherwise continue with step 10 (a standard step). 

Step 10. Standard direction. Compute the direction dk as: 

d v
g s w g w s

y s
y w
y s

g s
y s

sk
k
T

k k
T

k

k
T

k

k
T

k
T

k

k
T

k

k
T

k
k+

+ + += − +
+

− +








1

1 1 11
( ) ( )

,  

where v  and w  are computed as: 

1
1

T
k

k T

g sv g y
y s

θ θ +
+

 
= −  

 
1 11 ,

T TT
k k

T T T

g s g yy y s
y s y s y s

θ θ+ +
  

+ + −  
  

 

and 

T
k

k T

y sw y y
y s

θ θ
 

= −  
 

1 ,
T TT
k k

T T T

y s y yy y s
y s y s y s

θ θ
  

+ + −  
  

 

with saved values θ ,  s  and y.  

Step 11. Line search. Compute the initial guess: α αk k k kd d= − −1 1 2 2
/ .  Using this initialization 

compute α k satisfying the Wolfe conditions. Update the variables x x dk k k k+ = +1 α .  Compute 
f xk( ),+1  gk+1  and s x xk k k= −+1 ,  y g gk k k= −+1 .  

Step 12. Test for continuation of iterations. If this test is satisfied the iterations are stopped, else set 
k k= +1  and go to step 9.  

To a great extent, SCALCG algorithm is very close to the Perry/Shanno computational scheme 
[32,36,37]. SCALCG is a scaled memoryless BFGS preconditioned algorithm where the scaling factor is 
the inverse of a scalar approximation of the Hessian. If the Powell restart criterion 

2
1 10.2T

k k kg g g+ +≥  is used, for general functions f  bounded from below with bounded second 

partial derivatives and bounded level set, using the same arguments considered by Shanno in [37] 
it is possible to prove that the iterates either converge to a point x* satisfying g x( ) ,* = 0 or the 
it erates cycle. 
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5. Modified Conjugate Gradient Algorithms  
We know a large variety of modified conjugate gradient algorithms. All of them are designed to improve 
the performance of the classical computational schemes using the idea of preconditioning or the 
modification of classical schemes in order to satisfy the sufficient descent condition. The algorithms in 
this class are characterized by (2) and (3), where the parameter kβ  is computed as in Table 4.  

Table 4. Modified conjugate gradient algorithms. 

Nr. Formula Author(s) 

  1. 1 1
N

k k k kd g dβ+ += − + ,  0 0d g= − ,   

                                                   

{ },N N
k k kmaxβ β η= ,          

{ }
1

,k
k kd min g

η
η

−
= ,      0.01η =  

2

1
1 2

T

kN
k k k kT T

k k k k

y
y d g

y d y d
β +

 
 = −
 
 

, 

Introduced by Hager şi Zhang 
[21, 22]. (CG_DESCENT) 

This scheme is obtained by 
deleting a term from the search 
direction for the memoryless 
quasi-Newton scheme of Perry 
[32] and Shanno [36, 37]. 

In [9] Andrei proved that this 
computational scheme is also a 
modification of HS formula. 

 

2. 
1

1
1

TT
ACGA k k

k k k kT T
k k k k

g yy s g
y s y s

β +
+

 
= − 

 
 

Suggested by Andrei [9] 
(ACGA) 

3. 
1 1max 0, 1

T T
ACGA k k k k

k T T
k k k k

y g s g
y s y s

β + + +  
= −  

  
 

Suggested by Andrei [9] 
(ACGA+) 

4. 1 1 1
CGSD

k k k k kd g dθ β+ + += − + ,  0 0d g= − , 

1
1 1

1
TT

CGSD k k
k k k kT T

k k k k

g yg s g
y s y s

β +
+ +

 
= − 

 
 

2
1

1
1

k
k T

k k

g
y g

θ +
+

+

=  

Introduced by Andrei [5] 
(CGSD) as a modification of 
DY method. 

 

5. 2

12
1

T

kAPRP
k k k kT

k k k

y
y s g

y s g
β +

 
 = −
 
 

 

Suggested by Andrei [9] 
(APRP) 

This is a modification of PRP 
method. 

Maximization in formula for N
kβ  computation scheme by Hager and Zhang plays the role of the 

truncation operation like in the PRP+ scheme, for example. Hager and Zhang obtained this algorithm by 
deleting a term from the search direction for the memoryless quasi-Newton scheme of Perry [32] and 
Shanno [36]. In [21] Hager and Zhang proved the global convergence with inexact line search showing 

that for any line search and any function, the sufficient descent condition 
2(7 / 8)T

k k kg d g≤ −  is 

satisfied and the jamming is avoided essentially due to the 1
T
k ky g +  term in the formula for .N

kβ   

The ACGA and ACGA+ computational schemes are a modification of the DY conjugate gradient 
algorithm, designed to satisfy the sufficient descent condition. In [9] Andrei proved that for uniformly 
convex functions under strong Wolfe condition the ACGA is globally convergent. The CGSD algorithm 
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is also a modification of Dai and Yuan conjugate gradient algorithm. In [9] Andrei proved the global 
convergence of CGSD for general nonlinear functions under the Wolfe conditions.  

One of the best conjugate gradient algorithm in this class is CONMIN by Shanno [36] and Shanno and 
Phua [38]. Using the Hestenes and Stiefel formula for updating kβ , Perry [32] suggested a formula for 

computing the search direction 1kd +  which satisfy a system of linear equations, similar but not identical, 
to the quasi-Newton equation. Shanno [36] reconsiders the method of Perry and interprets it as a 
memoryless BFGS updating formula. In this algorithm 1kg +  is modified by a positive definite matrix 
which best estimates the inverse Hessian, without any additional storage requirements. For convex 
functions, under inexact line search Shanno [37] proved the global convergence of CONMIN.  

6. Parametric Conjugate Gradient Algorithms  
The parametric conjugate gradient algorithms have been introduced in the same way that the quasi-
Newton methods have been combined to get the Broyden or the Huang families. These algorithms are 
defined by (2) and (3) where the parameter kβ  is as in Table 5. 

Table 5. Parametric conjugate gradient algorithms. 

Nr. Formula Author(s) 

  

 1. 
1( )T

DL k k k
k T

k k

g y ts
y s

β + −
= ,   0t >  is a constant 

Dai and Liao [12] (DL)  

 

2. 1 1max 0,
T T

DL k k k k
k T T

k k k k

y g s gt
y s y s

β + + + 
= − 

 
,  

0t >  is a constant. 

Dai and Liao + [12] (DL+) 

 

3. 
1( ) ,

T
YT k k k
k T

k k

g z ts
d z

β + −
=  

where ,k
k k kT

k k

z y u
s u
δξ

= +  

           1 16( ) 3( ) ,T
k k k k k kf f g g sξ + += − + +  

0δ ≥  is a constant and n
ku R∈  satisfies 0;T

k ks u ≠  

for example .k ku d=  

Suggested by Yabe and Takano 
[41] (YT) based on a modified 
secant condition given by Zhang 
et al. [40] 

 

4. 1 1max 0, .
T T

YT k k k k
k T T

k k k k

g z g st
d z d z

β + + + 
= − 

 
 

Suggested by Yabe and Takano 
plus [41] (YT+) 

 

5. 
2

1
2 (1 )

k
k T

k k k k k

g

g d y
β

λ λ
+=

+ −
, [0,1]kλ ∈ . 

The FR algorithm corresponds to 1kλ = .  

The DY algorithm correspond to 0kλ = . 

Suggested by Dai and Yuan [14] 
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6. 
2

1 1
2

(1 )
,

(1 )

T
k k k k k

k T
k k k k k

g g y

g d y

µ µ
β

λ λ
+ ++ −

=
+ −

, [0,1].k kλ µ ∈  

 

Suggested by Nazareth [30]  

This two parameter family 
includes the methods: FR, DY, 
PRP and HS in extreme cases. 

 

7. 
2

1 1
2

(1 )
,

(1 )

T
k k k k k

k T T
k k k k k k k k k

g g y

g d y d g

µ µ
β

λ ω λ ω
+ ++ −

=
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Suggested by Dai and Yuan [14] 
This three parameter family 
includes the six classical conjugate 
gradient algorithms, as well as the 
previous one-parameter and two-
parameter families. 

7. Performance Profiles 
In this section we present the computational performance of a Fortran implementation of conjugate 
gradient algorithms on a set of 750 unconstrained optimization test problems. The test problems are the 
unconstrained problems in the CUTE [11] library, along with other large-scale optimization problems 
presented in [6]. We selected 75 large-scale unconstrained optimization problems in extended or 
generalized form. For each function we have considered ten numerical experiments with the number of 
variables n = 1000 2000 10000, , , .K  CG_DESCENT is authored by Hager and Zhang [21,22], 
CONMIN by Shanno and Phua [38]. The CG_DESCENT code contains the variant CG_DESCENT(w) 
implementing the Wolfe line search and the variant CG_DESCENT(aw) implementing an approximate 
Wolfe line search. The Wolfe conditions implemented in CG_DESCENT(w) can compute a solution with 
an accuracy on the order of the square root of the machine epsilon. In contrast, the approximate Wolfe 
line search implemented in CG_DESCENT(aw) can compute a solution with an accuracy of the order of 
machine epsilon. The rest of all algorithms considered in this study are authored by Andrei. All codes are 
written in double precision Fortran and compiled with f77 (default compiler settings) on an Intel Pentium 
4, 1.8 GHz workstation.  

All algorithms implement the Wolfe line search conditions with 0.0001ρ =  and 0.9σ = , and the 

same stopping criterion gk ∞
−≤ 10 6 , where .

∞
is the maximum absolute component of a vector. 

The comparisons of algorithms are given in the following context. Let f i
ALG1 and f i

ALG2 be the optimal 
value found by ALG1 and ALG2, for problem i = 1 750, , ,K  respectively. We say that, in the particular 
problem i,  the performance of ALG1 was better than the performance of ALG2 if:  

f fi
ALG

i
ALG1 2 310− < −  

and the number of iterations, or the number of function-gradient evaluations, or the CPU time of ALG1 
was less than the number of iterations, or the number of function-gradient evaluations, or the CPU time 
corresponding to ALG2, respectively.  

The performances of these algorithms have been evaluated using the profiles of Dolan and Moré [17] 
corresponding to this set of 750 test problems we extracted from the CUTE collection [11] and from [6]. 
For each algorithm, we plot the fraction of problems for which the algorithm is within a factor of the best 
CPU time. The left side of these Figures gives the percentage of the test problems, out of 750, for which 
an algorithm is more successful; the right side gives the percentage of the test problems that were 
successfully solved be each of the algorithms. Mainly, the right side represents a measure of an 
algorithm’s robustness. 

In the first set of numerical experiments we compare the classical conjugate gradient algorithms. Figure 1 
shows the CPU time performance profiles of these algorithms. 

From Figure 1 we see that the first set of methods FR, CD and DY although they have strong 
convergence properties, they may not perform well in practice due to jamming. In contrast, although the 
second set of methods HS, PRP and LS in general may not converge, they often perform better than the 
methods in the first set.  
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Figure 1. Performance profiles of HS, FR, PRP, PRP+, CD, LS and DY. 

 

Figure 2 presents the performance profiles of some hybrid conjugate gradient algorithms.  
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Figure 2. Performance profiles of some hybrid conjugate gradient algorithms. 
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Figure 3 presents the performance profiles of NDHSDY versus the classical conjugate gradient 
algorithms: PRP, PRP+, LS and CD. It seems that the best algorithm is the hybrid algorithm NDHSDY 
given by a convex combination of HS and DY, where the parameter in the convex combination is 
obtained using the Newton direction. 

Figure 3. Performance profiles of NDHSDY versus some classical conjugate gradient algorithms. 

In the next set of numerical experiments we compare the scaled conjugate gradient algorithms. Figure 4 
shows the performance profiles of SCALCG, BM, BM+, sPRP and sFR. We see that SCALCG algorithm 
is top performer among the scaled conjugate gradient algorithms. 

Figure 4. Performance profiles of scaled conjugate gradient algorithms. 
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Figure 5 shows the performance profile of SCALCG versus classical conjugate gradient algorithms PRP 
and PRP+, as well as the hybrid algorithms CCOMB and NDHSDY. 

Figure 5. Performance profiles of SCALCG versus PRP, PRP+, CCOMB and NDHSDY. 

In the following we compare the modified conjugate gradient algorithms CG_DESCENT(w), ACGA, 
ACGA+, CGSD and APRP. Figure 6 presents the performance profiles of these algorithms. 

 

Figure 6. Performance profiles of CG_DESCENT, ACGA, ACGA+, CGSD and APRP. 
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Figure 7 presents the performance profiles of CG_DESCENT(w) and PRP, PRP+, NDHSDY and 
SCALCG. 

 

Figure 7. Performance profiles of CG_DESCENT(w) versus PRP, PRP+, NDHSDY and SCALCG. 

Now, comparing CONMIN with some other modified conjugate gradient algorithms: ACGA, ACGA+, 
CGSD and APRP, the following performance profiles have been obtained, as in Figure 8. 

 

Figure 8. Performance profiles of CONMIN, ACGA, ACGA+, CGSD and APRP. 
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We see that CONMIN is top performer. Figure 9 presents the performances profiles of CONMIN and 
PRP, NDHSDY, SCALCG and CG_DESCENT. 

 

 

 

Figure 9. Performance profiles of CONMIN versus PRP, NDHSDY, SCALCG and CG_DESCENT. 

Finally, let us consider the parametric conjugate gradient algorithms DL(t=1) and DL+(t=1). Figure 10 
shows the performance profiles of DL and DL+ versus PRP, SCALCG and CONMIN. 
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Figure 10. Performance profiles of DL(t=1) and DL+(t=1) versus PRP, SCALCG and CONMIN. 

8. Conclusion and Discussion  
Conjugate gradient algorithms are one of the most elegant and probably the simplest algorithms for 
computational nonlinear optimization. Their theory is well established (please, see [23]) and they proved 
to be surprisingly effective in solving real practical applications. The computational study presented here, 
which include 29 conjugate gradient algorithms, shows that the most effective are CONMIN, 
CG_DESCENT  and SCALCG. Close to these algorithms is NDHSDY, a convex combination of HS and 
DY conjugate gradient algorithms in which the parameter is computed using the Newton direction. 
Concerning the robustness, CG_DESCENT is on the first place.  

This computational study involves a large variety of nonlinear test functions. However, to conclude about 
the effectiveness of these algorithms, the test functions must be organized on some classes with well 
established characteristics, and to see which conjugate gradient algorithm is more successful. This 
remains to be explored.  

It is worth seeing a comparison between the most successful conjugate gradient algorithms and quasi-
Newton limited BFGS algorithm of Nocedal [31]. Quasi-Newton methods gradually build up an 
approximate Hessian matrix (or an approximate inverse Hessian matrix) by using the gradient information 
from some of the previous iterates. Given the current iterate kx  and the approximate Hessian matrix kB  

at kx , the so called the Newton system ( )k k kB d f x= −∇  is solved in order to generate the direction kd . 
The best known quasi-Newton method is BFGS. However, the BFGS approach is not affordable due to 
the memory requirements. The limited BFGS variant introduced by Nocedal [31] overcomes this 
difficulty by approximating the product ( )k k kd H f x= − ∇ , where kH  is a positive definite 

approximation to the inverse of the Hessian at kx , in terms of the most recently computed m  pairs 

{ },i is y , where 1i i is x x+= −  and 1( ) ( ).i i iy f x f x+= ∇ −∇  When the 1m +  pair is computed, the 
oldest pair is discarded and its location in the memory is replaced by the new one. Figure 11 shows the 
performance profiles of CONMIN, SCALCG, CG_DESCENT and NDHSDY versus L-BFGS (m=3) an 
implementation given by Liu and Nocedal [26] using the line search of Moré and Thuente [28]. 
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Figure 11. Performance profiles of LBFGS(m=3) versus CONMIN, SCALCG, CG_DESCENT and 
NDHSDY conjugate gradient algorithms. 

From Figure 11 we see that LBFGS (m=3) is way more successful than any conjugate gradient algorithm. 
Closest to LBFGS is CONMIN.  

It is worth presenting a comparison of conjugate gradient algorithms with truncated Newton method TN 
by Nash [29]. The truncated Newton method uses an approximation of the Hessian matrix, and stops the 
solving process of the Newton system ( )k k kB d f x= −∇  as soon as a suitable termination criterion is 
satisfied. The truncated Newton method in TN implementation is preconditioned by a BFGS limited-
memory quasi-Newton method with a further diagonal scaling. The Newton system is solved by means of 
a preconditioned conjugate gradient method. In these methods the direction kd  satisfies the 

condition 2 ( ) ( ) ( )k k k k kf x d f x f xη∇ +∇ ≤ ∇ , for some (0,1)kη ∈ , known as the “forcing” 

sequence.  Dembo, Eisenstat and Steihaug [16] choose the forcing terms as: 

1min , (
2

r
k kc f xη  = ∇ 

 
, 

where c  is a positive constant and 0 1.r< ≤  

Figure 12 shows the performance profiles of TN versus CONMIN, CG_DESCENT, SCALCG and 
NDHSDY.  
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Figure 12. Performance profiles of TN versus CONMIN, CG_DESCENT(w),  
SCALCG and NDHSDY algorithms. 

Even that conjugate gradient methods are relevant nonlinear optimization methods, there are some open 
problems which deserve additional research.  

1) In contrast to the quasi-Newton methods for which the steplength for the vast majority of iterations is 
equal to 1, the steplength in conjugate gradient methods differ from 1, being larger or smaller up to two 
order of magnitude depending on how the problem is scaled. In conjugate gradient methods the size of 

kα  vary in a very unpredictabe way.  

2) Another open problem is the preconditioning of conjugate gradient algorithms. The scaled conjugate 
gradient algorithms by Birgin and Martínez [10] and Andrei [1-4] introduce a scaling of 1kg + in the 

direction 1kd +  computation. However, if the definition of 1kθ +  in (7) does contain enough information 
about the inverse Hessian of the minimizing function, then better is to use the search direction 

1 1 1k k kd gθ+ + += − , since the addition of the term k ksβ  in (7) may prevent 1kd +  to be a descent direction 
unless the line search is sufficiently accurate. In scaled conjugate gradient algorithms there is a very 
delicate balance between 1 1k kgθ + +−  and k ksβ , which brings into attention the preconditioning question. 

3) Another open problem with conjugate gradient methods is that the structure of the minimizing problem 
is not taken into account to design more efficient computational schemes. This is in sharp contrast to 
quasi-Newton or truncated Newton methods. 
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