
 

Studies in Informatics and Control, Vol. 16, No. 4, December 2007 401

Movement Optimisation of Cooperating Ant Colony:  
A Study in Agent–based Social Simulation 

Machová Kristína1, Peter Illiáš1 

1Department of Cybernetics and Artificial Intelligence, Technical University,  

Letná 9, 042 00 Košice, Slovakia 

Kristina.Machova@tuke.sk, 

Abstract: The article is dedicated to the field of ant algorithms. It focuses on the problem of searching the shortest path in a graph 
using ant algorithms in combination with some artificial intelligence methods: evolutionary algorithms and multi-agent systems. 
The article presents a simulation program, which is able to search the shortest path in a graph. The process of searching the solution 
is simulated also in a graphical way – in a visual form. Agents, which simulate ants in our work, need only a limited memory. Thus, 
the use of the presented implementation is not restricted by the complexity of the solved problem. It is an advantage of our 
simulation. The size of population is controlled by natural selection. On the other hand, agents need more time to get lost in bigger 
environments. Therefore, the population size increases more quickly in greater environments. The implementation is adaptive as 
well. If some edge – graph route – is deleted while the program is running or a new one is created, the system is able to adapt to the 
changed environment. The designed simulation program can be used for solving various problems related to the following domains: 
electronic market, computer maps, traffic planning, computer games, labyrinth search by a robot, connection-oriented network 
routing and connection-less network routing. 

Keywords: ant algorithms, evolutionary algorithms, multi agent systems, graph, the shortest path  

Kristína Machová graduated (MSc.) with honours from Technical University in Košice (Department of Technical Cybernetics) in 
1985. She earned her PhD in Machine Learning in 1996. Since 1985 she has been working for the Department of Cybernetics and 
AI of the Faculty of Electrical Engineering and Informatics - Technical University of Košice. Her current scientific research is 
focused on knowledge based systems, machine learning and meta-learning, basic principles of learning algorithms, Ant Colony 
Optimization algorithms, automatic classification of text documents, information retrieval and so on. In addition to this, she also 
investigates the questions related to the adaptive web and semantic web. 

Peter Illiáš graduated (MSc.) with honours from Technical University in Košice (Department of Cybernetics and Artificial 
Intelligence) in 2004. His interests include Machine Learning, Ant Colony Optimization algorithms, multi-agent systems, 
evolutionary algorithms and informatics. Currently he is working in the field of informatics. 

1. Introduction  

The nature inspires researchers in various ways. Airplanes were designed according to bird wings. Robot 
movements were copied from movements of insect. Many resistant materials were made by the same 
technology which spiders employ to produce their nets. After many million years of evolution, the nature 
offers many solutions of various problems not only in the field of the research and technique. 

Algorithms based on the behaviour of ants – ant algorithms – were used at first by Marco Dorigo1 and his 
co-workers under the name ‘Ant Colony Optimization’ (ACO) algorithms. ACO were realised using on 
multi-agent systems in order to solve hard combinatorial optimisation problems [2], [3]. The most known 

problems from them were Travelling Salesman Problem (TSP) and 
Quadratic Assignment Problem (QAP). New approaches and 
applications of the ant algorithms appear during the short history of 
these methods. The latest applications deal with traffic movement, 
graph colouring, routing in communication nets, and so on. The idea of 
the ACO, like many other ideas in the field of research and technique, 
is based on principles, which are present everywhere in the nature. 
ACO algorithms, according to the name, are based on the principles 

which hold in the world of natural ant colonies.  Ants are “social” kind of insect, like bees. The basic 
principle of this “social system” is the following: colony is always preferred to individual ants. The ability 
of the ants to find a source of food and the shortest route to the food is very interesting. A secret of their 
skill is in releasing pheromone in their surrounding and thus in creating a pheromone trail. The ants can 
percept this pheromone trail and move along it. In case of trail crossing, the ants make a decision where to 
go – according to the intensity of the pheromone trails. They usually follow the route with the most 
intensive pheromone trail. The trail also enables them to go back to their nest.  In this way, several routes 
between the nest and the food source are created. The ants are gradually able to find the shortest route to 
the food source and then the majority of ants will use this route in future. 

                                                 
1 Marco Dorigo – professor at Universit´e Libre de Bruxelles. He is also the founder of the association IRIDIA, which associates 
people interested in theory and applications of ant algorithms. 



 

 Studies in Informatics and Control, Vol. 16, No. 4, December 2007 402 

2. Collective Intelligence 

Scientists from many research fields have taken an interest in “social” behaviour of insect species mainly 
due to ingenious structure of their communities. Some kinds of insect, including ants, have the ability of 
self-organising in the form of a super-organism. In reality, ants are able to find the shortest path from a 
source of food to the nest without using eyes. Also, they are able to adapt their behaviour to 
environmental changes. For example, they can find the new shortest path in the case, when the old one is 
not usable any more because of barricading it by an obstacle. (Figure 1) illustrates the situation, when an 
obstacle appears in the middle of the path connecting the nest and the source of food.  

 
Figure 1. An obstruction of the shortest path 

In the moment the obstacle appears on the path, those ants, which find oneself in front of the obstacle, cannot 
follow the pheromone trail. They have to decide to which side (left or right) they turn. To take an unbiased 
position, let us suppose that the half of ants turn left and the other half of ants turn right (Figure 2).  

 
Figure 2. The primary uniform ant distribution 

The ants, which select the shorter path around the obstacle, are able to reconstruct the pheromone trail on 
this new path more quickly than the ants, which select the longer path around the same obstacle. 
Pheromone evaporation is also an important factor to come into play. Without pheromone evaporation, 
quantity of pheromone on both paths would be in balance after returning the slower ant group. As a result, 
an ant would have to select between two equally strong trails on the crossroad. Because of pheromone 
evaporation, more quantity of pheromone is evaporated from the longer trail. Thus, the shorter path 
becomes stronger and stronger and, subsequently, more and more ants select this shorter path. Finally, all 
ants move along this shorter path (Figure 3).  

 
Figure 3. The final selection of the shortest path around the obstacle 

Because of this positive auto-catalytic process, incoming ants can easily make a decision to select shorter 
path. Auto-catalysis is a very strong property. This property is also used by evolutionary algorithms 
within selective and reproductive mechanisms. It is about preferring better organisms (results) – this 
preference determines the direction of subsequent search. A distributed optimisation mechanism can be 
based on this principle, where pheromone trails represent a memory. This memory can be read from and 
wrote into by all ants in a colony. The memory serves as a communication channel enabling 
communication between individual ants. It is interesting, that an individual ant can randomly find the 



 

Studies in Informatics and Control, Vol. 16, No. 4, December 2007 403

shortest path to food as well. But only ant colony – a group of ants can find the optimal solution - the 
shortest path to food. Thus, the shortest path finding is an emergent behaviour of the ant colony.   

Ants find the path using on indirect communication – using on changing the environment they operate in.  
The phenomenon of stigmergy relates narrowly with the activity of social insect. The term (stigmergy) 
was introduced by French biologist Pierre-Paul Grassé in 1959 to refer to termite behaviour [6]. He 
defined it as: "Stimulation of workers by the performance they have achieved."The essence of this 
phenomenon is the following fact: the colony coordination does not require any direct interactions 
between colony members (agents). Colony members communicate between each other only using on 
stimuli, which remain in the environment as results of their previous activities. In case of active 
stigmergy, results of their previous activities are characteristic marks, for example pheromone trails of 
ants. In case of passive stigmergy, results of their previous activity are local changes of the structure or 
state of the environment. 

3. Used Methods 

We used basic ideas of ant algorithms in our experiments. The most known ant algorithms are Ant 
System [4] and ACO (Ant Colony Optimisation) [3]. These algorithms simulate the behaviour of an ant 
colony using on “artificial ants”. These artificial ants (similarly to real ants) represent a colony of cooperating 
individuals, which use pheromone marks for both activity control and communication. They search a sequence 
of local steps in search space to find the shortest path. They also perform random decisions without any 
procedure defined beforehand. All their decisions are local in space and also in time. 

Artificial ants differ from real ants in the following:  

• Artificial ants live in a discrete world and their movements in space consist of transitions from 
one discrete place to another. 

• Artificial ant has an internal state representing memory of his previous actions. 

• Artificial ants conserve the values of a pheromone trail, which leads to “solution of good quality”. 

• To improve results of ant algorithms and systems based on them, the algorithms can be enriched 
by some methods (e.g. look-ahead, local optimisation, backtracking, etc.) which cannot be found 
in real ant activities. 

We decided to base our own simulation of ant algorithms only on using basic ideas of ant algorithms 
without using complicated mathematical models. Our aim was to show a simple simulation of ant colony 
behaviour using on artificial intelligence methods. Particularly, we used techniques of evolutionary 
algorithms and multi-agent systems. Multi-agent systems were used to create an ant population searching 
given graphs. Evolutionary algorithms were used to refine obtained results and their optimisation.  

We used a modified version of the Ant Colony Optimisation algorithm, which can by used in     
distributed environment: 

procedure ACO_Meta_heuristic() 
while (stop_condition = false) 

select_activity: 
generate_ant(); 
evaporation_pheromone (); 
daemon_action(); 

end select activity 
end while 

end procedure 
 
procedure generate_ant() 

initialize_ant(); 
M = actualize_memory(); 
while (actual_state ≠ goal_state) 

A = local_route_table(); 
P = count_movement_probability(A,M,restrictions); 
next_step = select_step(P,restrictions); 
go_to_next_state(next_step); 
if (online_pheromone_inserting = true) 



 

 Studies in Informatics and Control, Vol. 16, No. 4, December 2007 404 

set_pheromone(); 
correct_route_table(); 

 end if 
M = modify_internal_state(); 

end while 
if (online_pheromone_inserting = true) 

evaluate_solving (); 
save_pheromone(); 
correct_route_table(); 

 end if 
die(); 

end procedure 

3.1 Evolutionary algorithms 

Evolutionary algorithms are based on the observation of properties of biological evolution, which was 
described by Ch. Darwin in 1859. Biological evolution represents the development of the genetic 
information in individual organisms during generation replacement. Evolutionary process contains mainly 
the following important components:  

• natural selection 

• random mutation  

• reproduction process 

The natural selection enables a stronger individual to succeed better in an environment. This fact means 
its greater chance for reproduction. The reproduction process is an important component of evolution 
because of the opportunity to transfer genetic information from parents to children. During reproduction 
by crossing, the part of information in genetic code is replaced. Moreover, this information can be 
randomly mutated. The random mutation is a random change of a certain sector of the genetic 
information. The most important part of evolution process is just the reproduction process. Some number 
of descendants (usually two) is selected according to their strength. The stronger descendant (agent), the 
higher probability to be selected. The whole process is realized within several phases:  

• selection  

• crossing  

• returning of new individuals to population  

There are two strategies for adding new individuals to population during evolution process. Using the first 
strategy, a completely new population is generated. In the second strategy, several new agents are 
generated. These new agents consequently replace the same number the weakest agents from the old 
(original) population. The evolutionary algorithms, serving as an optimization method, exist nearly thirty 
years. Many new techniques were developed during this time [8], [9]. 

3.2 Multi-agent systems 

The most frequently cited definition of agent is the definition by Wooldridge and Jennings [10], which 
differs between strong agents and weak agents. A weak agent is defined as a hardware system or (more 
often) a software system, which fulfils the following requirements:  

• Autonomy: The agent acts without any direct human or another intervention. It has control over 
its actions and internal states.  

• Social ability: Agents communicate with other agents (occasionally with humans) using on some 
communication language.  

• Reactivity: Agents perceive their environment, which can represent physical world, user, other 
agents, Internet or a combination of above mentioned possibilities. In addition, agents react on 
changes in the environment in real time. 

• Pro-activity: Agents do not perform only simple reactions according to the state of the 
environment. Their acting can be goal-oriented with taking over initiative. 



 

Studies in Informatics and Control, Vol. 16, No. 4, December 2007 405

The definition of a strong agent adds to above given requirements some other concepts, which can 
characterize mental and emotional states for example cognisance, belief, attention and so on. This 
conception was reformulated in the work by H. S. Nwan, in which the following definition of strong 
agent is introduced: the agent has to have at least two from the following three abilities:  

• Autonomy: Agent is able to operate in an environment without human intervention even if the 
world is not explicitly described. The key element of the autonomy is pro-activity – the ability to 
act in a goal oriented way and initiatively. 

• Cooperation: A set of social abilities, which enable agent to communicate with other agents or 
human using on some communication language. Cooperation is one of very important abilities of 
multi-agents systems. 

• Learning: In order to enable an agent to react within a dynamic and non deterministic 
environment and perform some actions in it, learning must be present in the form of an 
interaction with the environment. It is expected that the quality of agent behaviour in the 
environment can be improved using on learning.  

Several agents are grouped together to reach some goal in multi-agent systems and particular relations 
between agents of the group are defined. In such system, each agent has some means (it can dispose with) 
and limitations (it has to act within these limitations to reach its goal). No agent in the system is   
unusable or redundant.  

Each agent tries to perform a given task in its best way which is reflected in the final solution of the 
problem. In this "agent colony", agents coordinate their abilities, knowledge, goals and plans in order to 
solve a given problem collectively. These agents can work collectively on the same problem or each agent 
can work on a separate task while all tasks are related to one another.  

There are several reasons, why the use of multi-agent systems provides an advantage:  

• Parallel system – the possibility of using more agents to speed up system working using on 
parallel methods. 

• Robust system – if control and responsibility are suitably distributed among particular agents, 
then the system can tolerate failure of one or more agents. 

An ant as an individual has no global knowledge about task it performs. Its decisions are local and 
unpredictable. The simplicity of ants provides ability to model an ant colony as a multi-agent system.  

4. Implementation – Simulation of Graph Search 

A comparison of a graph search and ‘food search’ performed by ants provides some similarities between 
these two problems. Ants try to find the best (the shortest) path between two places (nest-food) in a given 
environment. Scientists try to find the best (the shortest) route joining two nodes in a given graph.  

The main idea of our designed system is to provide ants with the possibility to move in a given graph. In 
this context, the intensity of pheromone marks on separate graph edges is studied. The graph nodes 
represent various places in the environment, where ants can stop. These places can be called cities. The 
edges, which join the nodes of the graph, represent routes between city pairs in the environment. This 
‘virtual environment’ will be inhabited by a population of agents, which represent separate ants. 

4.1 Simulation of an ant colony using multi-agent system 

Agents move in a given graph from one city to another one. They also collect food when they reach a 
food source. And they ‘drop’ the food when they come back to the nest.  An agent, moving along a route 
in the graph, marks it by its pheromone to update pheromone trail. Finally, agents have to be able to 
decide, which route they should follow, according to the intensity of pheromone on edges. Agents can 
perform only certain actions according to their position, as illustrated in Table 1. All actions listed in 
Table 1 need only local information. The memory of each agent is of low capacity, but the capacity of this 
memory is sufficient for each ant to know the path back to the nest. The easiest way how to design a 
multi-agent simulation of the environment is to use a turn-based system. This kind of system is like a 
game – each player can realize only one step in each cycle of this game. This idea forms a base of the 
simulation in which each agent can perform only one action from Table 1 per cycle. 



 

 Studies in Informatics and Control, Vol. 16, No. 4, December 2007 406 

Table 1: Actions, which can be performed by agents according to the place they are located in 

Agent position Performed action 
In the city Next route selection and marking this route by pheromone 
On the route Moving along 
In the nest carrying food Putting down the food 
In the food source Taking the food and coming back to the nest 

All elements of the environment are simulated using on the following classes (in C++            
programming language): 

a)  Ant class represents an individual agent – an ant 

b)  Route class represents edges of the graph – paths between cities 

c)  City class represents nodes of the graph – individual cities 

d)  Civilization class represents the environment in which ants move (live)  

City class represents X and Y coordinates of a position in the environment. This class is essential for 
calculating the distance between two cities. 

Route class needs two pointers to city class in order to define the cities it connects. Another property of 
this class is the length of the route between the cities. The longer the route, the greater number of steps is 
needed for an ant to walk along this route. In addition, the class represents the intensity of pheromone 
located on the given edge. Very important aspect, which has to be simulated, is the evaporation of the 
pheromone trail. Thus, the class has to contain also this information. 

Class Route – a sample of class definition 
class Route 
{ 
 private: 
 float Length;          // route length  
 int Pheromone;      // pheromone intensity on the route 
 City *FirstCity;      // cities, which are connected by the route 
 City *SecondCity; 
  
 public: 
 void EvaporatePheromone();      // simulation of the pheromone evaporation 
    // constructors, boundaries, assistant methods and other parameters  
    // . . .  
}; 

The most important characteristic of each ant in this context is its individual and unpredictable tendency 
to select one of accessible edges. Each instance of the ant class must represent an individual agent with 
individual and unique properties, which can be realized using a mathematical function based on the level 
of pheromone intensity. The pheromone intensity has an integer representation. A tendency for the 
selection of a route based on the pheromone intensity is evaluated for individual agents.  

Good flexibility of the behaviour of agents can be guaranteed by a function: 

T(PL) = α ∗ sin(β ∗ PL + γ)        (1) 

Function T(PL) derives it’s name T from the word “tendency” of the selection. It evaluates the tendency 
for selecting a route with PL (pheromone level). PL is the level of the pheromone intensity on the given 
route. The route with the greatest value of function T(PL) is selected. α, β and γ are parameters of the ant 
class initialised as random float numbers from the interval [-5, 5]. These parameters guarantee the 
presence of different individuals in the population of agents, since agents with the same way of making 
decisions and acting are not required. These parameters play some task in a evolutionary algorithm (will 
be described in the next section). 

We decided to choose the function T(PL) in the above given form because of using evolutionary 
algorithms in the role of a tool used for solving the problem: of finding the shortest path between two 
places (nest-food).   

Class Ant – a sample of class definition 
class Ant 



 

Studies in Informatics and Control, Vol. 16, No. 4, December 2007 407

{ 
 private: 
 float α;     // indicates sensibility of ants on pheromone 
 float β;  
 float γ;  
 bool HaveFood;  // indicates ant, when carrying the food 
public: 
 float GetTendency(int PheroLevel);  
// the tendency of the route selection in relation with the pheromone intensity 
 void PickFood();                         // taking the food while in the food source 
 void LeaveFood();                      // dropping food in the nest 
 void PutPheromone();                // changing the pheromone credit of a route 
 void Walk();                              // making another step 
// constructors, boundaries, assistant methods and other parameters 
// . . .  
}; 

Civilization class represents a mean to control the whole environment and simulation process. This class 
is responsible for evolutionary processes as well. The environment is represented by a graph. This graph 
has to be created by user using on interface provided to users. The other possibility is to read a graph from 
the set of graphs (environments) created and stored before. Two nodes of the selected graph have to be 
specified as nest and food sources. When simulation starts, a random number of ants are created in the 
nest. Each movement of an ant depends on its actual position. During simulation run, the most frequently 
used route increase their pheromone credits. After some time, a solution of the given problem is found as 
a collective decision of the virtual ant colony. 

Although this system provides good results, the random number of agents with random characteristics can 
cause troubles. An agent population, which is able to find the shortest path in a graph, may not be able to 
find a solution in a complete heterogeneous environment 

Class Civilization – a sample of class definition 
class Civilization 
{ 
 private:  
 City *FoodSourceCity;    // food source of the given civilisation in the environment 
 City *Nest;                      // nest of the given civilisation in the environment 
 TList *Routes;                // all routes in the given environment 
 TList *Cities;                 // all cities in the given environment 
 TList *Ants;                  // all ants in the given environment 
 int NaturalSelection;     // remaining steps before next selection 
  
public: 
 void NextTurn();        // realisation of one step in simulation 
 // constructors, boundaries, assistant methods and other parameters 
 // . . .  
}; 

There are some questions, which should be answered: How to find the best agents for solving a given 
problem? How many agents are needed to perform the search of graphs with various complexities? How 
to counterbalance various properties of various agents to create a good population? Answers can be 
produced using evolutionary algorithm techniques. 



 

 Studies in Informatics and Control, Vol. 16, No. 4, December 2007 408 

4.2 Optimisation of the ant colony using evolutionary algorithms 

Evolutionary algorithms provide adaptive optimisation techniques based on the evolutionary process as 
seen in the nature. A population of individuals, which represent possible solution candidates for a given 
problem, is controlled by Darwin’s principle of “surviving the most successful” in next generations. The 
most successful individuals can transfer their properties on their descendants – the transfer is mediated by 
their genes. Gradual population development and its adaptation to the environment accomplished by 
mutation and natural selection enable to obtain better results. Because of random generation of agents 
with random characteristics (parameters), a very long time may be needed to obtain a successful solution. 
Or maybe no successful solution will be found at all. The efficiency of the system can be improved by 
some evolutionary algorithm techniques like selection, crossover and mutation. 

Selection 

Selection represents the selection of the best individuals for mating. In our case, the most successful 
individuals are those, which are able to collect greater amount of food (workers) or which are able to find 
the shortest alternative paths to food sources (explorers). During the food collection, an agent increases 
the pheromone credit of a good (frequently used) route, and in such way it influences other ants from the 
colony. Natural selection enables the best individuals to spread their good properties by mating. Like in 
the nature, the evolution in the system enables the new generation to be better than the parent generation 
(the previous generation). Agents, which lost their way in the environment, cannot help to solve the 
problem. For example a “traveller”, which travels only between two nodes and moves along only one 
edge, is not usable. These individuals are removed from the population.  

Our application implements the selection in the following way. The most successful worker is an 
individual, which collects the greatest amount of food. A counter is implemented in the Ant class.  It is 
incremented whenever the agent brings food into the nest. Agents with higher values of the counter will 
be considered as more successful than others during each selection process. The purpose of another 
counter is to count how many times an agent used the same route. Low values of this counter indicate a 
successful explorer. Higher values of the counter indicate the fact that an agent has lost his way in the 
environment.   

Crossover 

New descendants are based on characteristics and properties of successful individuals.  Since there are 
two kinds of individuals in the colony: workers and explorers, two new individuals are created in each 
evolutionary cycle. One new individual is a descendant of two the most successful workers and the other 
new individual is a descendant of two the most successful explorers. Genes representing parents’ 
properties are combined in order to create a new chromosome on which the new individual is based. This 
technique has borrowed its pattern from the nature, particularly from the biological crossover. Each 
property of the new individual is inherited randomly from one parent.  

In our application, crossover is implemented in the following way. In the Ant class there is a constructor 
containing two references (from parents) to an object Ant in the form of a set of three parameters α, β and 
γ defined in the ant class. A new individual is created by combining characteristics (parameters) of the 
parents as illustrated on (Figure 4). A chromosome consists of three genes, which represent properties of 
an individual. A new chromosome is created from “zeros” and “ones” with the same probability.  “Zero” 
means that a property was inherited from one parent (mother) and “one” means that the property was 
inherited from the other parent (father). 
 

 
Figure 4. Crossover in action.  

 



 

Studies in Informatics and Control, Vol. 16, No. 4, December 2007 409

Mutation 

There is also some low probability of mutation after crossover. The mutation promotes the diversity of the 
population because one from the three parameters is randomly changed during mutation. 

Migration  

A completely new individual is inserted randomly into the population during the migration step. The 
effect of migration is similar to the effect of mutation. Diversity of the environment is increased. The 
implementation of migration in our application is following. A completely new individual is created by 
assigning random values to parameters α, β and γ. This implementation is done using on the default 
constructor of the Ant class.  

The Ant class has the following form after described modifications: 

Class Ant – a sample of class definition after modification 
class Ant 
{ 
 private: 
 float α;         // indicates sensibility of ants on pheromone  
 float β;  
 float γ;  
 bool HaveFood;      // indicates whether ant is carrying food  
 int FoodCollected;  // amount of food collected by ant  
public: 
 Ant();                                  // Default constructor: complete new individual 
 Ant(Ant *Father, Ant *Mother);       // crossover constructor 
 float GetTendency(int PheroLevel); // tendency of the route selection evaluation 
 void PickFood();                        // picking up the food in a food source 
 void LeaveFood();                            // dropping food in the nest 
 void PutPheromone();                      // increase of the pheromone credit of a route 
 void Walk();                                    // making another step 
 void Mutation();                              // mutation operator 
  // constructors, boundaries, assistant methods and other parameters 
 // . . .  
}; 

4.3 Interface description of the simulation 

The main part of our application is a window representing an interface for defining graphs. User can 
design and draw a new graph, read an old graph used before, or to save the newly designed graph. In each 
graph there is the necessity to define a nest and a food source. The nest is represented by the blue colour 
while the food source is marked in red.  The application contains a window, showing the route with the 
highest actual pheromone concentration, as illustrated in (Figure 5). 

The window of the simulation interface provides information about in which actual cycle (loop) the 
simulation is, how many ants reside within population and how much food has been collected. The 
simulation runs until a termination condition is met. The stop condition can be defined in the form of a 
maximum number of cycles (loops) or maximum amount of food collected within a given loop.  

In order to illustrate the application, a sample of simulation run can be presented. Let us consider the 
following initial state of simulation in (Figure 6): eight cities and nine edges constitute a test graphical 
environment to search while nodes 0 and 7 represent the nest and the food source. There is a number 
assigned to each edge, which represents the pheromone intensity and route length associated with the 
given edge. The information is expressed in the following form: ‘pheromone | length’. 

 



 

 Studies in Informatics and Control, Vol. 16, No. 4, December 2007 410 

 
Figure 5. User interface of used simulation program 

 
Figure 6. The initial state of simulation 

After 115 simulation cycles (Figure 7), the route 0-3-4-6-7 is preferred. 

                       
Figure 7. The preferred route after 115 simulation cycles 



 

Studies in Informatics and Control, Vol. 16, No. 4, December 2007 411

After 254 cycles of the run, a change in route selection was detected (Figure 8). Now, the route 0-2-6-7 
seems to be preferred. Because this path is shorter than the previous one, the pheromone intensity starts to 
increase along this path. The previous route is evaporated.  

                
Figure 8. The preferred route after 254 simulation cycles 

After simulation completes 316 cycles from the beginning of the simulation run, the termination criterion 
regarding the maximum number of cycles comes to effect. The result is definitely the route 0-2-6-7, 
which is marked in thick line in (Figure 9).  

 
Figure 9. The resulted route of simulation 

Many experiments were completed with good results. Efficiency of the system has been increased after 
adding some improvements. For example, releasing stronger pheromone marks by ants while returning back to 
the nest with food. It enables for the most successful agent to increase its influence on the other agents. 

5. Discussion 

Many search algorithms rapidly increase their memory requirements when trying to solve difficult 
problems. Agents, which simulate ants in our work, need only a limited memory. Thus, the use of the 
presented implementation is not restricted by the complexity of the solved problem. It is an advantage of 
our simulation.  

Another advantage is the fact, that the size of population is controlled by natural selection. On the other 
hand, agents need more time to get lost in bigger environments with greater number of alternative paths. 
As a result, unsuccessful individuals are eliminated from the population later than while searching simpler 
environments. Therefore, the population size increases more quickly in greater environments.  

There is no central system to perform decision making in the presented implementation. Information is 
distributed among agents and the environment. If one agent is lost in the environment, then the system 
continues in problem solving and the lost agent cannot influence the result. 

The implementation is adaptive as well. If some edge – graph route – is deleted while the program is 
running or some new one is created, the system is able to adapt to the changed environment. 

6. Conclusions 

The aim of our work was to design a simulation program, which would be able to present competencies of ant 
algorithms in a graph searching task. In frame of this simulation we used techniques of artificial intelligence: 



 

 Studies in Informatics and Control, Vol. 16, No. 4, December 2007 412 

evolutionary algorithms, multi-agent systems and ant algorithms. The presented implementation is not 
restricted to only graph search. It is applicable also in tasks with unknown search space.  

The designed simulation program can be used for solving various problems related to the following 
domains: electronic market, computer maps, traffic planning, computer games, labyrinth search by a 
robot, connection-oriented network routing and connection-less network routing. It would be interesting 
to use our access based on ant colony simulation on simulation of financial markets [5] or retail markets 
[7]. Nowadays, computer maps start to be widely used in car industry. The systems built in cars enable 
drivers to see all possible routes or they navigate drivers to use the shortest route from a city A to B. 
Traffic planning requires solving very difficult optimisation tasks. Path finding is one of the very frequent 
problems and applications of artificial intelligence in computer games. The most suitable route is 
searched for between two nodes in two-dimensional plane (2D games – e.g. strategies) or in three-
dimensional space (3D games – e.g. plane simulator).  

Our simulation program has proved that ant algorithms represent a suitable method for solving problems, 
which can be reduced on a graph search. For example, the particular mapping of a web sub-graph be used 
in the role of new technology, can be used to increase the educational flexibility of a modern laboratory 
for teaching computer systems [1]. We believe in the future of the ant algorithm theory. Nowadays, 
systems based on the theory of ant algorithms start to be used in the commerce sphere.  

Acknowledgments 

The work presented in the paper was supported by the Slovak Grant Agency of Ministry of Education and 
Academy of Science of the Slovak Republic within the 1/4074/07 project ”Methods for annotation, 
search, creation, and accessing knowledge employing metadata for semantic description of knowledge”. 

REFERENCES 

1. BABIUCH, M., The Usage of the New Technologies at the Education at the Department of 
Control Systems and Instrumentation, Sborník vědeckých prací, Technical University Ostrava, 
No. 2, Vol. L II., Ostrava, 2006, ISBN 80-248-1211-8, ISSN 1210-0471, pp. 7-12.   

2. COLORNI, A., DORIGO, M. and MANIEZZO, V., Distributed Optimization by Ant Colonies, 
Proceedings of ECAL91 - European Conference on Articial Life, Elsevier Publishing, 1991. 

3. DORIGO, M., Di CARO, G. and GAMBARDELLA, L., Ant Algorithms for Discrete 
Optimization, Technical Report IRIDIA/98-10, Universite Libre de Bruxelles, Belgium. To appear 
in Artificial Life, 1998, http://citeseer.ist.psu.edu/dorigo98ant.html. 

4. DORIGO, M., The Ant System: Optimization by A Colony of Cooperating Agents, IEEE 
Transactions on Systems, Man, and Cybernetics - Part B , Vol. 26, No. 2, 1996, pp. 29-41,  
http://citeseer.ist.psu.edu/dorigo96ant.html. 

5. GOU, Ch., The Simulation of Financial Markets Using an Agent-Based Mix-Game Model, 
Journal of Artificial Societies and Social Simulation 9(3), 2006 http://jasss.soc.surrey.ac.uk/9/1/15.html. 

6. GRASSE, P.P., La reconstruction du nid et les coordinations interindividuelles chez 
bellicositermes natalensis et cubitermes sp. La theorie de la stigmergie: essai d’interpretation 
du comportement des termites constructeurs,  Insectes Sociaux, 6, 1959, pp. 41–81 

7. HEPPENSTALL, A., EVANS, A. and BIRKIN, M., Using Hybrid Agent-Based Systems to Model 
Spatially-Influenced Retail Markets, Journal of Artificial Societies and Social Simulation, 9(3), 
2006, http://jasss.soc.surrey.ac.uk/9/1/15.html.  

8. KVASNICKA, V., POSPÍCHAL, J. and TIŇO, P., Evolutionary algorithms, Vydavateľstvo STU, 
Bratislava, 2000,  http://math.chtf.stuba.sk/evol/Prednaska.htm 

9. OLEJ, V., Economic Processes Modeling on the Base of Computational Intelligence, Miloš 
Vognar-M&V, Hradec Králové, Česká republika, 2003, 160s., ISBN 80-903024-9-1. 

10. WOOLDRIGE, M., An Introduction to Multiagent Systems, John Wiley & Sons, Chichester, 
England, 2002, ISBN 047149691X. http://www.csc.liv.ac.uk/~mjw/pubs/imas/ 




