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Abstract: In the present paper we propose a new optimal design method to determine the parameters of the optimized state 
feedback controller for non-linear systems described by continuous-time Takagi-Sugeno-Kang (TSK) models. The proposed method 
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1. Introduction 

Using conventional techniques and designing controllers for non-linear dynamic plants can be quite 
challenging. By using soft computing techniques, intelligent control techniques can greatly simplify the 
synthesis of a controller for such plants. However, the analysis of intelligent techniques such as fuzzy 
systems, neural networks, evolutionary programming and Ant Colony Optimization has in many cases 
been widely studied and has shown promising results [1, 8]. These techniques are used occasionally in 
practical cases mainly because of the lack of experimental implementation and of analysis of these 
techniques.   

Furthermore, based on the multi-model concept [12], cooperative solutions to control systems have 
recently been used as counterparts to single-entity problems solvers. There has been a paradigm shift in 
technology, whereby efficient solutions to control problems were developed through the use of multi-
agent strategies rather than a single-agent. Indeed, the multi-agent strategies have a very sophisticated 
metaphor. In control process, the multi-model concept and the multi-agent approach present very good 
analysis tools. There significance in application performance can be noted as has been shown by the 
transformation of the multi-agent system into an active research area. 

Fuzzy system and multi-model representation have the public attention due to their better approximation 
and generalization abilities to handle complex and ill-defined systems. Hence, the TSK fuzzy plants [15, 
16, 18] are non-linear systems approximated by a set of local linear models, which is described by a set of 
fuzzy “IF-THEN” rules. It is widely established that such models can describe or approximate a wide 
class of non-linear systems. Therefore it is important to exploit the combination of the TSK approach and 
the ACO heuristic [8, 9] for the study of the process optimized control. 

Moreover, the activities of social insects have inspired successful applications in many areas [3, 14], 
especially ant system, and yielded many promising cooperative solutions and algorithms for complex 
tasks. 
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For example, ants, using their simple individual interactions mediated by pheromones (one ant follows 
the chemical scent of another), can collectively determine the shortest path from their nest to the food 
source without using visual cues. 

In our case, the design of the optimized state feedback controller for TSK plants is based on the ACO 
metaheuristic [6, 7], which imitates the behavior of real ants [8, 3, 14] to find the shortest path between a 
food source and their nest. Ants communicate with each other by means of pheromone trails and 
exchange information about which way should be followed. The bigger the number of ants, tracing a 
given path, the more attractive this path becomes and has been undertaken by other ants by depositing 
their own pheromones. This autocatalytic and collective behavior results in the establishment of the 
shortest path. 

The method improved by modeling real ant behavior uses exactly the following specifications: 

 The communication between ants is established through pheromone trail; 

 Paths with more pheromone deposits are preferred; 

 Pheromone trail increases rapidly on short paths. 

Most ACO algorithms use the algorithmic procedure given below: 

Initialize Ant Colony parameters  

While (until the termination criteria are met) do 

     Generate Promising Solutions 

     Evaluate Solutions 

     Update Pheromone Trail 

End  

In this paper, we present a new approach for searching the controller parameters of non-linear plants 
described by the TSK fuzzy model. To achieve this objective we use the quadratic Lyapunov function to 
analyze the global stability by verifying the existence of a common positive definite matrix which 
guarantees the stability of all local subsystems. Then, we exploit the ACO control law. 

This paper is organized as follows; in section 2 continuous TSK model is presented. Section 3 deals with 
the stability of the TSK fuzzy models by using Lyapunov stability theory. The design of the optimized 
state feedback controller using ACO approach is discussed in detail in section 4. In section 5 the 
performances and effectiveness of the optimized command law are shown through the control of an 
inverted pendulum.   

2. Continuous TSK Fuzzy Model 

In the TSK method [15, 16, 18], the non-linear plant takes the following form: 

         
         

X t f X t b X t u t

y t g X t d X t u t



 

 





       (1) 

with:            . , . , . , . , . ,p m l p lX IR u IR y IR f X IR g X IR    

     . .. .p m l mb X IR and d X IR  , System 1 is approximated by a set of linear local models, 

which is described by a set of fuzzy ‘IF-THEN’ rules, where fuzzy sets are the antecedents and local 
linear time invariant systems are the consequents.  

The i-th rule of the TSK fuzzy model has the following form: 

1 1

( ) ( )( ) ,..., ( ) , ..., ( )
( ) ( )

i i
j j q q

i

i i i X A X t B u tIF z t is F z t is F z t is F THEN
y t C X t



 







 (2)  

where i =  1,…, n with n the number of rules; the zj (j =1,…, q) are the premise variables; the i
jF   is the 
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fuzzy set; X is the state vector; u  is the input vector;  y  is the output vector; Ai , Bi  and Ci are matrices of 
adequate dimensions. Therefore, the global state of TSK fuzzy model is based on the interpolation 
between several LTI local models as follows:  

1

( ( )) ( ( ) ( ) )
n

i i i
i

X z t A X t B u t




        (3) 

The normalized activation function ( ( ))i z t in relation with the i-th submodel is as follows: 

 
1

( ( )) 1

( ( )) 0 1,...,

n

i
i

i

z t

z t i n








  







 

3. Stability Analysis of Closed-loop TSK Fuzzy Model 

The study of the stability of the TSK fuzzy model is based on the Lyapunov theorem [11, 2]; that 
transforms the problem of finding the common matrix P into a linear matrix inequality (LMI) problem 
and uses convex programming techniques for the solution [17]. Hence, the Lyapunov-based method is 
used to determine the state feedback controller which guarantees the global stability for the concerned a 
non-linear plant modeled by TSK fuzzy model. 

To ensure this stabilization a proportional state feedback controller is proposed. 

( ) ( )u t K X t           (4) 

The latter determines the global stability condition and the nominal system performances. 

The vector K = [K1, K2, …, Kp]  represents the global feedback gain which stabilize the TSK fuzzy model.  

Substituting (4) in (3), the closed-loop continuous TSK fuzzy model is: 

1

( ( )) ( ) ( )
n

i i i
i

X z t A B K X t




        (5) 

This model is stable according to Lyapunov if there is a common quadratic Lyapunov function V (X)   =   
XT   P  X [5, 10] such as: 

1)  ( )V X is positive definite and continuously differentiable; 

2)  ( ) 0V X


  .        

 To determinate the vector K, we use the following theorem: 

Theorem 1: the closed-loop continuous TSK fuzzy model described by (5) is asymptotically stable if 
there exists a common symmetric positive definite matrix P such that: 

0T

i iG P P G                        1, 2,...,i n                                                 (6) 

with i i iG A B K  .                                                                                                         

Relation 6 can lead to an LMI formulation [4] to find simultaneously the matrices   P > 0 and the gain 
vector K.   

4. Design of the ACO Optimized Controller 

This controller consists in using the ACO approach to find the optimized global state feedback gain Kopt = 
[K1opt, K2opt, …, Kpopt]. The exploitation of the ACO approach is described below: 

After computing the global gain K which stabilizes the TSK fuzzy model by using the LMI formulation, 
the main idea is to randomly generate an Expected Promising Gain Matrix (EPGM) which contains the 
expected gains for all the components of the state vector that may be used to determine the optimized 
ACO controller gain. 



 

 Studies in Informatics and Control, Vol. 16, No. 3, September 2007 310 

4.1 The EPGM Representation: 

The EPGM entries used in the optimized ACO controller are represented by   Ni,j values. These latter 
represents the gain which correspond to the j-th gain vector and corresponds to the i-th state variable that 

the ACO would use in its searching process. For each component of the gain vector K, the variation of 
Ni,j   is modelled by generating a simulated actual value for each gain by sampling a uniform random 
distribution in the range Kmax = [K1max, K2max, …, Kpmax]  and    Kmin = [K1min, K2min, …, Kpmin]. For example 
Kmin =0.8 K and Kmax =1.2K   i [1, 2, , P].    

Let an EPGM matrix have p rows and m columns.  Random EPGM matrix is generated as  follows : 

1. Let K = [K1, K2, …, Kp]  a gain vector which stabilizes the TSK fuzzy model;  

2. Let m an arbitrary constant quantifying the number of randomly generated gain vector; 

3. Let Kmin =0.8 [K1, K2, …, Kp] and Kmax =1.2 [K1, K2, …, Kp]  represent the lower bound and the upper 
bound of the feedback gains that guarantee the stability domain of the TSK plant model;  

4. Generate the EPGM matrix which is constituted by a set of elements Ni,j  ( i= 1,…, p and j=1, …, m)  
with the following algorithm: 

For   i   from   1   to   p 

       For   j   from   1  to   m 

Pick a value for Nm from the uniform random distribution with range [Ki.min , Ki.max] 

                     N [i, j]     =Nm  

      endfor 

endfor 

Table1. The EPGM representation 

     

K1 

 

K2 

 

K3 

 

K4 

 

K5 

 

K6    … 

 

Km 

x1 N1,1 N1,2 N1,3 N1,4 N1,5 N1,6  … N1,m 

x2 N2,1 N2,2 N2,3 N2,4 N2,5 N2,6 … N2,m 

x3  N3,1 N3,2 N3,3 N3,4 N3,5 N3,6 … N3,m 

 

 

         

xp Np,1 Np,2 Np,3 Np,4 Np,5 Np,6  … Np,m 

 

In the table 1, xi  ( i= 1, …,p ) represents the i-th state variable, Kj ( j = 1, …,m ) is the  j-th gain vector, 
and Ni,j is the correspondents promising gain. 

4.2 Construction Graph and Constraints  

Graphically, the optimized controller problem can be represented by the bipartite oriented graphs which 
are composed of two categories of nodes. The state variables are associated with a xi node and promising 
gains are associated with a Kj node. The cost of the connection xi to Kj is directly linked to the gain Ni,j. To 
model the process in a more straightforward manner we use the construction graph that is derived from 
the EPGM representation. The expected promising gain Ni,j defines the one distance between the gain Kj 
and the state variable xi.  Figure 1 represents the construction graph. 
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Figure 1. The construction graph associated with the EPGM representation. 

This construction graph represents a simple solution for the journey of the ants on the path. Specifically, 
an ant seeks to travel across the construction graph in such a way that all of the following constraints will 
be satisfied: one and only one node is visited in each row of the graph. We note that there are several 
paths the ants undertake which differ according to the luminosity.  This latter depends on the amount of 
pheromone which is proportional to the number of ants travelling through these paths. In the rest of this 
paper, “path”, “tour” , “solution” and “branch” are used interchangeably;  the pair  ( Kj, xi ) means: gain Kj 
is assigned to state variable xi . 

4.3 The ACO Control Law 

Typically, ants deposit the chemical pheromone when they move around; they are also able to detect and 
follow pheromone trails. 

In our case, the pheromone trail describes how the ant system builds the optimized solution to the ACO 
problem. On the construction graph, the probability of choosing a branch at a certain time depends on the 
total amount of pheromone on the branch which is proportional to the number of ants they visited the 
branch until that time. Pa

i,j  represents the probability of the a-th ant to assign the gain Kj to the state 
variable xi .  Each of the ants builds a solution using a combination of the information provided by the 

pheromone trail τi,j  and  the heuristic function which is defined by ,

,

1
i j

i jN
  . 

, ,

, ,
,

,

( ) ( )
( , )

( ) ( )

0

i j i j

a
i j i j

i j
i j D

if i j D
P

otherwise

 

 

 

 











     (7) 

In this equation, D denotes the set of nodes visited by the a-th ant, where α and β are the parameters that 
control the relative importance of the pheromone trail versus visibility. Therefore, the transition 
probability is a trade-off between visibility and pheromone trail intensity at a given time. 

4.4 Pheromone Update 

To allow the ants to share information about the best solutions, pheromone trail must be updated. After 
each iteration of the ant system algorithm, equation (8) describes in detail the pheromone update used 

N1,m 

Np-1,m 

N2,m 

Np,m 

N1,2 

Np-1,2 

N2,2 

Np,2 

N1,4

Np-1,4 

N2,4 

N1,5 

Np-1,5 

N2,5  

Np,5 

N1,6       … 

Np-1,6       …  

N2,6      … 

Np,6       … 

N1,3 

Np-1,3 

N2,3 
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Km 

x1 

x2 
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xp 

St 

End 
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when each ant has completed its own optimized controller solution Sant characterized by the criterion  Jant. 
This latter corresponds to the length of the path. In order to guide the ants system toward good solutions, 
a mechanism is required to assess the quality of the best solution. The optimal choice would be to use the 
iteration-best criterion Jmin   of all solutions given by a set of ants at the current iteration: 

min

,

( , )

0

ant
a ant
i j

J
if i j T

J

otherwise




 





      (8) 

Once all the ants have completed their tours, the trail levels on each branch need to be updated. The 
evaporation factor ρ which damages the pheromone trail, ensures that the pheromone is not accumulated 
infinitely and indicates the quality of the pheromone that is approved for the next algorithm iteration. 
Equation (9) represents the pheromone-level-update: 

, , ,1
.

aN a
i j i j i j             (9) 

where Na  defines the number of ants to use in the colony. 

In figure 2 the graph is constituted of four state variables and seven vector gains. After some iteration, we 
note that the pheromone trail increases on the path of the best solution and decreases on the path of the 
worst solutions.  

 

Figure 2. State of the construction graph after some iterations 

At the final iteration, only the path of the best solution is maintained The best path labeled as critical path 
corresponds to the best solution Kopt =[ K1opt    K2opt     K3opt    K4opt  ] = [ N1,1    N2,5     N3,6    N4,4 ].  
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Figure 3. The ants tend to favor the path of the best solution 

The corresponding EPGM representation is giving by table 2: 

Table 2: The EPGM representation that corresponds to the best solution. 

 

 K1 K2 K3 K4 K5 K6 K7 
x1 N1,1 N1,2 N1,3 N1,4 N1,5 N1,6 N1,7 
x2 N2,1 N2,2 N2,3 N2,4 N2,5 N2,6 N2,7 
x3 N3,1 N3,2 N3,3 N3,4 N3,5 N3,6 N3,7 
x4 N4,1 N4,2 N4,3 N4,4 N4,5 N4,6 N4,7 

 

4.5 The Tabu Search 

A simple tabu search was also implemented to improve this ACO controller problem. The approach 
adopted here allows the ants to build their solutions as described in section 4.2, and then the resulting 
solutions are taken to a local optimum by the tabu search mechanism.  

Each of these best ant solutions is used in the pheromone update stage. The tabu search is performed on 
every best new solution, but needs to be fairly fast. In the case of the ACO controller problem a simple 
tactic is to randomly pick a gain Ni,j  on the critical path and randomly change its probability  Pi,j , then 
verify the value criterion. If the solution is approved we change critical path else we maintain it.  

The main steps in the strategy of the ACO controller system by ACO approach and tabu search algorithm 
are given below: 

 Initialize parameters Na, α, β, τ0 and ρ; 

 Compute the feedback controller K that stabilizes the TSK plant model; 

 Apply the EPGM  creation procedure given in section 4-1; 

 Create an initial solution and an empty tabu list of a given size. 

In order to generate feasible and diverse solutions, initial ants are represented by solutions issued from K, 

N1,7 

N3,7 

N2,7 

N4,7 

N1,2 

N3,2 

N2,2 

N4,2 

N1,4 

N3,4 

N2,4 

N4,4 

N1,5 

N3,5 

N2,5  

N4,5 

N1,6 

N3,6 

N2,6 

N4,6 

N1,3 

N3,3 

N2,3 

N4,3 

N1,1 

N3,1 

N2,1 

N4,1 

K1 K3 K2 K4 K5 K6 K7 

x1 

x2 

x3 

x4 

St 

End 



 

 Studies in Informatics and Control, Vol. 16, No. 3, September 2007 314 

Kmin , Kmax  and random method. They are used to approximate an optimized solution as close as possible. 

The ACO controller algorithm using tabu search is given as follow: 

Repeat (until the termination criteria are met)   

- Find new solution by ACO controller procedure given in section 4-3 

- Compute the value of the criterion described in section 4-4 

- Evaluate the quality of the new solution. If a new solution is improved then the current best 
solution becomes new solution; otherwise we apply the tabu search  given in section 4-5 

- Add solution to the tabu list; if it is full then delete the oldest entry in the list 

- Apply the updating pheromone trail procedure. 

END Repeat 

4.6 The Setup Parameter Values 

The setup parameter values used in the ACO controller algorithm are often very important in getting good 
results; however the exact values are very often entirely problem dependent and cannot always be derived 
from features of the problem itself. 

- α determines the degree to which pheromone trail is used as the ants build their solution. The lower 
values imply that the less ‘attention’ the ants pay to the pheromone trail, but the higher values imply that 
the ants are performing too little exploration, after testing values in the range 0.25  -  0.75  this algorithm 
works well with relatively high values (around 0.5  -  0.75).  

- β determines the extent to which heuristic information is used by the ants. Again, values between 0.1- 
0.75 were tested, and a value around 0.5 appeared to offer the best trade-off between following the 
heuristic and allowing the ants to explore the research space.  

- τ0  is the value to which the pheromone trail values are initialized. Initially the value of the parameter 
should be moderately high to encourage initial exploration, while the pheromone evaporation procedure 
will gradually stabilize the pheromone trail. 

- ρ is the pheromone evaporation parameter and is always set to be in the range [0< ρ < 1]. It defines how 
quickly the ants ’forget’ past solutions. A higher value makes for a more aggressive search; it tests a value 
of around 0.5-0.75 to find good solutions. 

- Na defines the number of ants to use in the colony, a low value speeds up the algorithm because few 
searches are done, a high value slows the search down, as more ants run before each pheromone update is 
performed. A value of 10 appeared to be a good compromise between the execution speed and the quality 
of the solution achieved. 

It is interesting to note that for each value of parameters the ACO controller yields a good solution. 
Moreover, its convergence speed depends essentially on the number of used ants: the larger Na  is, the 
more acceptable research solutions are, and therefore the easier and more flexible the search is. 

5. Simulation Example 

The non-linear system to be controlled is the classical inverted pendulum system described in figure 4.  

 
Figure 4. Schematic representation of inverted pendulum and cart 

( )F t


( )t

( )X t

Time 
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A force ( )F t


is applied to the cart. The goal is to stabilize the pendulum to a position 0   from an 

initial position 0  following a reference trajectory. 

The dynamic model of inverted pendulum is described by the following equations: 

2

1 2

1 1
sin sin2 cos ( )

2(1 cos2 )
2

i i p c
i

x m a m gl l f aP u a f P x
m l

J
    



   
 
       
 

    
2

1 2

1 1
cos sin2 sin ( ) cos

2(1 cos2 )
2

i i p c
i

P l u m l m g f x f P l
m l

J
      



    
      

  
 

with: 

c pm m m   

 ( )i c pm l m m   

2 ( )p c pJ J l m m    

2 J
a l

m
   

Table 2: Parameters of the inverted pendulum. 

Name Description 

mc Mass of cart 

mp Mass of pendulum 

m Equivalent mass of cart and pendulum 

l Distance from axis of rotation to center of mass of system 

g Gravity 

fc Dynamic cart friction coefficient 

P2 Control force to cart velocity ratio  

P1 Control force to PWM signal ratio 

fp Rotational friction coefficient  

Jp Moment of inertia of pendulum with respect to axis of rotation 

J Moment of inertia related to the mass centre 

x(t) longitudinal position of the cart 

 (t) Angle position of the pendulum 

The state vector is given by ( ) ( ) ( ) ( ) ( )
T

X t x t t x t t 
     

where the positions are 

measurable. 

The complete fuzzy TSK model obtained by polytopic transformation is comprised of two rules [13]: 

Rule 1:     If   θ(t)    is   1
1F        then           1 1( ) ( ) ( )X t A X t B u t



      

Rule 2:     If   θ(t)    is    2
1F            then           2 2( ) ( ) ( )X t A X t B u t



      

with ( ) ( )z t t  is the premise variable , 1
1F     and 2

1F  represents the fuzzy sets defined in a universe 

of discourse for the state variable   . The membership functions  1
1 ( ( ))F t  and 
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2
1 ( ( ))F t corresponding to the fuzzy sets are represented as follows : 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
The two sub-models are described respectively by the matrices A1, B1 and A2, B2 as follow [13]: 
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Therefore, the global state of TSK fuzzy model is based on the interpolation between several LTI local 
models as follows: 
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Figure 5. Membership functions. 
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The ACO technique used to find the optimized feedback gain vector which minimizes the cost function 
(that corresponds to the length of the path described in section 4-4), given by: 

2

0
( , ) ( )TJ Q R X Q X R U dt


   

where the matrices 

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

Q

 
 
 
 
 
 

 and 1R   are weighting matrices of the minimized 

criterion. The ACO approach can be used to solve the problem of computing the optimized gain vector 
Kopt. The optimized control law is implemented by the following equation : 

( ) ( )optu t K X t   

where Kopt  is the optimized gain vector of the global model obtained by using ACO  technique and tabu 
search. 

Then we obtain the following closed-loop continuous TSK model: 

2

1

( ( )) ( ) ( )i i i opt
i

x t A B K X t 




   

To determine the EPGM representation used in the optimized ACO controller we must compute in the 
first step the feedback gain K by using theorem 1 and LMI formulation. In the second step we randomly 
generate a set of vector gains belonging to the domain which guarantees the global stability of the TSK 
fuzzy model. The simulation results yield P and K as: 

0.0168 0.0309 0.0099 0.0035

0.0309 0.2340 0.0421 0.0259
P =

0.0099 0.0421 0.0229 0.0074

0.0035 0.0256 0.0074 0.0103

  
   
  
   

  

 0.0865 0.0970 0.0197 0.0919K     

The EPGM matrix which is constituted by a set of gain  Ni,j    is represented as follows:  

( i= 1,…, 4 and  j=1, …, 10 ) 

 

Table3. The EPGM representation 

 
      

 
K1 

 
K2 

 
K3 

 
K4 

 
K5 

 
K6 

 
K7 

 
K8 

 
K9 

 
K10 

x 0.0699 0.1038 0.0999 0.0865 0.0905 0.0692 0.0730 0.0961 0.07688 0.0922 
θ 0.0862 0.1164 0.0948 0.0970 0.0991 0.0819 0.1077 0.0840 0.0776 0.1129 
x -0.0175 -0.0166 -0.0184 -0.0197 -0.0159 -0.0192 -0.0210 -

0.0157 
-0.0207 -0.0236 

θ -0.0879 -0.0745 -0.1096 -0.0919 -0.0735 -0.0828 -0.0980 -
0.0939 

-0.0776 -0.1102 

 

Under simulation conditions 010; 0.65; 0.5; 0.45; 0.25aN          and by use of the ACO 

control law and tabu search we obtain the following optimized vector gain Kopt : 

 0.0692 0.1164 0.0157 0.0735optK     

The curves below show the simulation results of the inverted pendulum system responses: 

• 
• 
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Figure 6. System responses of the inverted pendulum with the proposed ACO command law compared 
with the feedback command law. 

 

6. Conclusion 

This work proposes a new design technique of robust controllers; firstly using the TSK fuzzy plant model 
for the analysis of the global stability conditions and secondly the Ant Colony Optimization 
metaheuristics for the computing of the optimized control law.  

The exploitation of the TSK plant model and the LMI tools solve the global system stability problem and 
gives the nominal system performances while the ACO mechanisms attempt to adjust the system’s 
performance by tuning the controller parameters to find the optimized control law.  
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In conclusion we emphasize that the TSK fuzzy plant model, when related with ACO controller, can be 
successfully applied to the optimized control law calculation. Hence, an illustrative inverted pendulum 
example was provided to summarize the proposed methodology and verify its effectiveness. 
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