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1. Introduction 

The issue of dimensionality reduction concerns plenty of researchers from various fields, such as image 
processing, machine learning, data compression, computer vision, artificial intelligence and pattern 
recognition or even neuroscience. Therefore, not surprisingly, these topics knew a growing interest in the 
last few years taking into account its interdisciplinary character. One of the main reasons for performing 
dimensionality reduction is provided by the so-called “curse of dimensionality”. As many times the final 
goal of an image processing task is to classify the samples from the data as pertaining to some certain 
classes invoking pattern recognition approaches, avoiding the curse of dimensionality is a necessary step. 
It is well known and widely accepted that many classifiers perform poorly in a high dimensional space 
with a limited number of samples. The classification methods emerging from statistics cannot be 
accurately modeled when the amount of available samples is small compared with its dimension, as 
usually occurs, for instance, in image processing and classification. Another reason for carrying out this 
step is provided by the huge computational time required for high dimensional data processing. Even if 
the classification process leads to satisfactory results, the procedure can be prohibitively time consuming. 
Dimensionality reduction is a research topic from both the computer vision and neuroscience fields. To 
have a simple example of the importance of dimensionality reduction let us consider we have an image of 
an acceptable quality of 256x256 pixels leading to a large dimension of 65536 pixels. It is highly unlikely 
that the image does not contain redundant information. As consequence, it is commonly accepted that the 
intrinsic dimensionality of the image space is much lower than the original image space.  

1.1. General Model 
The problem can be stated as follows. Let us assume we have a p  - dimensional manifold M  
embedded in a m  - dimensional space, with p m< . Suppose further that we have a differentiable 
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function f  having the rank p . Then, the function p mf R: →ℜ  is called an embedding. Usually mℜ  

forms the input (data) space and pR  refers to the feature (or latent) space. Given a set of n observations 
(realizations) 1 2 n…, , ,x x x  of the m  - dimensional random vector 1 2( )T

mx x … x= , , ,x , the 
dimensionality reduction refers to the estimation of the unknown lower (intrinsic) p  - dimensional 

vector iy , 1i … n= , ,  such that ( )i i if ε= +x y , with ε  denoting the noise. The vector p  is often 
known as latent or hidden variable (component). The sample mean and the m m×  sample covariance 
matrix of the variable x  are denoted by:  

1 2( )T
m…µ µ µ µ= , , , ,          (1) 

and  

{( )( )}TE µ µΣ = − − ,x x         (2) 

respectively, where E  denotes the expectation. Assuming that the data are stored in the columns of the 
m n×  matrix X , the dimensionality reduction techniques attempt to decompose the data into a m p×  
matrix B  where each column of the input data X  is a linear (or nonlinear) combination of the elements 
in B , such that  

= ,X BY           (3) 

where the matrix Y  of size p n×  convey in its columns the new n  p  - dimensional data variables 
(vectors).  

The linear dimensionality reduction techniques can only retrieve the linear structure of the subspace. In 
this case, each latent component iy  is a linear combination of original vector ix :  

1

m

ji jo oi
o

y a x
=

= ∑           (4) 

with 1i … n= , , , 1j … p= , , , and 1o … m= , , . In a matrix form this is written:  

= ,Y AX           (5) 

where A  is the linear transformation weight matrix. Obviously, 1−=A B . However, in many cases, the 
assumption that the input space can be represented as linear combination of the feature subspaces does 
not always account for expected results from the real-world scenarios. For instance, translating an 
object on a uniform background cannot be represented as a linear function of the image pixels. 
Therefore, undertaken a nonlinear decomposition of the input space can lead to more appropriate 
subspace representation.  

The paper reviews current state-of-the art linear as well as nonlinear dimensionality reduction approaches. 
Linear approaches described in this overview include Principal Component Analysis, Linear Discriminant 
Analysis, and Independent Component Analysis. New techniques that allow only non-negative values in 
their decomposition factors such as Non-negative Matrix Factorization, Local Non-negative Matrix 
Factorization and Discriminant Non-negative Matrix Factorization method are also discussed. The 
nonlinear approaches will be represented by the kernel-based techniques such as the Kernel Principal 
Component Analysis, Kernel Linear Discriminant Analysis and Kernel Independent Component Analysis 
as nonlinear extension for their linear parts.  
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2. Linear Dimensionality Reduction 

2.1. Principal Component Analysis 

One of the oldest linear dimensionality techniques is the well known Principal Component Analysis 
(PCA) [1]. Its simplicity and large area of applications ranked the PCA (also know as Karhunen-Loeve 
transform from the communication theory) as one of the most popular approaches, despite its 
shortcomings. PCA is a technique that linearly transforms the data by finding a set of p  orthogonal axes 
(principal components or eigenvectors) that accounts for the maximum data’s variance. The first 
component points out to the direction with the maximum variance. From relations (3) and (5) and, since 
the principal components (PCs) are orthogonal (i.e., 1 T− =B B ), the latent variable 1y  is found by 

projecting the original variable onto the weight matrix, 1 1( )T µ= −y B x  such that:  

2

1
arg max {( ) }T

b
E

|| ||=
=b b x         (6) 

The PCs are comprised in the columns of the matrix B . The second component lies in the subspace 
perpendicular to the first, the third component goes along with the maximum variance direction in the 
subspace perpendicular to the first two, and so on. The orthogonality principle between the eigenvectors 
is the only constraint imposed in expressing the eigenvectors. The eigenvectors jb  (PCs) and the 

corresponding eigenvalues jλ  can be computed by solving the equation:  

1j j j j … pλΣ = = , , ,b b          (7) 

or equivalently, the following characteristic equation:  

0λΣ − =I           (8) 

where I  is the identity matrix and the .  denotes the determinant of the matrix. By ordering the 
eigenvectors in the order of descending eigenvalues (largest first), one can create an ordered orthogonal 
basis with the first eigenvector having the direction of largest variance of the data. In this way, we can 
find directions in which the data set has the most significant amounts of energy. PCA optimally 
minimizes reconstruction error under the L2 norm (Euclidean distance) as cost function:  

2−∑ X BY           (9) 

Once the eigenvectors are rearranged according to the decreasing value of their eigenvalues, an issue is 
given by the number p  of eigenvectors (PCs) to be retained. The number of PCs to be kept depends on 
the application. A common way to select an appropriate number of PCs is provided by computing the 
cumulative energy proportion of the variance comprised by the first p  PCs:  

1
trace( )

p

j
j
λ

=

/ Σ∑          (10) 

Next, the number of PCs is selected so that the cumulative energy is above a certain threshold, for 
instance, 95 %. The rest of the eigenvectors having low energy are discarded.  

An impressive number of applications exist for PCA from different scientific fields such as Statistics, 
Computer Vision, Image Processing, Pattern Recognition, Chemistry, Astronomy, etc. Here we present 
PCA as graphical representation for a known database called the Iris database [2] containing 3 classes of 
50 instances each, where each class refers to a type of iris plant. Each plant is described by four attributes: 
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sepal length, sepal width, petal length and petal width. Therefore, each plant can be described as 5-
dimensional vector, i.e., 4 attributes plus one for the label that encodes the classes. One class is linearly 
separable from the other 2; the latter are not linearly separable from each other. The classes are coded as 
follows: Iris Setosa - 0, Iris Versicolour - 1, and Iris Virginica - 2. PCA can be performed to reduce the 
dimensionality from 4 to 2 in order to visualize the data. Figure 1 depicts the graphical representation of 
the projection of the Iris database on the two first principal components.   

 
Figure 1. Graphical representation of the projection of the Iris database on the two first principal 

components. 

The PCA projection reveals the structure of the original data described by the three formed clusters 
corresponding to the three iris plant types.  

2.2. Linear Discriminant Analysis 

Let us suppose now that the input data are formed by samples that are annotated according to some 
certain labels (classes). While the most techniques for dimensionality reduction are based on 
unsupervised approach (i.e. the cost function does not take into account the class information), several 
approaches to incorporate class information exist. Closely related to PCA, and justified by the fact that, 
when it comes to classification task, the principal components do not necessary convey discriminant 
information (since PCA is not optimized for classification), a class-specific linear projection for 
dimensionality reduction is provided by the Linear Discriminant Analysis (LDA) or Fisher’s linear 
discriminant (FDA) [3]. Let us suppose now that we have Q  distinctive classes and let cn  be the number 

of samples in class Q , 1c … Q= , , . The total number of coefficient vectors is
1

Q
cc

n n
=

=∑ . We denote 

the mean coefficient vector of class c  by 1
1

c

c

n
c cln l

xµ
=

= ∑  and the global mean coefficient vector 

by 1
1 1

cQ n
cln c l

xµ
= =

= ∑ ∑ . Within-class scatter matrix is defined as 

1 1
( )( )cQ n T

w cl c cl cc l
S x xµ µ

= =
= − −∑ ∑  and represents the scatter of the samples corresponding to the 

class around their mean. The dispersion of samples that belong to the same class around their 
corresponding mean should be as small as possible. The between-class scatter matrix is defined as 

1
( )( )Q T

b c cc
S µ µ µ µ

=
= − −∑  and represents the scatter of the class mean around the global meanµ . 

Each cluster formed by the samples that belong to the same class must be as far as possible from the other 
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clusters. Therefore, bS  should be as large as possible. This technique projects the sample variables into a 
subspace in which the classes are maximally separated by maximizing the between class scatter matrix 
and minimizing the within class scatter matrix in the same time. The cost function is described by:  

arg max
T

b

TB
w

B S B
B

B S B
=          (11) 

When n m , the within-class scatter matrix wS  is singular. In this case, a common approach is to apply 

PCA prior to LDA. Accordingly, PCAB  is first computed as argmax T
PCA B TB B S B= , where 

T B WS S S= +  is the total class scatter matrix. Then:  

arg max
T T

PCA b PCA
LDA T TB

PCA w PCA

B B S B B
B

B B S B B
=        (12) 

is calculated, and finally, the optimum LDA projection direction is given by opt LDA PCAB B B= ⋅ . LDA 
has been used widely in many applications such as image retrieval [4] microarray data classification [5], 
speaker recognition [6], etc. As LDA was specially designed to cope with pattern recognition issues, any 
application that involves classification task can benefit of it. One of the most popular applications of LDA 
refers to face recognition [7] where the LDA’s recognition performance was compared with PCA. The 
YALE face database [8] containing human subjects posing under variation in both facial expression and 
lighting was used in experiments. The results are presented in Table 1 for different methods along with 
the reduced feature space.   

  
Tabel 1. Performance of the algorithms used in [7] when applied to the Yale database which contains 

variation in facial expression and lighting. The performances were obtained using “leave-one-out 
strategy” [9]. “Reduced Space” refers to the new feature vectors lower dimension. “Close Crop” refers to 
images that include internal structures such as the brow, eyes, nose, mouth and chin but did not extend to 

the occluding contour. For details regarding the other methods see [7]. 

2.3. Independent Component Analysis 

Since PCA relies on the second order statistics of the data, in general, it yields uncorrelated components. 
When the data have a Gaussian distribution (see Appendix), the uncorrelated components are independent 
as well. However, if the data is a mixture of non-Gaussian components, PCA fails to extract the 
components having a non-Gaussian distribution. On the contrary, Independent Component Analysis (ICA) 
[10], which can be viewed as an extension of PCA, takes into account the higher order statistics of the 
data in the attempt to recover the non-Gaussian components. ICA is able to compute projections which 
lead to the least Gaussian projected data. This happens because, in the case of non-Gaussian data, the 
optimization of an independence criterion is equivalent to the maximization of a non-Gaussian criterion 
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due to the central limit theorem. ICA is not typically used as a dimensionality reduction method in itself. 
However, in most of applications of ICA, PCA is used as a preprocessing step, in which the newly 
generated dimensions are ordered by their importance. Based on the PCA transformed data matrix, ICA 
further transforms the data into independent components. Therefore, using PCA as a preprocessing step, 
ICA can be viewed as a dimensionality reduction technique, where the resulting latent components y  are 
as independent as possible. Usually, two preprocessing steps are accomplished before applying ICA. The 
first is centering, i.e., transforming x  into zero-mean variables. The second is whitening (or sphering), 
which means that x  is linearly transformed, such that its components are uncorrelated and their variance 
equals unity (see Appendix). This step is performed through PCA. The noise-free ICA model for the m -
dimensional random x  seeks to estimate the components of the p -dimensional y  and mixing matrix 

B  (eq. 3) assuming iy  are as independent as possible. Technically, this task recasts in determining an 

estimation U  of the independent latent components by finding a demixing matrix W :  

= = ,U WX WAY          (13) 

We usually call the columns of U  (and implicitly the columns of Y ) independent sources. The columns 
of X  are measurements from a number of sensors that capture the sources. Usually, the number of 
observed components equals the number of independent components ( m p= ). There is ICA methods 
that cope with the case of m p<  or m p> , called overcomplete or undercomplete ICA, respectively. 
Estimation of the ICA model consists of two steps, choosing the cost function and applying an optimizing 
algorithm to minimize or maximize the cost function. There are several ICA implementations. The 
InfoMax algorithm performs ICA based on the information maximization approach proposed by Bell and 
Sejnowski [11]. This approach relies on the maximization of the entropy of the joint distribution ( )f u . 
The demixing matrix W  is updated through an iterative process. At iteration 1k + , W  is updated 
according to:  

1 [ (1 2 ) ]T
k k k k kη+ = + + − ,W W I z u W        (14) 

where η  is the learning rate controlling the convergence speed of the algorithm, 1 is a 1n×  vector of 
ones, I  is the identity matrix of size n n× , and z  is a 1n×  vector having elements:  

( ) 1i iz g u i … n= = , ,         (15) 

with ( )g .  being a component-wise nonlinearity applied to all elements of the demixer output u , at each 
iteration k . The form of the nonlinearity must be chosen to match the cumulative distribution function of the 
input. In the Infomax algorithm [11], this non-linearity is approximated by the logistic transfer function:  

( ) 1 (1 ) 1iu
ig u e i … n−= / + = , , .        (16) 

The algorithm performs satisfactory when the mixture comprises super-Gaussian components, but fails to 
extract the components having a sub-Gaussian distribution if such components exist in the mixture of 
non-Gaussians. Therefore, Lee et al. have extended the InfoMax algorithm to the extended-InfoMax 
approach by using a new learning rule that is able to separate both sub- and super-Gaussian distributions 
[12]. The learning rule that is able to switch between these distributions iteratively updates the demixing 
matrix as follows:  

1 [ tanh( ) ]T T
k k k k k k kη+ = + −Ξ − ,W W I u u u u W       (17) 

where Ξ  is a n n×  diagonal matrix whose ii -th element, iiξ , takes the value 1 for a super-Gaussian 

source and the value -1 for a sub-Gaussian one, and tanh()  denotes the hyperbolic tangent function that 

is applied to the elements of ku  in a component-wise fashion. The adaptation of iiξ  is given by:  
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2 2sign( {sech ( )} { } {[tanh( )] }) 1ii ki ki ki kiE u E u E u u i … nξ = − , = , ,    (18) 

where kiu  is the i -th element of ku , and sign()  and sech()  denote the sign and hyperbolic secant 
functions, respectively.  

Other linear ICA implementations include Joint Approximate Diagonalization of Eigen-matrices (JADE) 
proposed by Cardoso and Souloumiac [13] and fastICA developed by Hyvärinen [14]. The main 
advantage of JADE is the fact that it does not need a learning step for its tuning. Its drawback is the 
relatively small number of components that can be extracted, making it inadequate for a large number of 
mixture components. The fastICA algorithm is an approach that maximizes the negentropy. A major 
advantage of fastICA is its speed, making it even 100 times faster than the previously described 
approaches. Major ICA applications include blind source separation, blind deconvolution, and feature 
extraction [11]. Figure 2 presents independent feature extraction by using ICA applied to human face 
images for classifying facial actions [15]. The features are comprised in the columns of basis images B , 
while Y  represents a matrix containing the new p  low dimensional vectors in the reduced space.   

 
Figure 2. Basis images B  retrieved by ICA from a database containing human face expressing different 

expressions [15]. Reprinted with the permission from ©1999 IEEE. 

2.4. Non-negative Matrix Factorization 

Non-negative Matrix Factorization (NMF) has been recently proposed as a dimensionality reduction 
technique, where both the decomposition factors ( B , Y ), are constrained to comprise only non-negative 
values [16]. Allowing only addition for recombining the original data is justified by the intuitive notion of 
combining parts to form the whole. Another argument for applying non-negativity comes from the 
neuroscience field where such constrained are related to the non-negative firing rate of the neural 
receptive fields. Also, these constraints arise in many real image processing applications where the pixels 
in a gray scale image have non-negative intensity values. Two cost functions were proposed in [17]: 
Euclidean distance between X  and BY  and Kullback-Leibler ( KL ) divergence [18]. The KL  is 
expressed as:  

( ln )oi
oi oj ji oi

o i joj jij

xx b y x
b y,

+ − .∑ ∑∑
       (19) 

Recall 1o … m= , , , 1j …p= , , , and 1i …n= , , . The above expression can be minimized and the factors B  
and Y  can be determined by applying multiplicative update rules subject to 0, ≥B Y , in a similar way to 
the Expectation-Maximization algorithm. Although relatively novel, NMF has been already applied on a 
variety of applications, such as image classification [19], chemometry [20], sound recognition [21], 
musical audio separation [22] or extraction of summary excerpts from audio and video [23]. 

2.5. Local Non-negative Matrix Factorization 

NMF techniques was extended by Li et al. [24], leading to a new algorithm named Local Non-negative 
Matrix Factorization (LNMF). While, in theory, when NMF is applied to images it should conduct to 
sparse and local features retrieved by B (named here basis images), this is not always the case. LNMF 
imposes more constraints on the cost function that are related to spatial localization, thus improving the 
basis images sparseness. Besides the common non-negativity constraints impose to the factors B and Y, 
three additional conditions are required: 
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 (1) minjjj
u →∑ , (2) minjij i

u
≠

→∑ , and (3) maxjjj
v →∑ , with [ ] T

ij = =u U B B  

and[ ] T
ij = =v V YY . The first condition guarantees the generation of more localized features on the 

basis images B  than those resulting from NMF. The second condition enforces basis orthogonality in 
order to minimize the redundancy between image bases, and, finally, the total “activity” on each retained 
component y  (total squared projection coefficients summed over all training images) is maximized 
through the third condition. The LNMF objective function to be minimized is given by:  

( ln )oi
oi oj ji oi oi oo

o i j oi ooj jij

xx b y x u v
b y

α β
,

+ − + − ,∑ ∑ ∑ ∑∑
    (20) 

where α , 0β >  are constants. A solution for the minimization of relation (20) can be found in [24], by 
employing a strategy analog for finding the NMF’s factors.  

2.6. Discriminant Non-negative Matrix Factorization 

Similar to the idea developed in LDA, LNMF algorithm was further modified so that to incorporate class 
information in its decomposition. The new class-dependent algorithm called Discriminant Non-negative 
Matrix Factorization (DNMF) was proposed in [25] to optimize the classification procedure. However, 
the difference between DNMF and LDA is fundamental: whilst FLD preserves the class discriminatory 
information on the original data X , DNMF performs on the lower dimensional data Y  (named here the 
decomposition coefficient matrix). Analog to LDA, and besides the conditions borrowed from the LNMF 
algorithm, DNMF tries to minimize the within-class scatter matrix and to maximize the between-class 
scatter matrix associated to the new variables iy . Recall, from LDA, that we have Q  distinctive classes 

and cn  is the number of samples in class Q , 1c … Q= , , . The total number of coefficient vectors 

is
1

Q
cc

n n
=

=∑ . Each image from the image database corresponding to one column of matrix X , belongs 

to one of these classes. Therefore, each column of the p n×  matrix Y  can be expressed as image 

representation coefficients vector cly , where 1c … Q= , ,  and 1 cl … n= , , . Further, the notations are 
similar with the one defined for LDA, where the original variables x  are replaced by y . Thus, the 
DNMF cost function to be minimized is expressed as follows:  

1 1

1

( ln ) ( )( )

( )( )

cnQ
Toi

oi oj ji oi oi oo cl c cl c
o i j oi o c loj jij

Q
T

c c
c

x
x b y x u v y y

b y
α β γ µ µ

δ µ µ µ µ

, = =

=

+ − + − + − −

− − −

∑ ∑ ∑ ∑ ∑∑∑

∑
 (21) 

NMF, LNMF, and DNMF were applied for subspace image representation, face recognition [24] and 
facial expression classification tasks [25].   

 
Figure 3. A set of learned basis images using (from left to right) NMF, DNMF, and LNMF [25]. The 

algorithms were applied to the Cohn-Kanade facial expression database [26]. 
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Every NMF-based dimensionality reduction techniques conduct to different subspace image 
representations. It can be noticed by visual inspection from Figure 3 that the basis images retrieved by 
DNMF are not as sparse as those extracted by LNMF but are more sparse than the basis images found by 
NMF. Also, almost all features found by the DNMF’s basis images are represented by the salient face 
features such as eyes, eyebrows or mouth features, while, the features retrieved by LNMF have rather 
random positions.  

3. Nonlinear Dimensionality Reduction and Manifold Learning Techniques 

3.1. Kernel Principal Component Analysis 

The Kernel Principal Component Analysis (KPCA) [27] is based on the idea of translating the original 
data ix  to a higher-dimensional space. At the first glance, by mapping the original data onto a higher 
space seems to be contrary to the dimensionality reduction principle. However, by employing the same 
analysis as for the linear PCA and using the so-called “kernel trick” [28] the KPCA computation can be 
performed in a lower-dimensional space. As aforementioned, the input space where the original data 
reside is transformed by a nonlinear map onto a feature space, m qFϕ :ℜ → , q m> . The main 
rationale of developing such an approach comes from the statistical pattern recognition field and is given 
by the fact that, in a higher-dimension space the data are (hopefully) more separable (thus improving the 
classification performance) than in the original variable space. Another reason is that, by employing a 
nonlinear PCA, one can retrieve higher-order correlations between variables, in contrast to linear PCA 
which accounts only for second-order variable dependencies. By applying the mapϕ , the sample 
covariance matrix (2) is recast into:  

{ ( ) ( )}T
KPCA E ϕ µ ϕ µΣ = − − ,x x        (22) 

The eigenvectors jb  and the corresponding eigenvalues jλ  can be computed by solving the equation:  

1KPCA j j j j … pλΣ = = , , .b b         (23) 

Defining a m m×  matrix K  (kernel operator) by:  

( ( ) ( ))ij i jK ϕ ϕ= ⋅x x          (24) 

Hence, the relation (3) translates into finding the eigenvectors and eigenvalues of the dot product matrix 
K  by solving:  

nλα α= K           (25) 

With the eigenvectors normalized and eigenvalues computed, a new test variable is then projected onto 
the eigenvectors to reduce its dimensionality, as follows:  

1
( ( )) ( ( ) ( ))

n
k k

i i i
i

ϕ α ϕ ϕ
=

= ⋅∑B x x x        (26) 

The above projection refers to the nonlinear PCs associated to ϕ . There are several kernels available 

where ones of the most used are represented by the linear T
i ix x , polynomial ( )T d

i ix x , and the 

exponential radial basis function (ERBF) 1
22

exp( )i j

σ

|| − ||− x x
, with d  the polynomial degree and σ  - ERBF 

parameter, respectively. KPCA applications include face recognition [29], object and character 
recognition [27]. An example of the utility of KPCA for handwritten character recognition (on the US 
postal service -USPS- database) [27] is presented below. The database contains 9300 examples of 
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dimensionality 256. As one can see from Table 2 the polynomial kernel PCA followed by a linear 
Support Vector classifier leads to performance superior to PCA. Also, since KPCA allows processing in a 
higher dimensionality space than the original one (256), the experiments were conducted for the 
extraction of up to 2048 nonlinear PCs, while, for PCA, the size of PCs was limited to 256.   

Table 2. Test error rates for the USPS handwritten digit database when linear Support Vector machines 
(used as classifiers) are trained on nonlinear principal components extracted by PCA with polynomial 

kernel for degree 1 to 7 [27]. Here “# of. components” refers to p  from this paper. 

3.2. Kernel Discriminant Analysis 

Employing the same kernel theory as in KPCA, the LDA approach can be generalized, leading to 
nonlinear data dimensionality reduction. Kernel Discriminant Analysis (KDA), also known as Kernel 
Fisher Discriminant (KFD) [30] performs by computing a cost function in the new feature space, 
described as:  

arg max
T

b

TB
w

B S B
B

B S B

ϕ
ϕ

ϕ
=         (27) 

which is a natural extension of (14), and ϕ  is the associated nonlinear mapping. For a two-class problem, 

1 1
( ( ) )( ( ) )cQ n T

w cl c cl cc l
S x xϕ ϕ ϕϕ µ ϕ µ

= =
= − −∑ ∑  and 

1
( )( )Q T

b c cc
Sϕ ϕ ϕ ϕ ϕµ µ µ µ

=
= − −∑ , where { }1 2Q Q Q∈ ,  and { }1 2c c cn n n∈ , . The Fisher’s linear 

discriminant cost function is expressed by: argmax T
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QK  is the kernel matrix for the class Q  (see [30] for details). As typical application, KFD was used in 
pattern recognition. The work of Mika et al. [30] presents a performance comparison between KFD and 
some other approaches for 13 artificial and real datasets from several benchmark repositories (see [30] for 
details) employed in classification task. The results are depicted in Table 3, where for the KFD a 
Gaussian kernel was used (see [30] for details).   
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Table 3. Comparison between KFD, a single RBF classifier, AdaBoost ( AB ), regularized AdaBoost 
( RAB ) and Support Vector Machine ( SVM ) [30]. Best methods are illustrated as bold letters, the 

second best are emphasized. 

3.3. Kernel Independent Component Analysis 

Kernel Independent Component Analysis (KICA) has been proposed to replace classical ICA when the 
components are mixed using nonlinear functions [31]. A kernel Hilbert space is used to extract such 
sources that are nonlinearly mixed. Two contrast functions based on canonical correlations in this 
reproducing space have been defined namely the kernel ICA-KCCA (where KCCA stands for Kernel 
Canonical Correlation Analysis) and the ICA-KGV (where KGV stands for Kernel Generalized Variance). 
Kernel ICA-KCCA minimizes the first kernel canonical correlation that depends on the data ix , 

1i … n= , ,  only through the centered Gram matrices for l  ICs. Kernel ICA-KGV minimizes the kernel 
generalized variance. Both contrast functions are related to a generalized eigenvector 
problem K Dκ κα λ α= , where κ  is a regularization parameter and Kκ  and Dκ  are block matrices 
constructed from the Gram matrices. Kernel ICA-KCCA deals with the minimal eigenvalue of the 
aforementioned problem while kernel ICA-KGV deals with the entirespectrum. More theoretical details 
can be found in [31]. KICA have been used for face recognition [32] under several conditions, along with 
various subspace methods for comparison. However, as the results are tabulated in Table 4, KICA does 
not seem to be very efficient for this task, being outperformed by techniques such as KPCA, FDA (LDA) 
or KFDA (KDA).   

Table 4. Face recognition rate for various subspace methods including KICA and under different 
recording conditions of faces [32]. 

4. Discussions 
Several linear and nonlinear dimensionality techniques have been presented in this overview along with 
one representative application. Although they were successfully applied to a variety of many other 
applications and fields as mentioned, each method has its own shortcomings. One of the PCA’s 
drawbacks is its computational complexity for large data dimensions and number of samples (hundreds or 
several thousands). This issue comes from the computation of the sample covariance matrix. A way to 
avoid this computation was proposed by Roweis who developed a PCA variant based on EM algorithm 
[33] where no covariance matrix is needed to be calculated. Another limitation of the classical PCA is 
driven by a batch computation step. This means that, when a new training sample comes this new sample 
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must be added to the entire training data and the PCA training procedure has to be rerun for this new 
formed training set. Several incremental methods for the computation of the eigenvectors have been 
introduced to overcome the limitation, where the learning step is performed on-line as each new training 
sample is added [34], [35]. As far as the recognition issue is concerned, PCA is very sensitive to 
illumination changes that can dramatically influence the recognition performance. Usually, to increase the 
PCA’s robustness to this factor, the first three principal components are discarded prior to apply the 
recognition step. In spite the fact that LDA has been designed to cope with recognition tasks, it may fail 
to provide satisfactory results under some certain circumstances. One of them is the violation of the 
linearity assumption, and another one is the limited number of samples [36]. NMF and its relatives 
(LNMF and DNMF) suffer from the lack of a global algorithmic convergence. To converge, the method 
has to be run several times to assure the finding of a local minimum.  

Nonlinear dimensionality reduction approaches have their own disadvantages. One of their drawbacks is 
the computational complexity and the necessary processing time that is, generally higher than the one 
allocated for the linear approaches. A direct analytical comparison can be performed between KPCA, 
KDA, and KICA, versus their linear parts, PCA, LDA, and ICA, respectively. The difference resides in 
computing the kernel matrix, which, for large number of samples may be highly timely consuming. Also, 
the lack of theoretical rationale for choosing a specific kernel along with its optimum parameter (some 
empirical approaches such as cross-validation, etc. exists for tuning, though) is another shortcoming of 
these techniques.  
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