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Abstract: In this paper we show that adding offset terms to standard Nonnegative Matrix Factorization can improve clustering even 
without an explicit feature (gene) selection step.  

Given that most cancer subtypes are very heterogeneous diseases, we apply our algorithm to a large public colon cancer gene 
expression dataset to differentiate the main genomic-level subtypes of the disease. 
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1. Introduction and Motivation 

Understanding cancer at the genomic level is a daunting task due to the enormous heterogeneity of this 
disease, depending not only on tissue and cell type, the progenitor cells involved, but also on the 
stochastic nature of genomic mutations as well as the associated local evolutionary processes. Moreover, 
there is overwhelming recent evidence that the differences between cancer subtypes implicate entire 
pathways and biological processes involving large numbers of genes, rather than changes in single genes. 
For example, sporadic colon adenocarcinoma are very heterogeneous and their best current classification 
based on the presence or absence of microsatellite instabilities (MSI-L, MSI-H and MSS) [1] is far from 
ideal from the point of view of gene expression. It is therefore essential to make use of existing gene 
expression data for obtaining a better classification of the disease subtypes, which would enable different 
treatments specifically targeted to the particular subtypes. 

Clustering methods for gene expression data are essential for determining the main subclasses of these 
diseases. Unfortunately, most existing clustering methods are very sensitive w.r.t. the set of features 
(genes) considered in the clustering process. Therefore, a careful selection of the set of relevant features 
(genes) is needed. 

For example, we could consider selecting the genes with a large standard deviation, but this would favor 
genes with large expression levels, while excluding possible causal factors with low expression (such as 
key transcription factors).1 This problem could be corrected by considering genes with large relative 
standard deviations σ(g) / µ(g) 2, but this would again favor only a specific subset of genes, namely those 
with large isolated spikes, as in Figure 1, as opposed to genes that have consistently high or consistently 
low expression levels in larger subsets of samples. 

                                                 
1 Since gene expression data tend to be log-normally distributed, the standard deviations tend to be proportional to the mean 

expression levels. 
2 σ(g) is the standard devition of gene g, while µ(g) is its mean. 
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Figure 1. Relative standard deviations tend to favor genes with large spikes (e.g. IGLJ3) 

Since the disease subclasses are unknown, we could try selecting the genes with clear bi- or multi-modal 
distributions, as in Figure 2. Such genes have very different expression values in at least two distinct 
subsets of samples, but it turns out that these subsets of samples are completely different for each such 
bimodal gene (reflecting perhaps the normal genetic diversity between individuals, as in Figure 2, where 
the bimodal gene is a member of the HLA complex). Therefore, selecting the genes based only on the 
bimodality of their distributions will not allow the grouping of samples into well-defined subclasses. We 
need to select a set of genes which all have similar expression levels in unknown but stable subsets of 
samples. Thus it turns out that we are in a circular situation in which we need a clustering method for 
selecting the features (genes) to be used by another clustering method. 
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Figura 2. A gene with a bimodal distribution (HLA-DQA1) in the sporadic colon cancer dataset 

Our previous results on clustering lung cancer data [Error! Reference source not found.] showed that 
Nonnegative Matrix Factorizations (NMF) [6] are quite well suited for clustering gene expression data 
without the need of previous feature selection. This is unlike most currently used clustering algorithms 
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(such as hierarchical clustering [Error! Reference source not found.]), which are sensitive to the sets of 
selected features (genes). 

Still, the standard NMF algorithm [6,7] is in certain ways imperfect in domains such as microarray data 
clustering, where we have large numbers of features (genes), most of which are irrelevant to varying 
degrees. Assuming that the relevant genes lead to well defined gene and sample clusters, we need to 
explain how NMF succeeds in approximating the irrelevant genes (if NMF did not succeed in 
approximating the irrelevant genes, the error term associated to these genes would dominate the total 
error, thereby “drowning” the error term associated to the relevant genes and thus disallowing their 
grouping). Interestingly, we have observed that NMF reconstructs the irrelevant, nearly constant genes 
out of the significant gene clusters. Still, although this allows it to deal with large numbers of irrelevant 
genes, the sample clusters will be affected by such irrelevant genes. 

In this paper we should how the standard NMF algorithm can be adapted to deal with quasi-constant 
irrelevant genes without affecting the sample clusters. 

To obtain a better subclassification of sporadic colon adenocarcinomas, we have applied this modified 
unsupervised clustering algorithm to a large colon cancer dataset (204 samples). Interestingly, a large 
colon adenocarcinoma subclass expressed a set of genes very similar to the genes differentially expressed 
in pancreatic ductal adenocarcinoma [5]. 

2. Nonnegative Matrix Factorizations with Offset (NMFoffset) 

As mentioned in the Introduction, standard NMF will reconstruct quasi-constant genes g as 
superpositions of the nontrivial clusters of the factorization, so that the genes g will have significant 
membership degrees Scg for most clusters (see Figure 3).  
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Figure 3. Quasi-constant genes are reconstructed as superpositions of nontrivial clusters 

This unnatural reconstruction of quasi-constant genes can be avoided by adding a supplementary degree 
of freedom Sog for each gene g, representing the „offset” of g. More precisely, a nonnegative 
factorization with offset of the ns×ng (samples × genes) gene expression matrix X as a product of an ns×nc 
(samples × clusters) matrix A and an nc×ng (clusters × genes) matrix S takes the form: 

gc cgscsg SoSAX +⋅≈ ∑       (1) 

with the additional nonnegativity constraints:   

0,0,0 ≥≥≥ gcgsc SoSA       (2) 

where Xsg is the expression level of gene g in data sample s, Asc the expression level of the biological 
process (cluster) c in sample s, Scg the membership degree of gene g in c, Sog the expression offset of 
gene g and e = (1 1 ... 1)T. The nonnegativity constraints (2) express the obvious fact that expression 
levels and membership degrees cannot be negative. 



 Studies in Informatics and Control, Vol. 16, No. 4, December 2007 480 

More formally, this can be cast as a constrained optimization problem: 
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subject to the nonnegativity constraints (2). 

The main role of the “offset” So is to absorb the constant expression levels of genes, thereby making the 
cluster samples Scg “sparser”. 

The associated multiplicative update rules can be easily derived using the method of Lee and Seung [7]. 
The gradient of the function f is: 
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The additive update rules for the matrices A, S and So are: 
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For obtaining multiplicative update rules, we choose the factors µ to be matrices as follows: 
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Replacing these factors in formulas (4-6) above, we obtain the following algorithm using multiplicative 
update rules:3 

NMFoffset(X, A0, S0, So0)  →  (A, S) 

A ← A0, S ← S0, So ← So0   (typically A0, S0 and So0 are initialized randomly) 

loop  

( )
( )( ) ε++

←
sc

T
sc

T

scsc SASeSo
XSAA  

                                                 
3 The convergence proofs are very similar to the one for NMF [7]. 



Studies in Informatics and Control, Vol. 16, No. 4, December 2007 481

( )
( )( ) ε++

←
cg

T
cg

T

cgcg ASeSoA
XA

SS  

( )
( )( ) ε++

←
g

T
g

T

gg ASeSoe
Xe

SoSo  

until convergence 

normalize the rows of S to unit norm by taking advantage of the scaling invariance of the factorization: 
A ← A ⋅ D, S ← D−1⋅ S, where ( )∑=

g cgSdiagD 2 . 

Figure 4 below presents a comparison between the factorizations produced by the standard NMF 
algorithm and its improvement NMFoffset on a synthetic dataset in which columns 36 to 85 are constant 
“genes”. As can be easily seen in the Figure, these “genes” are reconstructed by the standard NMF 
algorithm from combinations of clusters, while NMFoffset uses the additional degrees of freedom So to 
produce null cluster membership degrees Scg for the constant genes. Moreover, NMFoffset recovers with 
much more accuracy than standard NMF the original sample clusters, the standard NMF algorithm being 
confused by the cluster overlaps. This improvement in recovery of the original clusters is very important 
in our application, where we aim at a correct sub-classification of samples. 

Original matrix 
X (original matrix)

 

 

20 40 60 80

5

10

15

20
2

4

6

8

10

 
Standard NMF 

A*S

 

 

20 40 60 80

5

10

15

20
2

4

6

8

10

A

1 2 3 4

5

10

15

20

S

20 40 60 80

1

2

3

4

 
 
NMF with offset 

A offset*S offset + So offset

 

 

20 40 60 80

5

10

15

20
2

4

6

8

10

A offset

1 2 3 4

5

10

15

20

S offset

20 40 60 80

1

2

3

4

 

          

So offset

20 40 60 80  
 
 
 

Figure 4. Comparing standard NMF with NMFoffset 
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3. Clustering the Sporadic Colon Adenocarcinoma Dataset 

Because of the known heterogeneity of sporadic colon adenocarcinoma, an as large as possible dataset 
was needed. For this, we combined 182 colon adenocarcinoma samples from the expO database [8] with 
22 control samples from [9] to obtain a 204 sample dataset. (All of these had been measured on 
Affymetrix U133 Plus 2.0 chips.) The raw scanning data was preprocessed with the RMA normalization 
and summarization algorithm from the R package. (The logarithmized form of the gene expression matrix 
was subsequently used, since typical gene expression values are log-normally distributed.) After filtering 
out the probe-sets (genes) with relatively low expression as well as those with a nearly constant 
expression value4, we were left with 5617 probe-sets. Finally, the Euclidean norms of the expression 
levels for the individual genes were normalized to 1 to disallow genes with higher absolute expression 
values to overshadow the other genes in the factorization. 

In the following we briefly describe the application of NMFoffset to the sporadic colon     
adenocarconoma dataset. 

An important parameter of the factorization is its internal dimensionality (the number of clusters nc). To 
avoid overfitting, we estimated the number of clusters nc as the largest number of dimensions around 
which the change in relative error 

cdn
dε of the factorization of the real data is still significantly larger than 

the change in relative error obtained for a randomized dataset 5 (similar to [10]) – see also Figure 5 
below. Using this analysis we estimated the internal dimensionality of the dataset to be between 3 and 7.  
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Figure 5. Determining the internal dimensionality of the datasets 

Using NMFoffset with a conservative nc=3 on the colon cancer gene expression data, we obtained the two-
way clustering diagram from Figure 6. (The dendrograms on the Figure were obtained by hierarchical 
clustering of the rows of A and of the columns of S respectively.) 

 
 
 
 

                                                 
4 Only genes with an average expression value over 100 and with a standard deviation above 100 were retained. 
5 The randomized dataset was obtained by randomly permuting for each gene its expression levels in the various samples. The 

original distribution of the gene expression levels is thereby preserved. 
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Figure 6. Two-way clustering of the colon cancer dataset 

Notice the significant heterogeneity of the disease: there are at least 4 larger gene clusters (Gi) and 5-6 
sample clusters (Si), the normal samples being included in cluster S1. In order to characterize the clusters 
of samples, we searched for gene clusters discriminating between them. The following Table presents the 
discriminating gene sets for all sample cluster pairs: 

 S1 S2 S3 S4 S5 
S1  G3, (G4) G3, G4 G3 G3, G4, G2 
S2   G3 G4 G2 
S3    G3, G4 G2, G3 
S4     G2 
S5      

Next, using various annotations (Gene Ontology, GENMAPP and KEGG pathways, protein domains 
from INTERPRO, etc.) and literature references, we tried to find a biological interpretation of                
the gene clusters. 

Cluster G2 contains genes that are upregulated (w.r.t. normal tissue) in certain tumors (especially from 
S5). These genes are involved in TGF-beta signalling and inflammatory response. The TGF-beta pathway 
is very important in several cancer subtypes, as it plays a dual role: tumor suppressor in the initial phases 
and pro-metastatic in more advanced stages (the relevant genes are INHBA, SPP1 and THBS1). The 
cluster also contains many genes involved in cell adhesion, many controlled by the TGF-beta pathway. 

Cluster G3 contains genes overexpressed in normal tissue, especially w.r.t. tumor samples from S2 and 
S5. They are mainly involved in metabolic processes, cellular transport and signalling. There is a 
marginal overlap with the gene sets reported by Watanabe (2006) to differentiate between MSI and MSS: 
ACE2, DUOX2, FABP1, HMGCS2, KRT20, LOC63928, PIGR, SLC26A2, SLC26A3. Also, there is a 
small overlap (ABP1, CDKN2B, ENTPD, FABP1, FCGBP, IGJ, MUCDHL, PDE9A, SLC4A4, XDH) 
with gene set SANSOM_APC_5_DN from MsigDB, which contains genes underexpressed in a cell line 
with an inactivated APC gene (these are probably target genes of the Wnt pathway). 

Cluster G4 contains genes from the Wnt pathway (AXIN2, MMP7, PLCB4), 3 metalloproteinases 
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(MMP-1,3,7) as well as genes involved in cell signalling, transcription control and transport. It overlaps  
with the gene set differentiating between MSI and MSS (CEL, IQGAP3, KRT23, LY6G6D, REG4, 
SPINK1, TDGF1, VAV3), the  SANSOM_APC_LOSS4_UP gene set (ASCL2, AXIN2, CDCA7, ECT2, 
EHF, GGH, PSAT1), as well as with a gene set differentiating between tumors with KRAS mutations and 
tumors with BRAF mutations (IL8, CXCL5  and MMP1 - overexpressed in tumors with BRAF 
mutations, CEL, DACH1, NOX1, TDGF1 - overexpressed in tumors with KRAS mutations), suggesting 
that the first subcluster in G4 may contain genes involved in tumors with BRAF mutations. 

4. Conclusions and Related Work 

In this paper we have shown that adding offset terms to standard Nonnegative Matrix Factorization can 
improve clustering even without an explicit feature (gene) selection step. Thus, NMFoffset performs 
simultaneous feature selection and clustering. 

The molecular profiles of the samples from this colon adenocarcinoma dataset show the heterogeneity of 
colon cancer at the genomic level, which overlaps only partially with the currently known subtypes (MSI-
H, MSI-L, MSS), probably because of the activation of different pathways, which interact in complex 
ways. This heterogeneity shows that most existing microarray studies of colon cancer are probably too 
small (in terms of number of samples) to produce statistical relevant results even for the frequent 
subtypes. The present study is, as far as we know, the largest published analysis of colon cancer. 
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